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Abstract

Despite the widespread implementation of public health measures, COVID-19 continues to spread 

in the United States. To facilitate an agile response to the pandemic, we developed How We Feel, a 

web and mobile application that collects longitudinal self-reported survey responses on health, 

behavior, and demographics. Here we report results from over 500,000 users in the United States 

from April 2, 2020 to May 12, 2020. We show that self-reported surveys can be used to build 

predictive models to identify likely COVID-19 positive individuals. We find evidence among our 

users for asymptomatic or presymptomatic presentation, show a variety of exposure, occupation, 

and demographic risk factors for COVID-19 beyond symptoms, reveal factors for which users 

have been SARS-CoV-2 PCR tested, and highlight the temporal dynamics of symptoms and self-

isolation behavior. These results highlight the utility of collecting a diverse set of symptomatic, 

demographic, exposure, and behavioral self-reported data to fight the COVID-19 pandemic.

Introduction

The rapid global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 

the novel virus causing coronavirus disease 2019 (COVID-19)1–3, has created an 

unprecedented public health emergency. In the United States, efforts to slow the spread of 

disease have included, to varying extents, social distancing, home-quarantine and treating 

infected patients, mandatory facial covering, closure of schools and non-essential businesses, 

and testing-trace-isolate measures4,5. The COVID-19 pandemic and ensuing response has 

produced a concurrent economic crisis of a scale not seen for nearly a century6, exacerbating 

the effect of the pandemic on different socioeconomic groups and producing adverse health 

outcomes beyond COVID-19. As a result, there is currently intense pressure to safely wind 

down these measures. Yet, in spite of widespread lockdowns and social distancing 

throughout the US, many states continue to exhibit steady increases in the number of cases7. 
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In order to understand where and why the disease continues to spread, there is a pressing 

need for real-time individual-level data on COVID-19 infections and tests, as well as on the 

behavior, exposure, and demographics of individuals at the population scale with granular 

location information. These data will allow medical professionals, public health officials, 

and policy makers to understand the effects of the pandemic on society, tailor intervention 

measures, efficiently allocate testing resources, and address disparities.

One approach to collecting this type of data on a population scale is to use web- and mobile-

phone based surveys that enable large-scale collection of self-reported data. Previous 

studies, such as FluNearYou, have demonstrated the potential for using online surveys for 

disease surveillance8. Since the start of the COVID-19 pandemic, several different 

applications have been launched throughout the world to collect COVID-19 symptoms, 

testing, and contact-tracing information9. Studies in the US and Canada 

(CovidNearYou10,11), UK (Covid Symptom Study12,13, also in US) and Israel 

(PredictCorona14), have reported large cohorts of users drawn from the general population 

with a goal towards capturing information about COVID-19 along a variety of dimensions, 

from symptoms to behavior, and have demonstrated some ability to detect and predict the 

spread of disease12–14. This field has rapidly evolved since the beginning of the pandemic, 

with many analyses of these datasets focusing on COVID-19 diagnostics (i.e., symptoms, 

test results, medical background)11, care-seeking15, contact-tracing16, patient care17, effects 

on healthcare workers18, hospital attendance19, cancer20, primary care21, clinical 

symptoms22, and triage23. Here we perform a comprehensive analysis of a new source of 

COVID-19-related information spanning diagnostic and behavioral factors sampled from the 

general population during the beginning of the pandemic in the United States. We consider 

exposure, demographic, and behavioral factors that affect the chain of transmission, 

understand the factors for who have been tested, and study the degree of presence of 

asymptomatic, presymptomatic, mildly symptomatic cases24.

To overcome these limitations, we developed How We Feel (HWF, http://

www.howwefeel.org) (Fig. 1a–d), a web and mobile-phone application for collecting de-

identified self-reported COVID-19-related data. Rather than targeting suspected COVID-19 

patients or existing study cohorts, HWF aims to collect data from users representing the 

population at large. By drawing from a large user base across the US that learn about the 

study through word of mouth and government partnerships, these results are complementary 

to other studies such as the Covid Symptom Study and CovidNearYou that also include 

sizable US populations and are targeted towards the general public. Users are asked to share 

information on demographics (gender, age, race/ethnicity, household structure, ZIP code), 

COVID-19 exposure, and pre-existing medical conditions. They then self-report daily how 

they feel (well or not well), any symptoms they may be experiencing, test results, behavior 

(e.g., use of face coverings), and sentiment (e.g., feeling safe to go to work) (Fig. 1c, 

Extended Data Fig. 1). To protect privacy, users are not identifiable beyond a randomly-

generated number that links repeated logins on the same device. A key feature of the app is 

the ability to rapidly release revised versions of the survey as the pandemic evolves. In the 

first month of operation, we released three iterations of the survey with increasingly 

expanded sets of questions (Fig. 1b).
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We find symptomatic subjects and health care workers and essential workers are more likely 

to be tested. Due to asymptomatic and mildly symptomatic individuals and heterogeneous 

symptom presentation, our results show that commonly used symptoms may not be 

sufficient criteria for evaluating COVID-19 infection. Further, we find that exposure both 

outside and within the household are major risk factors for users testing positive and build a 

predictive model to identify likely COVID positive users. African-American users, Hispanic/

Latinx users, and health care workers and essential workers are at a higher risk of infection, 

after accounting for the effects of pre-existing medical conditions. Finally, we find that even 

at the height of lockdowns throughout the U.S., the majority of users were leaving their 

homes, and a large fraction were not engaging in social distancing or face protection.

