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TUTORIAL

Variability in the Log Domain and Limitations to Its 
Approximation by the Normal Distribution 

Jeroen Elassaiss-Schaap1,2,* and Kevin Duisters3

Pharmacometric models using lognormal distributions have become commonplace in pharmacokinetic–pharmacodynamic 
investigations. The extent to which it can be interpreted by traditional description of variability through the normal distri-
bution remains elusive. In this tutorial, the comparison is made using formal approximation methods. The quality of the 
resulting approximation was assessed by the similarity of prediction intervals (PIs) to true values, illustrated using 80% PIs. 
Approximated PIs were close to true values when lognormal standard deviation (omega) was smaller than about 0.25, de-
pending mostly on the desired precision. With increasing omega values, the precision of approximation worsens and starts 
to deteriorate at omega values of about 1. With such high omega values, there is no resemblance between the lognormal 
and normal distribution anymore. To support dissemination and interpretation of these nonlinear properties, some additional 
statistics are discussed in the context of the three regions of behavior of the lognormal distribution.

The lognormal distribution has a widespread application 
in the pharmacometric community. The focus of nonlinear 
mixed effects approaches in pharmacometrics has been on 
the development of pharmacokinetic models initially, shift-
ing toward pharmacokinetic–pharmacodynamic (PKPD) 
models later on.1 The variability in pharmacokinetic mod-
els is typically of a limited magnitude, specifically when 
measured in smaller and well-controlled studies, for exam-
ple, with coefficient of variation (CV) in a range of 5–30%. 
Variability in outpatient studies tends to be larger, e.g., 25–75 
%CV, whereas biomarkers as assessed with PKPD models 
often present with much larger variability, e.g., 50–150 %CV.

Rationale for applying the lognormal distribution
Large variability, as typically encountered in pharma-
cological data sets with biomarkers, requires modeling 
assumptions different from those captured by the normal 
distribution. An early example in pharmacology dates back 
to 1972,2 a study of effective doses in various tissues in 
which a clear case for the use of the lognormal distribution 
was made.

Most of the physiological processes modeled by phar-
macometricians are strictly positive because drug exposure 
and biomarkers are often measured as concentrations in 
blood that cannot be negative. At the same time, parameters 
in pharmacokinetic and pharmacological models also need 
to remain positive to retain their meaning. Clearance, for 
example, describes the body’s capacity to remove xenobi-
otics that it cannot produce on its own. Normal or Gaussian 
standard deviation (SD) cannot extend to more than half of 
the mean without the distribution also getting substantial 
coverage into negative values. The lognormal distribution is 
a natural alternative that can span well beyond this range 
while never producing negative values.

Moreover, a form of asymmetry is commonly required for 
models on physiological processes. This has been shown 
for observations on pharmacokinetic evaluations3,4 but also 
for general applications.5 The skewness has even been de-
rived on the basis of theoretical grounds.6,7 Paraphrasing 
Gronholm and Annila,6 thermodynamic laws require that re-
sults from multiple reactions depend on intermediate states 
and therefore produce skewed distributions, independent 
of the distribution of individual reaction steps. The simplest 
distribution that complies with the criteria of positivity and 
asymmetry is the lognormal distribution. It is obtained by 
raising the normal distribution to the power of the base of 
choice, typically e (corresponding to the natural logarithm 
used as default). The result is strictly positive but has many 
more properties of interest. Although more distributions 
are available and used by the pharmacometric community 
through transformations,8 the lognormal distribution is by far 
the most commonly encountered.

Formal comparison of the approximated lognormal 
through PIs
Many pharmacometric applications have the objective to sup-
port decision making during pharmaceutical development or 
in the regulatory review process.1 Whether the actual topic is 
trial outcome probability, population coverage, or the impact 
of special populations, the underlying property that drives 
the result is the model-derived PI, typically established at 80 
or 90% of the population. Properties of the lognormal distri-
bution will be evaluated against such PIs as the proverbial 
yardstick. The base distribution that we will use to compare 
the lognormal distribution against is the normal or Gaussian 
distribution. The normal distribution is obviously a popular 
distribution throughout scientific analysis. Also in pharma-
cometric textbooks the normal distribution is discussed 
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extensively, see, for example, ref. 9. Up to about 1990, the 
normal distribution was the only one available for the pharma-
cometric community.10–12 The normal distribution is therefore 
the reference distribution of choice. It will be investigated to 
which extent PIs generated using the lognormal distribution 
can be approximated by those of the normal distribution.

The standard approaches to describe variability in 
pharmacometric models are better suited for Gaussian dis-
tributions, with a focus on CV; see also the description in 
the previous few paragraphs. A lack of helpful statistical in-
struments and/or the application thereof may impede proper 
interpretation of results. Although the CV directly relates to 
the variability that is described, it does not reflect on the 
shape of the lognormal distribution. We therefore also revisit 
old metrics such as “skewness” and discuss the possibility 
of applying other metrics to capture the impact of variabil-
ity magnitude on the shape of the distribution. The primary 
objective, however, is to precisely compare the lognormal 
distribution to the default Gaussian or normal distribution.

To be able to evaluate how well the normal distribution is 
capable of describing the lognormal distributions, a formal 
procedure is set up to calculate optimal normal parameters 
for given lognormal parameters using the Kullback–Leibler 
(KL) divergence of distributions and their probability density 
functions (PDFs). With these optimal parameters, the quality 
of approximated PIs is explored as a function of variability 
magnitude. To enable a wider audience to understand how 
these results are derived, the properties of the normal and 
lognormal distributions, as well as the KL divergence, will be 
derived in this article starting from first principles.