Results

The app was launched on April 2, 2020 in the United States. As of May 12, 2020, the app 

had 502,731 users in the United States, with 3,661,716 total responses (Fig. 1b) 

(Supplementary Table 1). 74% of users responded on multiple days, with an average of 7 

responses per user (Extended Data Fig. 2). Each day, ~5% of users who accessed the app 

reported feeling unwell (Fig. 1b). The user base was distributed across all 50 states and 

several US territories, with the largest numbers of users in more populous states such as 

California, Texas, Florida, and New York (Fig. 1d). Connecticut had the largest number of 

users per state, as the result of a partnership with the Connecticut state government (Fig. 1d). 

Users were required to be 18 years of age or older and were 42 years old on average (mean: 

42.0; SD: 16.3), including 18.4% in the bracket of 60+, which has experienced the highest 

mortality rate from COVID-19 (Fig. 1e)25,26. Users were primarily female (82.7%) (Fig. 1f) 

and white (75.5%, excluding 20.3% with missing data) (Fig. 1g). Although the survey ran 

from April 2 through May 12, users could report test results from earlier than April 2.

A major ongoing problem in the US is the overall lack of testing across the country27 and 

disparities in test accessibility, infection rates, and mortality rates in different regions and 

communities28,29. In the absence of population-scale testing, it will be critical during a 

reopening to allocate limited testing resources to the groups or individuals most likely to be 

infected in order to track the spread of disease and break the chain of infection. We therefore 

first examined who in our userbase is currently receiving testing. We analyzed 4,759 users 

who took the Version 3 (V3) survey and who were PCR tested for SARS-CoV-2 (out of 

272,392 total users) (Fig. 2a, Extended Data Fig. 3a). Of these, 8.8% were PCR positive. 

The number of tests reported by test date displays a similar trend to the estimated number of 

tests across the US, suggesting that our sampling captures the increase in test availability 

(Fig. 2a). The number of PCR tests per HWF user is highly correlated with external 

estimates of per-capita tests by state (Fig. 2b, Extended Data Fig. 3b, Pearson correlation 

0.77)30.

We first examined via logistic regression which factors either collected in the survey or 

inferred from US Census data by user ZIP code were associated with receiving a SARS-

CoV-2 PCR test, regardless of test result. As expected, we observed that a higher fraction of 

tested users from states with higher per-capita test numbers, according to the COVID 

Tracking Project30 (Extended Data Fig. 3b). Healthcare workers (OR: 2.94; 95% CI: [2.75, 
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3.15]; p <0.001) and other essential workers (OR: 1.39; 95% CI: [1.28, 1.52]; p<0.001) were 

more likely to have received a PCR test compared to users who did not report those 

professions (Fig. 2c). Users who reported experiencing fever, cough, or loss of taste/smell 

(among other symptoms) had higher odds of being tested compared to users who never 

reported these symptoms (Fig. 2c). The majority of these symptoms are listed as common 

for COVID-19 cases by the Centers for Disease Control and Prevention (CDC) (Fig. 2c, 

starred)31. A less common symptom, reporting a tight feeling in one’s chest, was also 

associated with receiving a PCR-based test (OR: 2.27, 95% CI: [1.93, 2.66]; p<0.001). 

These results suggest that the most commonly reported symptoms are being used as 

screening criteria for determining who receives a test, potentially missing asymptomatic and 

mildly symptomatic individuals. This group could include those who are at high risk for 

infection but do not meet the testing eligibility criteria.

To obtain a global view of self-reported symptom patterns, we applied an unsupervised 

manifold learning algorithm to visualize how symptoms were correlated across users 

(Methods). As expected, we found that symptom presentation separated broadly by feeling 

well versus feeling unwell (Fig. 2d, Extended Data Fig. 4). Users who felt unwell were 

concentrated in a single cluster indicating similar overall symptom profiles, which was 

characterized by high proportions of common COVID-19 symptoms as defined by the 

CDC31 (Fig. 2e), and contained the vast majority of responses from users with both positive 

(+) and negative (−) SARS-CoV-2 PCR tests (Fig. 2f). Thus COVID-19 symptoms tend to 

overlap with symptoms for other diseases and do not necessarily predict positive test results.

This overlap suggests that commonly used symptoms may not be sufficient criteria for 

evaluating COVID-19 infection. It has previously been reported that many people infected 

with SARS-CoV-2 are asymptomatic, mildly symptomatic, or in the presymptomatic phase 

of their presentation32–34 and therefore unaware that they are infected. In our dataset, on the 

day of their test, most users (73%) that tested PCR positive for SARS-CoV-2 reported 

feeling unwell with the common symptoms listed by the CDC (dry cough, shortness of 

breath, chills/shaking, fever, muscle/joint pain, sore throat, loss of taste/smell). However, 

11.5% of positive users reported feeling unwell and exclusively reported symptoms not 

listed as common for COVID-19 by the CDC on the day of their test and, and 15.4% 

reported feeling no symptoms at all (Fig. 2g). Because of the commonly used symptom and 

occupation based screening criteria for receiving a PCR test and under-testing, this total of 

36.9% likely underestimates the true fraction of asymptomatic, presymptomatic, and mildly 

symptomatic cases, which in Wuhan, China was estimated to be ~87%24, and in US was 

estimated to be >80%. A large number of asymptomatic cases were also observed in 

serological studies35,36. 48.9% of users testing negative for SARS-CoV-2 reported feeling 

unwell with most common COVID-19 symptoms, compared to an expected false negative 

rate of 20–30% for PCR-based tests of symptomatic patients37, again suggesting symptom 

presentation overlap with other diseases (Fig. 2g).

We investigated the symptoms that were most predictive of COVID-19 by exploring the 

distribution and dynamics of symptoms in PCR test (+) and (−) users around the test date. 

PCR test (+) users reported higher rate of common COVID-19 symptoms, including dry 

cough, fever, loss of appetite, and loss of taste and/or smell, than PCR test (−) users (Fig. 
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2h). Many PCR-tested users longitudinally reported symptoms in the app in an interval 

extending ±2 weeks from their test date (Extended Data Fig. 5). We used these data to 

examine the time course of symptoms among those who tested positive. In the days 

preceding a test, dry cough, muscle pain, and nasal congestion were among the most 

commonly reported symptoms. Reported symptoms peaked in the week following a test and 

declined thereafter (Fig. 2i). Taking the ratio of the symptom rates at each point in time 

between PCR test(+) and (−) users showed that the most distinguishing feature in users who 

tested positive was loss of taste and/or smell, as has been previously reported13 (Fig. 2j).

We next investigated medical and demographic factors associated with testing PCR positive 

for acute SARS-CoV2 infection, focusing on 3,829 users who took the V3 survey within ±2 

weeks of their reported PCR test date (315 positive, 3,514 negative) (Fig. 3a, Supplementary 

Tables 2–6). These users are a subset of all the users who reported taking a test in the V3 

survey, as some reported test results were outside this time window. To correct for selection 

bias of receiving a PCR test when studying the risk factors of a positive test result, we 

incorporated probability of receiving PCR tests as inverse probability weights (IPW) into our 

logistic model of PCR test result status (+/–) (Methods)38. As with the analysis of who 

received a test, the reported symptoms, loss of taste and/or smell was most strongly 

associated with a positive test result (OR: 33.17, 95% CI: [17.3, 67.94]; p < 0.001). Other 

symptoms associated with testing positive included fever (OR: 6.27, 95% CI: [2.82, 13.70]; 

p < 0.001) and cough (OR: 4.45, 95% CI: [2.83, 6.99]; p < 0.001). Women were less likely 

to test positive than men (OR: 0.55, 95% CI: [0.38, 0.80]; p = 0.002), and both Hispanic/

Latinx users (OR: 2.59, 95% CI: [1.67, 3.97]; p < 0.001) and African-American/Black users 

(OR: 2.35, 95% CI: [1.29, 4.18]; p = 0.004) were more likely to test positive than white 

users, highlighting potential racial disparities involved with COVID-19 infection risk. The 

odds of testing positive were also higher for those in high density neighborhoods (OR: 1.85, 

95% CI: [1.15, 3.07]; p = 0.014). Healthcare workers (OR: 1.92, 95% CI: [1.36, 2.73]; p < 

0.001) and other essential workers (OR: 1.69, 95% CI: [1.13, 2.52]; p = 0.01) also had 

higher odds of testing positive compared to non-essential workers. Pregnant women were 

substantially more likely to test positive (OR: 6.30, 95% CI: [2.45, 14.68]; p < 0.001). 

However, we note that this result is based on a small sample of 48 pregnant women included 

in this analysis (9 test-positive, 39 test-negative) and is unstable, subject to potentially high 

selection bias. Performing this analysis with and without correction for selection bias 

produced similar results (Fig. 3a). As a further sensitivity analysis, we reran the analyses 

excluding users from the states CA and CT, the state containing most users (Extended Data 

Figure 7a), and correcting for broader demographic differences using US Census Data 

(Extended Data Figure 7b), both obtaining similar results to the uncorrected model in both 

cases. Finally, we performed Firth-corrected logistic regression to check for bias in our 

testing model related to the large fraction of users testing negative, and obtained similar 

results to our uncorrected model (Extended Data Figure 8).

Motivated by previous studies that reported high cluster transmissions occurred in families 

in China, Korea, and Japan39–41, we explored household and community exposures as risk 

factors for users testing PCR positive. The odds of testing positive were much higher for 

those who reported within-household exposure to someone with confirmed COVID-19 than 

for those who reported no exposure at all (Methods) (OR: 19.10, 95% CI: [12.30, 30.51]; p < 
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0.001) (Fig. 3a, Supplementary Table 5). This is stronger than comparing the odds of 

positive among those who reported exposure outside their household versus no exposure at 

all (OR: 3.61, 95% CI: [2.54, 5.18]; p < 0.001). Further, the odds of testing PCR positive are 

much higher for those exposed in the household versus exposed outside their household or 

not exposed at all, after adjusting for similar factors (OR: 10.3, 95% CI: [6.7, 15.8]; p 

<0.001) (Supplementary Table 10). These results are consistent with previous findings that 

indicate a very high relative risk associated with within-household infection40,42–45. This is 

compatible with finding that other closed areas with high levels of congregation and close 

proximity, such as churches46, food processing plants47, and nursing homes48, have shown 

similarly high risk of transmission.