The derived optimal approach will then be used to de-
termine the extent to which the lognormal distribution can 
be approximated by a normal distribution. The approxima-
tion was devised specifically for this purpose, and its use 
assures the limitations in approximating the lognormal distri-
bution can be assessed objectively and robustly.

THEORETICAL
Formal properties of the lognormal distribution
This section presents theoretical properties of the lognor-
mal distribution as can be found in textbooks using the 
normal distribution as starting point. Highlighting formal 
differences between these distributions will aid the more 
intuitive discussion in the remainder of this article. A glos-
sary of terms is provided in Supplemental Materials 13. 
To preserve the flow, mathematical derivations are provided 
in the Supplemental Materials 11.

Motivation. One of the basic properties of the lognormal 
distribution is that its mean is not equal to its median, in 
contrast to the normal distribution. This has a large impact 
on interpretation. For example, pharmacometricians often 
need to explicitly explain to outsiders that predictions 
with mixed effects models are representative of the 
typical individual rather than the mean of the data. The 
impact of nonlinear mixed effects makes this necessary, 
e.g., in the classic example of averaging Emax curves. 
Notwithstanding, another driver of this representation 
is the difference between the mean and median of the 
lognormal distribution, e.g., in the discussion of linear 

pharmacokinetics. It therefore is worthwhile to derive the 
basic properties of the lognormal distribution from first 
principles and establish them robustly.

Some basic definitions. Statistical models, such as 
those used in pharmacometrics, are typically calibrated on 
observations of random variables (i.e., collected data). In 
turn, these random variables are defined by the distribution 
they are assumed to follow. The first step in deriving the 
basic properties of a random variable is to define the 
distribution itself, which will be done by specification of its 
PDF. The collection of all values a random variable could 
take in theory is known as the “support.” For instance, a 
Gaussian (or normal) random variable can attain any value 
on the real line, i.e., its support is (−∞,∞). The PDF defines 
for each value in the support what the probability density of 
(the occurrence of) that particular value is. This concept of 
density is a generalization of probability for discrete random 
variables, for instance, 1/6 being the probability a single 
roll of a fair die generates six eyes. Similarly, one reads 
off a density for a particular realization from a continuous 
random variable, such as the normal and lognormal. An 
important characteristic of any PDF is that its area under 
the curve (integrating over the entire support) equals one.

The normal distribution. Suppose random variable X is 
normally distributed with mean � and SD 𝜎 >0, denoted as 
X ∼N (�, �). Then, the PDF fX of X for some realization x on 
(−∞,∞) is given by:

Throughout, equalities that follow by definition are denoted 
as “:=”. The reader may verify that indeed ∫∞

−∞
fX (x)dx=1, for 

which a standard Gaussian integration result is required. 
Using the PDF, basic characteristics such as the mean 
(�[X ]) and SD (the square root of the variance Var[X ]) can be 
derived.

In words, the expected value consists of the values that X 
can take multiplied by how often those values occur relative 
to each other; a density-weighted average. Again, intuition 
may be borrowed from discrete random variables. For in-
stance, a random variable supported on {2,4,8}, realized 
with probabilities 1/4, 1/2, and 1/4, respectively, has an ex-
pected value of 4.5.

The expected value (Eq. 2) is a general definition for any 
continuous random variable X. In particular, for X Gaussian, 
we have:
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1√
2��
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�
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Here, equality * is worked out in Supplemental Materials 
11. For the variance, it always follows that

For X Gaussian the first term on the right-hand side equals

and from Eq. 3 we know

In summary, Var[X ]=�2 for X ∼N(�,�). Again, mathematical 
details (*) are discussed in Supplemental Materials 11. The 
CV can now be plugged in easily:

Finally, we mention that symmetry and unimodality of the 
Gaussian PDF around � lead to some well-known proper-
ties; the median equals �, the skewness is 0, and the mode 
of the distribution is located at its mean. This is in sharp 
contrast to the lognormal distribution discussed next.

The lognormal distribution. Suppose random variable U 
is lognormally distributed with statistical parameters � and 
�, denoted as U∼ logN(�,�). Starting from a normal random 
variable X with mean � and SD �, this U can be defined as 
follows:

Remark that � now takes the role of � and � that of � in the 
notation of the previous subsection. Again, let us define the 
values that the distribution of U can take as u. From the defi-
nition in Eq. 8, it follows that the support of U is (0,∞). For 
any realization u on this support, the PDF of the lognormal 
is given by:

Throughout this article, log() is understood as the natural 
logarithm with respect to base e unless mentioned other-
wise. This PDF expression can be taken at face value or 
derived through the normal PDF using Eq. 8 as is done in 
Supplemental Materials 11. To derive the expected value, 
variance, and CV for U∼ logN(�,�), the following proposi-
tion is used, for which a proof is provided in Supplemental 
Materials 11:

Hence, the expected value is obtained with k=1

and the variance using k=2 and k=1 (squared).

which can be rewritten as exp(2�+�2)(exp(�2)−1). The CV 
is trivially implied:

Finally, as established in Supplemental Materials 11, 
the median of U∼ logN(�,�) is located at exp(�) and the 
mode at exp(�−�2). Observe that the mean of U is given by 
exp(�+

1

2
�2); a property clearly different from the Gaussian 

“mean = median = mode” characteristic. This is also reflected 
in the skewness of U given by (exp(�2)+2)

√
exp(�2)−1.

Overview. Table  1 summarizes the differences between 
the normal and lognormal distributions established so 
far. The variables X or U can be replaced by the name of 
the parameter of interest to the pharmacometrician, for 
example, clearance (CL), i.e., CL∼ logN(�,�).

In conclusion, several properties of the lognormal distri-
bution can be straightforwardly derived from first statistical 
principles. The take-home messages are that the mean of 
the lognormal distribution, in contrast to the normal, is dif-
ferent from the median and that it is related to both � and �.  
The CV is only a function of �. Lastly, the parameter value 
with largest density, i.e., the mode, is different from the mean 
and the median.