Developing models to predict who is likely to be SARS-CoV-2(+) from self-reported data 

has been proposed as a means to help overcome testing limitations and identify disease 

hotspots13,14. We used data from the 3,829 users who used the app within ±2 weeks of their 

reported PCR test results to develop a set of prediction models that were able to distinguish 

positive and negative results with a high degree of predictive accuracy on cross-validated 

data (Fig. 3b). We used the machine learning method XGBoost, which outperformed other 

classification methods (Extended Data Fig. 6). For each user, we predicted their test results 

using either data before the test (“Pre-test”), which would be most useful in predicting 

COVID-19 cases in the absence of molecular testing, and using data before and after the test 

(“All data”) as a benchmark for the best possible prediction we could make using all 

available data. We considered: (1) a symptoms-only model, which included only the most 

common COVID-19 symptoms listed by the CDC; (2) an expanded model, which further 

incorporated other features observed in the survey; and (3) a minimal-features model, which 

retained only the four most predictive features (loss of taste and/or smell, exposure to 

someone with COVID-19, exposure in the household to someone with confirmed 

COVID-19, and exposure to household members with COVID-19 symptoms) (Methods, 

Supplementary Tables 11–14). The symptoms-only model achieved a cross validated AUC 

(area under the ROC curve) of 0.76 using data before and after a test, and AUC 0.69 using 

just the pre-test data. Expanding the set of features to include other survey questions 

substantially improved performance (cross-validated AUC 0.92 all data, 0.79 pre-test). In the 

minimal-features model, we were able to retain high accuracy (cross-validated AUC 0.87 all 

data, AUC 0.80 pre-test) despite only including 4 questions, one of which was a symptom 

and three referring to potential contact with known infected individuals. Restricting the 

observed inputs to the 1,613 users (89 positive, 1,524 negative) who answered the survey in 

the 14 days prior to being tested limited the sample size and reduced the overall accuracy, 

but the relative performance of the models was similar (Fig. 3b).

The fact that a fraction of SARS-CoV-2(+) users report no symptoms or only less common 

symptoms (Fig. 2g) raises the possibility that many infected users might behave in ways that 

could spread disease, such as leaving home while unaware that they are infectious. In spite 

of widespread shelter-in-place orders during the sample period, we found extensive 

heterogeneity across the US in the fraction of users reporting leaving home each day, with 

61% of the responses from April 24 – May 12 indicating the user had left home that day 

(Fig. 4a). The majority (77%) of these users reported leaving for non-work reasons, 

including exercising; 19% left for work (Fig. 4b). Of people who left home, a majority but 
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not all users reported social distancing and using face protection (Fig. 4c). Different states 

had persistently different levels of people wearing masks and leaving home (Extended Data 

Figure 9). This incomplete shutdown with partial adherence, and lack of total social and 

physical protective measures, coupled with insufficient isolation of infected cases, may 

contribute to continued disease spread.

Given the large number of people leaving home each day, it is important to understand the 

behavior of people who are potentially infectious and therefore likely to spread SARS-

CoV-2. To this end, we further analyzed the behavior of people both reporting to be PCR test 

(+) or (−). There was an abrupt large increase in users reporting staying home after receiving 

a positive test result (Fig. 4d,e). Many, but not all, PCR test(+) users reported staying home 

in the 2–7 days after their test date (7% still went to work, N=14 out of 203 users), whereas 

23% (N=62,483 out of 269,833 users) of untested and 26% (N=664 out of 2, 533 users) of 

PCR test(−) left for work (Fig. 4d,e). Similarly, 3% of PCR test(+) (N=7 out of 203 users) 

users reported going to work without a mask, in contrast with untested (12.7%, N=34,481 

out of 269,833 users) and PCR test(−) (10%, N=255 out of 2,533 users) users (Fig. 4f). 

Positive individuals reported coming into close contact with a median of 1 individual over 3 

days in contrast to individuals who tested negative or were untested, who typically came in 

close contact with a median of 4 people within 3 days (Fig. 4g). Regression analysis 

suggested that healthcare workers (OR: 9.3, 95% CI: [7.3, 11.8]; p <0.001 ) and other 

essential workers (OR: 6.8, 95% CI: [5.2, 8.9]; p < 0.001) were much more likely to go to 

work after taking a positive or negative test, and PCR positive users were more likely to stay 

home (OR: 0.1, 95% CI: [0.1, 0.2]; p <0.001) (Fig. 4h, Supplementary Table 15).

Discussion

Using individual level data collected from the How We Feel app, we showed that 

incorporating information beyond symptoms — in particular, household and community 

exposure — is vital for identifying infected individuals from self-reported data. This finding 

is particularly important for risk assessment at the early stage of transmission, e.g., during 

the latent and presymptomatic periods when subjects have not developed symptoms yet, so 

high risk subjects can have priorities for being tested and quarantined and close contacts can 

be traced, in order to block the transmission chain early on. Our results show that vulnerable 

groups include subjects with household and community exposure, health care workers and 

essential workers, and African-American and Hispanic/Latinx users. They are at higher risk 

of infection and should have priorities for being tested and protected. Our finding also show 

significant racial disparity after adjusting for the effects of pre-existing medical conditions, 

and needs to be addressed.