Graphical exploration of the lognormal distribution
To augment the formal definition of normal and lognormal 
parameters, a graphical exploration is presented. A normally 
distributed parameter with N(�,�) is shown in Figure S1 with 
�=8 and �=4, as its probability density and its cumulative 
density, overlaid with a histogram of 1000 draws from the 
normal distribution. Remark that for any mean and (positive) 
SD, the normal distribution has at least some mass below 
zero, in other words, the parameter can attain negative val-
ues. The figure also exemplifies that the mean lies at the 
peak of the distribution and that the cumulative distribu-
tion is exactly 50% at that point, in other words: The mean, 
mode, and median are equal.
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Table 1  Main properties of the normal and lognormal distribution

Normal X∼N (�,�) Lognormal U∼ logN (�,�)

Support (−∞,∞) (0,∞)

Mean �
exp

(
�+

1

2
�2

)

SD �
exp

(
�+

1

2
�2

)√
exp

(
�2

)
−1

CV �∕�
√

exp
(
�2

)
−1

Median � exp (�)

Mode � exp
(
�−�2

)

Skewness 0 (
exp

(
�2

)
+2

)√
exp

(
�2

)
−1

CV, coefficient of variation; SD, standard deviation.
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An example of the lognormal distribution is shown in 
Figure S2 with �= log(8) and �=0.5 together with the normal 
distribution from Figure S1. The lognormal � was set equal 
to the CV of the normal distribution (4/8). The example visual-
izes that the lognormal distribution cannot assume negative 
values in contrast to the normal distribution. Other differ-
ences are that the point of maximum density not coincides 
with its mean and that there is a heavier tail in its density 
toward higher values compared with the normal distribution. 
In other words, the cumulative densities of the lognormal 
distribution occur at higher values. The difference between 
the normal and the lognormal distribution increases with in-
creasing variability; see Table 1. It is notable that the mean 
of the lognormal distribution now lies higher than 50% cu-
mulative probability; in other words, the mean has become 
larger than the median (the mean of log-transformed values 
is equal to the log of the median); see Eq. 11.

The extent of the difference between the normal and log-
normal distribution is further evaluated in Figure 1. The 10th 
and 90th percentiles are plotted as a function of � for the 
normal and as a function of � for the lognormal distribution, 
where the same values for � and � are used. The plot there-
fore reflects what would happen if one would mistakenly 

assume the normal and the lognormal distribution behave 
similar. The percentiles of the normal distribution relate linear 
to �. Although at low values the 10th and 90th percentiles 
of lognormal are close to those of the normal distribution, 
at mildly higher values they start to deviate. The increas-
ing skewness of the lognormal distribution with increasing � 
is clearly visible, as the 10th percentile shrinks toward zero 
and the 90th percentile increases exponentially.

These graphs demonstrate that the behavior of the log-
normal distribution is not easy to capture in a single number. 
At the backtransformed scale, the median and the mean be-
come further separated as a function of �; see Figure 1. This 
can have counterintuitive effects, as the basic expectation 
is the mean to be located at the center of the distribution. 
The mean of the lognormal distribution also is not the value 
with the highest probability density. In addition, the distri-
bution becomes more and more asymmetric, as shown in 
the left panel of Figure 1. These properties all are governed 
by one parameter, �, but are not easily and transparently 
derived from it. For example, in the right panel of the same 
figure it can be observed how different the mean and the 
mode become as a function of �. The increasing skewness 
of the lognormal distribution is not always presented and 

Figure 1  Differences between the lognormal distribution relative to the normal. The 10th and 90th percentiles of the normal (dashed, 
�=1, � varies) and the lognormal (straight, �=0, i.e., the same median value, �=�), as a function of � (left panel). The mean (dark 
straight), median (dotted), and mode (light straight) plotted against � where � is set to zero; at zero the curve therefore starts with one 
(right panel). Note how quickly the mean runs off the scale and overtakes the position associated with the upper probability, as plotted 
in the left panel, at an � of about two. The mode similarly decreases to a position lower than associated with the lower probability, at 
an � of one.
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appreciated as such. A perhaps more intuitive plot demon-
strating the increase in skewness with increasing � can be 
found in Figure  2. The skewness clearly increases more 
than linearly with increasing �, and it becomes more and 
more difficult to summarize the distribution.

In the following part of this article, the consequences of 
interpretation of lognormal distributions as if they were nor-
mal will be discussed. The conclusion for now is that the 
shape of the lognormal distribution does clearly depend on 
the value of its variability.

RESULTS
Interpretation of the lognormal distribution as normal
Proxy interpretation as normal and its limitations. One 
aspect of potential misrepresentation is the difference 
between mean and median. As discussed previously, 
the median and mean are equal for the normal but not for 
the lognormal distribution. The median of the lognormal 
distribution is exp(�) and therefore is independent of �. All 
other characteristics of the lognormal distribution, however, 
are dependent on �, including the mean and also the mode. 
A first deviation when interpreting the lognormal distribution 
as normal therefore relates to the difference between the 
median, mean, and mode, as is discussed further in section 
“Statistics to Describe the Lognormal Distribution”.

A second risk that is inherent in the interpretation of a 
lognormal distribution as if it was normal is that the tails of 
the distribution are misjudged. Frequently, the end result of a 
pharmacometric evaluation regards the tails of the distribu-
tion, e.g., to determine whether exposure in a subpopulation 
corresponds with that of the general population for at least 
90% of the subpopulation. Therefore, it is important to es-
tablish how closely the lognormal distribution corresponds 
with a normal distribution in its tails.

Suppose one has estimated � and �2 (estimates denoted 
as �̂  respectively �̂2 here) based on gathered data about the 
random variable CL∼ logN(�,�), for instance, in NONMEM 
with declaration CL = EXP(THETA(1) + ETA(1)). Model results 
for CL could be: �̂  = 0.45; �̂2 = 0.45, and ĈV = 75%. A phar-
macokinetic parameter was chosen as a relevant example, 
but the same principles hold for any parameter or response 
variable such as concentration.

Table 2 lists the implied mean, SD, mode, median, and 
two percentiles for CL in the population for several model 
interpretations treated next, the top line (A) being the correct 
one. In scenario B, the parameters are mistaken for those of 
the normal distribution. Scenario C is a rule of thumb that 
interprets �̂  as (Gaussian) mean. Scenarios D to F apply a 
formal approximation of �̂ assuming, respectively, the mean, 
mode, and median are equal to �̂ .

Figure 2  Probability density (left) and cumulative density (right) of the lognormal distribution at different values of � and fixed median. 
The probabilities according to the lognormal distribution at � values of 0.5 (gray), 1 (black stripes), and 2 (black) is plotted against 
parameter values between 0 and 25; � was set to log(8).
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In the best case (A), the model estimates �̂  and �̂ are 
used to infer the mean, SD, mode, and percentile statistics 
from the corresponding lognormal distribution. This may 
sound trivial, but it is not uncommon to encounter one of 
the following five alternative interpretations (B–F) based on 
the Gaussian distribution in practice instead. A worst case 
scenario (B) would result from interpreting the estimators 
directly as if they specify a normal distribution CL∼N(�̂,�̂),  
leading to a substantial underrepresentation of effect size 
and variability (80% PI [1.2–2.9]). Furthermore, the authors 
have seen a form of the following rule of thumb (C) being in-
formally applied. Using �̂  and ĈV, approximate the mean by 
exp(�̂) and consequently the SD by exp(�̂) ⋅ ĈV. Then, based 
on characteristics of the Gaussian, suppose the mode and 
median are similar to the mean and construct 10% and 90% 
percentiles symmetrically based on exp(�̂)±2ŜD, which is a 
strong inflation with respect to the normal 80% PI that uses 
factor 1.28 instead of 2. In case this inflation causes the 
10% percentile to become negative (which is impossible for 
a lognormal random variable), it is replaced by 0 (or consid-
ered “small”).

Realistically, interpretations D, E, and F try to mimic the 
lognormal distribution with a Gaussian by matching the 
mean, mode, or median of the underlying lognormal, re-
spectively. By fixing the normal mean �̂ in this way, focus 
is placed on what value of �̂ does the best job in approxi-
mating the targeted logN(�̂,�̂) distribution. Despite �̂ having 
improved, it may be clear that �̂= �̂ is completely on the 
wrong scale as before. With the goal of approximating the 
logN(�̂,�̂) density with the N(�̂,�̂) in mind, we turn to the 
widely adopted KL divergence12 as pseudometric for ap-
proximation error, see the Proofs section, which defines 
different �̂s in Eq. 20. Examining Table 2, the mean-match 
Gaussian (D) seems to be closest to the benchmark (A) in 
terms of the 10% and 90% percentiles, although the 80% 
PI [0.35,19.7] is too wide (compare [3.4, 18.9]) and the me-
dian too high (10.0 vs. 8.0). Despite the unfeasible estimate 
for the lower 10% percentile (−4.0), the rule of thumb (C) 
does not do much worse than the KL mean-match (D) in 
terms of the 90% percentile.

How large the deviations at the tails of the approximation 
are also depends on the magnitude of variability. At very 
small values of �, the difference will be negligible because 
the shape of the distributions is similar, but at larger values 

the locations will diverge exponentially; see Figure 3 (In the 
Proofs section it is shown that the ratio of any percentile in 
KL optimized normal approximation against the true log-
normal percentiles is only dependent on �̂, i.e., not on �̂ .) 
The tails of the distribution are specifically important when 
simulations are used to generate PIs and the tolerance for 
deviating locations is not very high. The relative error in the 
lower 10% tail of the approximation gets to 10% at an � of 
about 0.25. The upper tail hits the 10% error level at higher 
values because the approximated SDs are large compared 
with the lognormal SDs, analogs to the difference between 
the correct equation for CV compared with the first-order 
Taylor approximation as also described in the next para-
graph, to be able to cover the bulk of the density. The rule 
of thumb approximates the 10% tail worse, but the 90% tail 
the better among all approximations, and performs reason-
ably well up to an � of about 1.1. The results at the 10% tail 
nevertheless lead to the conclusion that above an � of ≈
0.25, the lognormal distribution cannot be interpreted as a 
normal distribution even when using KL-optimal estimates. 
The results remain similar when the 95% PI is chosen in-
stead of the 80% PI; see Figure S3.

STATISTICS TO DESCRIBE THE LOGNORMAL 
DISTRIBUTION
CV
The usual way of representing a distribution in pharma-
cometric reports and papers is the mean and CV of the 
distribution. The CV is an adequate measure to summarize a 
normal distribution as it is clear how far values extend below 
and above the mean and what the probability is of finding 
negative values. The CV is, however, more difficult to inter-
pret for the lognormal distribution with larger values of �. 
Optimally, one would convert the CV back into the lognormal 
SD � and use that for further interpretation. In the phar-
macometric literature, some scrutiny needs to be applied 
before doing that because often the CV is approximated by 
its first-order Taylor expansion around zero, 

√
�2 instead of 

the correct 
√
exp(�2−1) (see also ref. 3). At higher values, 

for example, 2 for �, the traditionally reported CV would be 
200% instead of 732%. Regardless of this confusion, the CV 
remains difficult to interpret beyond � values that allow for 
sufficient precision in the interpretation of the lognormal as a 
normal distribution as explored previously.