We find evidence among our users for several factors that could contribute to continued 

COVID-19 spread despite widespread implementation of public health measures. These 

include a substantial fraction of users leaving their homes on a daily basis across the US, 

users who claim to not socially isolate or return to work after receiving a PCR test(+), self-

reports of asymptomatic, mildly symptomatic, or presymptomatic presentation, and a much 

higher risk of infection for people with within-household exposure.
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That said, we note several limitations of this study. The HWF user base is inherently a non-

random sample of voluntary users of a smartphone app, and hence our results may not fully 

generalize to the broader US population. In particular, the study may be subject to selection 

bias by not capturing populations without internet access, such as low-income or minority 

populations, who may be at elevated risk and over-representation of females. Our results are 

based on self-reported survey data, hence may suffer from misclassification bias—

particularly those based on self-reported behaviors. Moreover, a relatively small percentage 

of subjects received PCR testing. As shown in Figure 2, the subjects who were tested were 

more likely to be symptomatic, health care workers and essential workers and people of 

color. Naïve regression analysis of test results using responses of subjects who were tested 

could be subject to selection bias. To mitigate this, we have attempted to correct for these 

selection biases via the inverse probability weighting approach by estimating the selection 

probability, the probably of receiving tests, using the observed covariates (Methods). Some 

residual bias may persist if there remain some unobserved factors related to underlying 

disease status and receiving a test, or if the selection model is in misspecified. What’s more, 

the HWF user base may not be representative of the broader US population. Although our 

regression analysis conditioned on a wide range of covariates in order to account for 

possible selection bias, if any unobserved factors associated with underlying disease status 

are also related to using the app—e.g., health literacy, access to the internet, particularly 

vulnerable groups such as low income families—the results may be subject to additional 

selection bias.

Although there is enormous economic pressure on states, businesses, and individuals to be 

able to return to work as quickly as possible, our findings highlight the ongoing importance 

of social distancing, mask wearing, large-scale testing of symptomatic, asymptomatic and 

mildly symptomatic people, and potentially even more rigorous ‘test-trace-isolate’ 

approaches49–52 as implemented in several states, such as Massachusetts, New York, New 

Jersey and Connecticut, which have bended the infection curve49–52. Applying predictive 

models on a population scale will be vitally important to provide an “early warning” system 

for timely detection of a second wave of infections in the US and for guiding an effective 

public policy response.

As testing resources are expected to continue to be limited, HWF results could be used to 

identify which groups should be prioritized, or potentially to triage individuals for molecular 

testing based on predicted risk. HWF’s integration of behavioral, symptom, exposure, and 

demographic data provides a powerful platform to address emerging problems in controlling 

infection chains, rapidly assist public health officials and governments with developing 

evidence-based guidelines in real time, and stop the spread of COVID-19.

Methods

Ethics Statement

The How We Feel application was approved as exempt by the Ethical & Independent 

Review Services LLP IRB (Study ID: 20049 – 01). The analysis of HWF data was also 

approved as exempt by Harvard University Longwood Medical Area IRB (Protocol #: 

IRB20–0514) and the Broad Institute of MIT and Harvard IRB (Protocol #: EX-1653). 
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Informed consent was obtained from all users and the data were collected in de-identified 

form.

Open-Source Software: We used the following open-source software in the analysis:

• Numpy: https://www.numpy.org

– Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. The NumPy 

Array: A Structure for Efficient Numerical Computation, Computing in 
Science & Engineering, 13, 22–30 (2011)

• Matplotlib: https://www.matplotlib.org

– John D. Hunter. Matplotlib: A 2D Graphics Environment, Computing in 
Science & Engineering, 9, 90–95 (2007),

• Pandas: https://pandas.pydata.org/

– Wes McKinney. Data Structures for Statistical Computing in Python, 

Proceedings of the 9th Python in Science Conference, 51–56 (2010)

• Scikit-learn: https://scikit-learn.org/stable/index.html

– Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent 

Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter 

Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre 

Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard 

Duchesnay. Scikit-learn: Machine Learning in Python, Journal of 
Machine Learning Research, 12, 2825–2830 (2011)

• SciPy: https://www.scipy.org

– Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, 

Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, 

Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew 

Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. 

J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, 

Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef 

Perktold, Robert Cimrman, Ian Henriksen, E.A. Quintero, Charles R 

Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul 

van Mulbregt, and SciPy 1.0 Contributors. (2020) SciPy 1.0: 

Fundamental Algorithms for Scientific Computing in Python. Nature 
Methods, in press.

• Statsmodels: https://www.statsmodels.org/stable/index.html

– Seabold, Skipper, and Josef Perktold. “Statsmodels: Econometric and 

statistical modeling with python.” Proceedings of the 9th Python in 
Science Conference. 2010.

• R: http://www.r-project.org
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– R Core Team (2020). R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. 

URL https://www.R-project.org/.

– Yihui Xie (2015) Dynamic Documents with R and knitr. 2nd edition. 