Table 2  Mean; SD; mode; 10%, 50% (median), 90% percentiles; and associated RE% for several candidate model interpretations for �̂= log( 8.0) 
and �̂=0.67 

Interpretation Comment Mean SD Mode

Percentile RE(%) percentile

10 50 90 10 50 90

A logN
(
𝜃̂,𝜔̂

)
Best case 10.0 7.5 5.1 3.4 8.0 18.9

B N
(
𝜃̂,𝜔̂

)
Worst case 2.1 0.67 2.1 1.2 2.1 2.9 −65 −74 −84

C N(exp
(
𝜃̂
)
,exp

(
𝜃̂
)
̂
⋅CV ) Rule of thumb 8.0 6.0 8.0 −4.0 8.0 20.0 −220 0 6

D N(𝜇̂,𝜎̂) 𝜇̂= actual mean 10.0 7.5 10.0 0.35 10.0 19.7 −90 25 4

E N(𝜇̂,𝜎̂) 𝜇̂= actual mode 5.1 9.0 5.1 −6.4 5.1 16.6 −290 −36 −12

F N(𝜇̂,𝜎̂) 𝜇̂=actual median 8.0 7.8 8.0 −2.0 8.0 18.0 −160 0 5

The normal distribution parameter 𝜎̂ is approximated by Kullback–Leibler divergence minimization of N(𝜇̂,𝜎̂) with regard to logN
(
𝜃̂,𝜔̂

)
.

RE%, relative errors; SD, standard deviation.
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Skewness
The traditional statistic to describe asymmetry of unimodal 
distributions, such as the normal and lognormal, is the third 
standardized moment known as skewness. It was previ-
ously noted that the symmetry of any normal distribution 
implies zero skew, and any lognormal distribution has pos-
itive skew, which increases exponentially in �. Although 
caution in interpreting the skewness statistic is generally 
warranted,13 the positive skew indicates a long tail to the 
right of the lognormal density here. In other words, more 
than half of the mass of the distribution is located to the left 
of the mean, i.e., the mean is larger than the median, and 
the 90th percentile will be further removed from the median 
than the 10th percentile, again in this specific case. This 
effect becomes stronger for larger values of skewness (i.e., 
�), such that nonzero skew is a clear warning signal that the 
modeled lognormal distribution is not approximated well by 
any normal distribution. However, it is argued here that it is 
easier to directly assess relative difference against the per-
centiles of a matched normal distribution (see Figure 3) or 
the relative difference between the mean and median in the 
lognormal distribution described next because these indi-
cators are more closely related to typically reported results.

Percentiles of the distribution
A straightforward and intuitive way to characterize the 
distribution is by percentiles of interest, for example, 
the 10th and the 90th percentiles. These numbers di-
rectly provide information about properties of interest, 
the coverage of the population. One can normalize the 
percentiles to the median because percentiles of the log-
normal distribution, relative to the median, only depend 
on �; see the previous section and the Proofs section. 
The normalized percentiles, and especially the 90th 
percentile, form a useful indicator of how the lognormal 
distribution extends into extreme values; relative compar-
isons to the normal distribution with the 10th percentile 
are somewhat more difficult to interpret because of the 
negative values realized with the normal distribution at 
higher variances. How much different the 90th percen-
tile is from the normal distribution is still complicated to 
assess because the relative percentiles are a function of 
variability in both distributions. The difference of the KL-
optimally mean-match percentiles, see Figure  3, would 
provide this information in a scale-invariant way. These 
values are, however, rather complex to calculate and 
therefore less practical for normal use.

Figure 3  The percentage error of the location of the lower (left panel) and upper (right panel) 10% tail of the Kullback–Leibler optimally 
approximated normal distribution representing a given lognormal distribution or as assessed by rule of thumb, see text for an 
explanation. The relative error in the location of the approximate normal tail compared with the given true, i.e., the tail of the lognormal 
distribution, is plotted as percentage against the lognormal standard deviation �. The Kullback–Leibler optimal approximation was 
calculated for an assumed equal mean, median, or mode. The horizontal lines indicate the 10% and 25% error levels in either direction.
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Mean-to-median ratio 
Let us therefore find additional statistics to characterize 
the lognormal distribution. We have clearly established 
that a key property of the lognormal distribution is the 
difference between the mean and median. Depending on 
the application, the tolerance for interpretation as a nor-
mal distribution with the mean and median being equal will 
vary. Rearrangement of Eq. 11 results in a concise equa-
tion to calculate the lognormal � associated with a chosen 
tolerance for the mean and median being equal:

with tol expressed in %. Using this expression, a somewhat 
liberal tolerance of 25%, a number that is often used as 
acceptable standard error for estimated PKPD parameters, 
results in a cutoff � of 0.67. In other words, above this cut-
off, the mean is more than 25% higher than the median. The 
next step is to restate the ratio of mean over median as a 
statistic to characterize the distribution:14

This parameter is easy to understand, as the general idea 
of what mean and median are is common knowledge. It 
is straightforward to interpret this parameter as an indica-
tion of the asymmetry of the distribution and as guidance 
for how accurate a proxy interpretation as normal could be 
for assessing the mean. The area between the median and 
the mean lends itself to further interpretation, at moderate 
� values, as an indication for how far comparable proba-
bilities extend into the distribution. A higher ratio of mean 
over median therefore can be quite intuitively used as an 
indicator for how far the distribution is extended into high 
numbers. Within a report, space is always limited and a sug-
gested abbreviation of this ratio is the mean-to-median ratio 
(MMR). We conclude here that MMR can be used to indicate 
(i) asymmetry of the lognormal distribution and (ii) its spread 
into higher sample values.