Chapman and Hall/CRC. ISBN 978–1498716963

• Tidyverse: http://www.tidyverse.org

– Wickham et al., (2019). Welcome to the tidyverse. Journal of Open 
Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686

• Data.table: https://CRAN.R-project.org/package=data.table

– Matt Dowle and Arun Srinivasan (2019). data.table: Extension of 

`data.framè. R package version 1.12.8.

• sampleSelection

– Arne Henningsen, Ott Toomet, Sebastian Peterson. Sample Selection 

Models.

Application

The How We Feel application was developed in React Native (https://reactnative.dev/), using 

Google App Engine (https://cloud.google.com/appengine) and Google BigQuery (https://

cloud.google.com/bigquery) for the backend, and launched on the Android and iOS 

platforms. Users were identified only with a device-specific randomly generated number. 

Users below the age of 18 were not allowed to use the application.

Inclusion Criteria

If a user logged in multiple times in a day, only the first was retained. We excluded any users 

who responded to a survey version on one day and then on a later day responded to an older 

survey version. We excluded any users who reported different genders on different days, and 

we excluded any observations with missing feeling, gender, or smoking history.

Prior to survey version 3, users responded only whether or not they received a COVID-19 

test, and we assumed that they received a PCR test. In survey version 3, users reported the 

type of test they received, and we excluded antibodies tests from analyses.

Logistic regression: receiving a test (Fig. 2)—The How We Feel app allows users to 

report prior COVID-19 test information, including test date, type (swab vs. antibody), result 

(positive, negative, or unknown), location of test, and reason for receiving the test. A user 

may report that the test result is not yet known, and then update this information in future 

check-ins. A test was considered to be ‘unique’ if it was reported by the same user with the 

same test date (including ‘NA’, n=11) and type. For this analysis, ‘swab’ tests were assumed 

to be PCR-based tests for SARS-CoV-2. Tests with a reported test date prior to January 1, 

2020 were excluded. Prior to Version 3, users were not asked about their test type. Tests 

from the same user with the same test date may have been missing a reported test type in 

earlier check-ins, but the user may have filled in this information at later check-ins; in this 
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case, we consider this to be the same test and assign the reported test type. For each unique 

test, all test information (including result) from the user’s most recent check-in was used.

We compared testing data from How We Feel to the COVID Tracking Project (https://

covidtracking.com/) for all 50 states and the District of Columbia. For comparison with How 

We Feel data used in this analysis, we extracted COVID Tracking Project data through May 

11, 2020. Tests with a “not yet known” test result were excluded from this analysis. In 

Extended Data Fig. 6, the left panel compares the number of unique swab tests divided by 

the number of unique users in How We Feel to the total tests per state (‘totalTestResults’) 

reported by the COVID Tracking Project divided by the state population as estimated by the 

2010 Census (https://pypi.org/project/CensusData/). The right panel compares the proportion 

of unique swab tests in How We Feel with a positive result to the proportion of tests in the 

COVID Tracking Project with a positive result (‘positive’).

For the analysis of who received a test, the outcome was 1 if a user reported a swab test 0 

otherwise. We fit a logistic regression model using demographics, professions, exposure, 

symptoms, among other covariates. Time-varying measures (e.g. symptoms) were averaged 

over their V3 survey responses. Analysis was conducted with the statsmodel package 

(v0.11.1) in Python. We reported the log odds ratios and odds ratios, along with 

corresponding 95% confidence intervals. Supplementary Table 3 lists the covariates used in 

the selection (who received a test) regression model, as well as the estimated coefficients, 

95% confidence intervals, and p-values.

UMAP (Fig. 2d–f)—Of the 3,661,716 survey responses collected by HWF up until May 

12, 2020, 667,651 reported having at least one symptom (excluding ‘feeling_not_well’) 

from the set of 25 symptom questions asked across all surveys. Only these responses were 

used for UMAP analysis. Each of the 25 queried symptoms was treated as a binary variable. 

The input data was therefore a matrix of 667,651 survey responses with 25 binary symptom 

variables. UMAP was applied to this matrix following McInnes and Healy (UMAP: Uniform 

Manifold Approximation and Projection for Dimension Reduction, ArXiv e-prints 

1802.03426, 2018) using the Python package umap-learn with parameters: 

n_neighbors=1000, min_dist=0.5, metric=‘hamming’. The resulting two-dimensional 

embedding was plotted with different colormaps for each response in Fig3. The distribution 

of all 25 symptoms are shown individually in FigS3.1. See notebook 

‘HWF_UMAP_final.py’ for full implementation.

Asymptomatic Analysis (Fig. 2g): Each of the symptoms were categorized as either a 

CDC symptom, a non-CDC symptom or asymptomatic. The CDC symptoms were defined 

as patients that reported feeling well or unwell with either a dry cough, shortness of breath, 

chills/shaking, fever, muscle/joint pain, sore throat, or loss of taste/smell. The Non-CDC 

symptoms were defined as patients that reported feeling well or unwell with any symptoms 

that were not defined by the CDC, including abdominal pain, confusion, diarrhea, facial 

numbness, headache, irregular heartbeat, loss of appetite, nasal congestion, nausea/vomiting, 

tinnitus, wet cough, runny nose, etc.
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We restricted analysis to the subset of patients for which we observed symptom data on their 

test date. For each user that tested positive or negative, we categorized participants into three 

groups: {CDC symptoms, Non-CDC symptoms, Asymptomatic}. Participants were grouped 

into CDC symptoms if they reported any CDC symptoms and participants that reported only 

non-CDC symptoms were grouped in the Non-CDC symptoms category. Participants were 

considered asymptomatic if they reported none of the above symptoms. Proportions were 

reported and graphically represented for each group in Figure 2g.

COVID-19 symptoms and dynamics (Fig. 2h–j)—In the HWF survey data up to May 

12, 2020, a total of 8,429 unique users reported the result of a qPCR COVID-19 test (1,067 

positive, 7,362 negative). For surveys v1–2 we assumed that all tests were qPCR tests since 

antibody tests were rare before April 24. In the v3 survey (April 24 – May 12) the test type 

was explicitly asked. Among qPCR tested users, each response was assigned a date in days 

relative to the self-reported test date. The aggregate fraction of responses reporting each 

symptom was visualized in a histogram in Fig 2h. The aggregate fraction of responses 

reporting each symptom at each timepoint among users that tested positive was visualized in 

a heatmap in Fig 2i. Fig 2j shows the element-wise log ratio of the positive-test and 

negative-test heatmaps. I.e. each element = log(fraction positive responses reporting 

symptom at time t / fraction negative responses reporting symptom at time t). The heatmaps 

were smoothed by taking the average for each symptom within a sliding window of +/− 1 

day for visualization.

Logistic regression: test results (Fig. 3a)—A large number of risk factors survey 

questions were added in V3 of the survey, so we restricted analysis to V3 survey data for the 

purposes of identifying risk factors associated with SARS-CoV-2(+) test results. User 

responses were selected using a symmetric 28 day window around the last reported 

COVID-19 swab test date for any given user. Users that had no reported test outcome, or 

reported both positive and negative outcomes in different responses were removed. Users 

who identified as “other” in the gender response were dropped due to small sample size. 

Median neighborhood household income was estimated by mapping user’s ZIP codes to 

corresponding ZCTAs from the census, and then using the American Community Survey 5-

year average results from 2018 to infer a neighborhood household income (B19013_001E). 

Population density was calculated at the county level for each user based on data from the 

Yu Group at UC Berkeley (https://github.com/Yu-Group/covid19-severity-prediction)

Race was a categorical variable, with distinct groups: “white”, “African-American”, 

“Hispanic/Latinx”, “Asian”, “multi-racial” for those who marked two or more race 

categories, “other” for those who marked “other”, “Native American,” or “Hawaiian/pacific 

islander,” and “unknown” for those who did not disclose their race. A given food source was 

marked as True if the user had indicated the use of that food source over any response within 

the given time window.

Because the HWF app asks for a separate set of symptoms depending whether or not the 

user reported feeling “well,” there is not a 1 to 1 correspondence between symptoms 

reported by those feeling “well” and “not well.” We excluded symptoms that were only 

present among those feeling “well” or only among those feeling “not well”. For symptoms 
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reported by both those who were “well” and “not well”, we combined them into single 

symptoms. Supplementary Table 2 shows the variables merged using the “any” function. 

Each symptom’s responses were then averaged over all available responses over the 28 day 

window. Similarly, distribution of sleep was averaged across the time window.

Multiple logistic regression was performed using statsmodels with the binary response 

outcome being the swab test outcome (positive coded as 1, negative as 0) to obtain 

unadjusted coefficients, which were converted to odds ratios using exponentiation. 

Supplementary Table 4 lists the covariates used in the unadjusted outcome regression model, 

as well as the estimated coefficients, 95% confidence intervals, and P-values.

To mitigate selection bias inherent in restricting the analysis to those who have received a 

test, we used several inverse probability weighting (IPW) adjustments. The probability of 

selection was estimated via the logistic regression analysis of who received a test described 

above. They were incorporated into the outcome model via inverse probability weighting, 

and we reported confidence intervals based on robust (sandwich-form) standard errors and 

bootstrap standard errors. As IPW can be sensitive to very small selection probability, we 

truncated them at several different values, using 0.1 and 0.9; and 0.05 and 0.95. The results 

using the truncated IPW selection probabilities at 0.1 and 0.9 were reported in Figure 3. The 

result using truncated IPW selection probabilities at 0.05 and 0.95 were similar. 

Supplementary Table 5 lists the covariates used in the outcome regression model with IPW 

truncation at 0.1 and 0.9, as well as the estimated coefficients, and 95% confidence intervals. 

Confidence intervals were obtained by bootstrapping the entire model selection process with 

2000 replicates. Specifically, for each bootstrap replicate, the entire dataset was resampled 

with replacement, a new selection/propensity model was fitted for who gets a test, followed 

by a new IPW model fit using the inferred propensities from the bootstrap sample. 

Coefficients for the IPW models across the bootstrap samples were used to generate the 

confidence intervals and mean value of the coefficient.

For additional sensitivity analysis, we used the bivariate probit model with sample selection 

used in econometrics to simultaneously estimate a selection (who gets tested) equation and 

an outcome (who tests positive) equation incorporating the selection probability as an 

additional covariate. Due to possible collinearities, not all features could be used in both the 

selection model and the outcome model. Specifically, profession could only be included in 

the selection model, and thus should be interpreted with caution. Supplementary Table 6 lists 

the covariates used in the full information maximum likelihood estimates of the selection 

and outcome regression model, as well as the estimated coefficients, 95% confidence 

intervals, and p-values. Qualitatively, the trends observed in the simultaneous selection/

outcome model fitting are similar to those found in the 2step selection + IPW outcome 

logistic models.