Mode density inflation 
The point where the distribution has its highest proba-
bility density, the mode, is equal to the mean for the 
normal Gaussian distribution. The mode of the lognor-
mal distribution however is lower than the mean and the 
median, see the Theoretical section. The consequence 
is that at higher �, the most likely discrete value the log-
normal distribution can take becomes lower and lower. 
At an � of ≈0.83 the mode lies at half of the median, 
meaning the lognormal is not only skewed, but also has 
its peak far away from the median. This is further illus-
trated in Figure  2 (left) by a sharpening of the peak at 
high lognormal variability. At �=2, the peak in density 
occurs at values close to zero while the median is at 8. 
Interpretation of such distributions includes acknowledg-
ing that the probability of values between zero and its 
maximum changes with a very steep slope at the nor-
mal scale. Likewise, a disproportional fraction of values 
will be realized at low values. For �=2, a quarter of all 

probability mass is located below 25% of the median, as 
can be read out from Figure 2 (right).

The impact of � on how normal the distribution appears 
can be read out from Figure 4. In the left panel the peak 
density of the distribution, i.e. the density at the mode or 
mode density, is depicted as a function of �. Initially, the 
peak density declines similarly to the normal distribution, but 
starts to flatten out around � values of 0.4–0.67 and reaches 
its minimum at 1. Beyond this value, peak densities start to 
increase slowly again and become 10% larger than the min-
imum at about 1.3. The peak density increases more than 
linearly with higher values and the lognormal distribution 
unequivocally no more resembles a normal-like distribution. 
Values of � that are beyond the point where the lognormal 
density starts to sharpen, i.e. 1, are therefore unequivocally 
misrepresented by any normal distribution.

Therefore, another property of high lognormal variabil-
ity that we need to cover is the high density peak close to 
zero. A second additional statistic should therefore speak to 
the increased sharpness of the peak. To emphasize its de-
pendence on statistical parameters � and �, we denote the 
logN(�,�) density at value u by f�,�(u) and its mode density 
as maxu>0f𝜃,𝜔(u). Then, the Mode Density Inflation, which is a 
function of �, can be defined as follows.

The final equation follows since one can show that

The mode Density Inflation clarifies that the lognor-
mal distribution gets a sharp peak at higher variabilities. 
The material in for example Figure  4 demonstrates that 
the sharpened peak always occurs close to zero and it is 
therefore not necessary to provide an additional number to 
indicate the position of the mode. The proposed abbrevia-
tion of the ratio would be mode density inflation (MDI). The 
MDI is large at lower values of �, where the lognormal dis-
tribution is very similar to normal and the peak is sharp. It is 
almost similar to the density of the normal distribution to an 
� of about 0.5, after which it slowly approaches a nadir of 1 
at an � of 1. The point where the the peak density gets 10% 
above the minimum is the end of the gray zone. Beyond 
this point the lognormal distribution is unequivocally differ-
ent from a normal distribution, with a mode close to zero, a 
mean that is more than twice the median, and a sharpness in 
probability at the mode that is indicated by the MDI. An illus-
tration of the lognormal distribution at a number of � values 
with respective CV, MMR, MDI, relative 90th percentile, and 
skewness values can be found in Figure 5.

Representing the center of the lognormal distribution
The median is the preferable statistic to reflect the center 
of the lognormal distribution, in contrast to the normal dis-
tribution, for which the mean is equal to the median and 
the mode, such that the center of the normal distribution 
can also be expressed by the mean or mode. With the 

(14)�tol =
√
2log(1+ tol∕100),

(15)MMR :=
mean

median
=

exp
(
�+

1

2
�2

)

exp (�)
=exp

(
1

2
�2

)
.

(16)MDI :=

max
u>0

f𝜃,𝜔 (u)

min
𝜔>0

(
max
u>0

f𝜃,𝜔 (u)
) =

1

𝜔
exp

(
1

2

(
𝜔2−1

))

(17)min
𝜔>0

(max
u>0

f𝜃,𝜔(u))=max
u>0

f𝜃,1(u).
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lognormal distribution these three statistics are different 
and their difference furthermore increases with increasing 
variability, see also Figure 1. The mode shrinks toward zero 
and the mean increases more than exponentially (exponen-
tially with �2). Given large enough � values, the mean will 
be even higher than most percentiles because percentiles 
above 50% increase exponentially with �; for example, the 
mean of the lognormal distribution is above its 90th per-
centile for � larger than ≈2.56. At such values, the mode 
and the mean therefore represent extreme values of the 
lognormal distribution. The median on the other hand is 
at the center of the lognormal distribution regardless of � 
value.

DISCUSSION

We have explored the properties of the lognormal distribu-
tion in mathematical and graphical detail, and the limitations 
one encounters when interpreting it as if it were a normal 
distribution. These limitations have been established using 
formal and therefore objective approximation methods.

The lognormal distribution can be considered to have 
normal-like properties up to a value of �≈0.25, the point at 

which a normal approximation would lead to more than 10% 
error in the location of its lower tail. A gray area follows, with 
a distribution peak that is still somewhat normal-like, while 
increasingly eccentric mode and mean values are realized. 
At an � of about ≈ 1.1, the gray area ends where the best 
normal approximation would lead to more than 10% error in 
the location of its upper tail.

The previous interpretation can be considered reasonable 
but somewhat strict. Depending on the context and applica-
tion, e.g., in the context of small efficacy–safety windows, a 
more stringent set of cutoff values could be selected, 0.12 
and 0.83 as the border where the error in the tail would 
be 5% and the mode is found at 50% of the median, re-
spectively. Or in case modeled distributions are used in a 
descriptive fashion, a more liberal lower cutoff value could 
be selected with ≈ 0.67, the point at which the mean gets 
25% larger than the median. A more liberal alternative for 
the higher cutoff could be an � of ≈ 1.3, where the distribu-
tion sharpens by more than 10% and the mode and mean 
become too eccentric. The interpretation of a distribution 
below the lower cutoff is interpreted as almost identical to 
that of a normal distribution, whereas above the higher cut-
off the distribution is considered as a completely different 

Figure 4  The lognormal distribution increases in sharpness after reaching a minimum at an � of about one. Combined plot of the peak 
density value (solid) of the lognormal distribution, normalized to its lowest value, and of the mode of the lognormal distribution (dark 
gray) as a function of the lognormal standard deviation � (left panel). The peak density of the normal distribution as a function of � 
(dashed gray) has been added as reference. Vertical lines highlight some � values of special interest; from left to right, the values where 
the mean is 25% higher than the median, where the mode is half of the median, and where the peak density becomes 10% larger than 
the minimum density. Selected examples of the lognormal probability density at several values of �; � was set to log (8) (right panel).
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distribution, with diverging mean and medians, and a peak 
in density that is close to zero.

Cutoff values and regions of ω values to guide 
interpretation
Three scenarios can be discerned when reporting on lognor-
mal distributions; see Table 3 and Supplemental Material 
12. In case the � is small, the results can be interpreted 
comparable to normal distributions, focusing on � and, 

certainly if normal distributions are presented alongside, 
%CV. Furthermore, instead of the mean, the median would be 
reported as appropriate. From � values of about 0.25–0.67, 
the lognormal starts to deviate from the normal distribution, 
and the mean-to-mode ratio or MMR starts to deviate from 
one. The MMR can function as a warning of asymmetry and 
as an indication that the mean explicitly cannot be assumed 
to be similar to the median. It also starts to indicate the extent 
of spread of the distribution into higher values. With these � 

Figure 5  Probability densities at � values of interest computed at �= log (8). The inserts tabulate values of CV, MMR, MDI, the relP90, 
and skewness. Vertical dotted lines indicate the position of the median (left) and the mean (right); from an � value of two, onward the 
position of the mean falls outside the horizontal axis range. CV, coefficient of variation; MDI, mode density inflation; MMR, mean- 
to-median ratio; relP90, 90th percentile relative to the median.
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values, the tails of the distribution can no longer be recovered 
using an interpretation as normal. Beyond an � of 1.1, the dis-
tributional shape gets very different, and it is suggested to 
include the third parameter, the mode-density ratio or MDI 
that serves to illustrate the increased peak sharpness at val-
ues close to zero. At this scenario, the text of the report would 
include some discussion of additional support for the distribu-
tional shape. The tails of the lognormal have lost any similarity 
to those of the normal distribution at these high � values.

In reports that discuss population coverages, for exam-
ple, 80% or 90% PIs, under such high � it is especially 
advisable to carefully convey to how different the tails of 
the lognormal distribution are. For example, the sensitivity 
of coverages to parameter uncertainty or misspecification 
could become quite different for lower and upper intervals. 
Explicit discussion of such properties where relevant may 
help prevent unrealistic expectations among the audience.

Notwithstanding the preceding discussion, the math-
ematically best presentation of a lognormal distribution is 
indeed strictly as a lognormal distribution, with � and � pre-
sented in their untransformed values. Such a presentation, 
however, might receive a less-than-favorable reception by a 
wider target audience and therefore cannot be deemed op-
timal. We hope that our findings and discussion of possible 
statistics can help in interpretation.

Confirmation of lognormal distributions with high 
variability
Fleming et al.2 investigated the distribution of potency val-
ues of acetylcholine. Their paper clearly showed highly 
skewed distributions of observed potencies with high 
counts close to zero, consistent with the skewed and asym-
metric properties of high-variability lognormal distribution, 
i.e., a high MDI. It is, however, not always clear that such a 
curvature is indeed needed. Therefore it is recommended 
to perform additional investigations to confirm the modeled 
skewness if a lognormal � falls beyond the gray zone. The 
actual indicators could vary dependent on the amount of 
data available, the background knowledge, and the avail-
able software. Three types of confirmation could be sought: 
(i) typical run completion checks, foremost whether the 
standard error of � is not overly large; (ii) post hoc checks, 
such as whether the post hocs show indeed—at the nor-
mal scale—a high probability at low values consistent with 
the MDI and whether the mode of the distribution does 
indeed occur frequently; and (iii) simulation-based diag-
nostics such as mirror plots and visual predictive checks. 
When the number of observations/individuals is small, it is 
easy to see that these diagnostics perform poorly and re-
search of additional (external) support for large � values 
would be advisable. In case the results of the investigations 

decrease the support for the large � lognormal distribution, 
alternative parameterizations such as mixture models or 
semiparametric conversions could be explored.

PROOFS
Analytical expression for KL divergence of the normal 
distribution against the lognormal distribution
The KL divergence12 between two continuous distributions 
P and Q with densities p() respectively q() is defined as

Because it is our goal to evaluate how different a given 
lognormal distribution is from (the best-fitting) normal dis-
tribution, we will denote logN(�,�) by P and the N(�,�) 
distribution by Q. The following may be considered a tech-
nicality. Because p(u) is only supported on (0,∞) we have to 
assume that p(u)log(p(u))=0 for p(u)=0, i.e., for u≤0. Hence, 
the difference between the lognormal and the normal is merely 
considered on (0,∞) in this setting. Strictly speaking, that is 
not how the KL divergence is intended because Q is formally 
no longer a probability measure on this restricted space (0,∞)

, but it serves its purpose here. Finally, one may observe that 
the reverse definition KL(Q||P) is ill defined (+∞), which is why 
we speak of “divergence” rather than “distance.”

As a first step toward optimizing �̂ by KL minimization (on 
(0,∞)) for fixed �, �, and �, we derive an analytical expression 
for the divergence.

Proof.

Substituting p and q gives the following four expressions 
after rewriting.

Part I. 

Substitute (log(u)−�)∕�=s, u=exp(�+�s), du=�exp(�+�s)ds.

(18)KL(P||Q) :=
∞

∫
−∞

log

(
p (u)

q (u)

)
p (u)du.

(19)

KL(P||Q)= −
1

2
−�+ log

(
�

�

)
+

1

2�2

(
exp

(
2�+2�2

)

−2� exp
(
�+

1

2
�2

)
+�2

)

KL(P||Q)=
∞

∫
0

p (u) log
p (u)

q (u)
du= I+ II+ III+ IV

I=−
1

2

∞

∫
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√
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�
−
1
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∞

∫
−∞

s
2 1√

2�
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�
−
1

2
s
2

�
ds=−

1

2

Table 3  Suggestions for reporting lognormal distributions at different levels of variability

Range � �
2 MMR MDI Shape of distribution Suggestion

0 < � < 0.25 0.0625 1.00 to 1.03 ∞ 1 to 2.5 “Close” to normal –

0.25 < � < 1.10 1.2 1.03 to 1.83 2.5 to ≈ 1 Heavy tail and shallow peak Consider to discuss

1.10 < � < ∞ – 1.83 to ∞ 1.01 to ∞ Elongated heavy tail, sharp peak 
near 0

Discuss shape

MDI, mode density inflation; MMR, mean-to-median ratio.
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Here, the last equality follows from a standard Gaussian 
integral (which one may recognize as the variance of a stan-
dard normal random variable).

Part II. 

Substitute log(u)=s, s=exp(u), du=exp(u)ds.

Here, the last equality follows by recognizing the expression 
as expected value of a Gaussian random variable with mean 
� (and variance �2).

Part III. 

The result follows immediately since the integral of the log-
normal PDF ∫∞

0
p(u)du over its entire support equals 1.

Part IV. 

Writing (u−�)2=u2−2�u+�2, we again recognize three 
terms. First, for u2 we plug in k=2 in Eq. 10.

Second, for −2�u, we use k=1.

Third, �2 is again simply a multiplication factor to the total 
area under the curve for the lognormal PDF (which equals 
one) as in part III.

Collecting all terms for part IV gives

Finally, adding parts I + II + III + IV completes the proof.

Optimizing 𝜎̂ of the distribution to match a given 
lognormal distribution

Show that �̂ is equal to one of the following three cases:

Proof.
Fixing �, �, and �, we set the partial derivative of Eq. 19 to zero.

We work out the details of this equation case by case, sub-
stituting �.

D. Set �=exp(�+
1

2
�2).

E. Set �=exp(�−�2)

F. Set �=exp(�)

Now, substituting � and � by their estimators �̂  and �̂ pro-
vides the resulting expression for �̂.

Ratio of percentiles of lognormal and KL-optimized, 
matched normal do not depend on �̂

In Supplemental Materials 11, it is explained that the 
median of U∼ logN(�,�), i.e., U=exp(X ) with X ∼N(�,�), 
can be found as exp(�) (note: � being the median of X) 
because the exponential is a strictly increasing function. 
The same holds for other percentiles than the median. 
Denote the p×100%-percentile of the standard normal 
distribution Z∼N(0,1) by Zp. Then, the p×100%-percen-
tile of U is given by
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where we have used the well-known fact that for normal 
distributions, X ∼N(�,�), percentiles Xp can be stated as

Now, in Table 2, the best-case (A) percentiles of the lognormal 
distribution are given by Eq. 21, plugging in �̂  and �̂. One may 
note that −Z0.10=Z0.90≈1.28. On the other hand, for any of 
the KL-matched scenarios (D,E,F) percentiles follow Eq. 22 be-
cause of the interpretation as Gaussian plugging in �̂ according 
to Table 2 and corresponding �̂ from Eq. 20. The relative dif-
ference Xp∕Up is given for the respective cases D, E, and F, by:

and all exp
(
𝜃̂
)
 terms cancel in the denominator and 

nominator.

Derivation of the properties of the normal and 
lognormal distributions

Basic textbook results with dense proofs are included in the 
Supplemental Material to provide all that is needed to de-
rive properties of the lognormal distribution algebraically; 
see Supplemental Materials 11.

CONCLUSIONS

The application of the lognormal distribution in pharma-
cometrics, its evolution, and strong rationale have been 
discussed. The field of pharmacometrics has widened, and 
with that also larger variability in the lognormal domain are 
encountered. The characteristics of the lognormal distribu-
tion change dramatically with increasing variability values 
(�). The distribution initially becomes skewed. With further 
increase of variability the center mass of the distribution 
shifts, with increasing mean and decreasing mode relative 
to the median. At even higher values the lognormal distri-
bution gets extremely sharp with its mode close to zero 
and its mean positioned at multitudes of the median. Some 
additional statistics to evaluate these characteristics are de-
scribed, the MMR to describe asymmetry and spread, and 
the MDI to describe peak density sharpening. We investi-
gated the exact consequences of interpreting the lognormal 
distribution as normal by defining optimal approximations 
of the lognormal distributions and determining the highest 
variabilities at which the approximation was still valid in de-
scribing the 10th and 90th percentiles. The 10th percentile 
could be approximated with a normal distribution up to � 
values of up to about 0.25, whereas the 90th percentile 

approximation remained valid up to about an � of 1.1, with 
an error of 25%. Above this level of variability, the lognormal 
distribution does not resemble a normal distribution any-
more, and other statistics may be helpful in the reporting 
and discussion of lognormal distributions at high variability 
values.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).
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