To address sample bias in the user distribution in comparison to the distribution of 

individuals in the US, we employed a post-stratification correction for non-probability 

sampling models as an additional analysis. Post-stratification using age, gender, ethnicity, 

and location, was performed on the testing selection model which generates the IPW 

weights for the testing positive model. The US was subdivided into the 9 major census 
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regions (see Supplementary Table 7). A joint distribution of estimated population over age, 

gender, ethnicity, and region was obtained from the American Community Survey 5-year 

estimates from 2018. The corresponding distribution of users was generated across the same 

variables, and the ratio between each cell in the census distribution and the user distribution 

was used as the corresponding inverse probability weight in the testing selection model. The 

testing selection model thus should represent a user’s probability of getting tested from a 

corrected user base distribution matching major US census demographics. The census-

corrected testing selection model was used to generate IPW weights for the subsequent 

testing positive model and was otherwise performed as before. Bootstrapping was performed 

on the entire process. The model coefficients for the post-stratification testing model are 

shown in Supplementary Table 8 , while coefficients and confidence intervals for the 

subsequent post-stratified IPW test outcome model are shown in Supplementary Table 9. A 

comparison of model coefficients with and without post-stratification can be found in 

Extended Data Figure 9. A comparison of the census based post-stratification corrected 

models to the uncorrected models can be found in Fig. S7a. Performing census based post-

stratification correction yields model coefficients and confidence intervals that are similar 

compared to when no census based post-stratification is performed.

To assess whether or not the states with the largest number of users bias the results, we also 

performed a comparison between the selection and outcome models with IPW correction 

with and without users from CA and CT (see Fig. S7b). When removing CA and CT data, 

coefficients from the selection and outcome model remain largely similar, suggesting limited 

bias due to CA and CT. Moreover, there is an overall increase in confidence interval widths 

of the outcome model, reflecting an overall increase in variance. Together, this comparison 

suggests that the CA and CT userbase add additional datapoints without adding substantial 

bias that may make the overall sample and corresponding analyses unrepresentative of the 

entire US population.

Household Transmission Analysis

In the HWF survey version 3, users were first asked if they were exposed to someone with 

confirmed COVID-19. If they answered yes, then they were asked if that person lived in 

their household. We removed users who answered something other than “yes” to the first 

question and who answered the second question. Additionally, we restricted the analysis to 

users who reported a negative or positive COVID-19 swab test and those who reported 2 or 

more household members. The outcome of interest was the binary outcome of testing 

positive on the COVID-19 swab test. The exposure of interest was the binary variable of 

having a household member test positive for COVID-19; we grouped respondents who 

answered no with those who did not answer the question regarding household members 

together.

The rest of the analysis proceeded similarly to the analysis for Fig. 3a, including the 

covariates used and the symptom collapsing strategy for each user across their responses 

within the two-week window before the test and two-week window after the test. We also 

performed sensitivity analysis using symptoms prior to the test. The difference between this 

analysis and that in Fig. 3a is that the reference group for household exposure was any other 

Allen et al. Page 15

Nat Hum Behav. Author manuscript; available in PMC 2021 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exposure or no exposure, whereas the reference group for household exposure and for other 

exposure in Fig. 3a is no exposure.

For both the unadjusted and adjusted analysis, we performed logistic regression without and 

with the covariates. Supplementary Table 10 shows the 95% confidence intervals were 

calculated on the log odds ratio scale and then exponentiated to obtain odds ratios.

Sensitivity analysis: Firth Regression—Because of the small number of users in the 

user base who received a SARS-Cov2 PCR test (1.7%) and the small number of tested users 

who received a positive test (8.2%), it is possible for standard logistic regression to be 

biased. To address this issue, we performed sensitivity analysis with Firth regression (Firth, 

D., 1993. Bias reduction of maximum likelihood estimates. Biometrika, pp.27–38.), as 

implemented in the logistf R package (https://cran.r-project.org/package=logistf). We found 

very little difference between the Firth regression results and the logistic regression results 

presented in the paper (Extended Data Figure 8), indicating the imbalance of tested users or 

users who tested positive was not so severe as to bias the results.

Prediction models (Fig. 3c)—XGBoost was compared across different featurizations 

and subsets of the data to assess the predictiveness of the algorithm on the HWF test result 

data. Two datasets were generated according to the data selection and featurization used in 

the regression analysis of Covid-19 swab test outcomes, with the difference between the two 

sets being the time span used for the window, and the inclusion of additional features not 

used for inference. In the “pre-test” dataset, the window was selected such that only 

responses from 14 days before the test up until the day before the last reported test were 

included for analysis. The post-test dataset, on the other hand, is identical to the regression 

analysis dataset, using data from 14 days before and after the last reported test. The features 

for the different feature sets are shown in Supplementary Tables 11–13. Mask wearing and 

social isolation were computed as time averages of the responses to these questions. Models 

were trained and tested using 5-fold cross-validation over the datasets. Within each fold, an 

additional 3-fold cross validation was performed on the training set to optimize model 

hyperparameters before testing on the test set of that fold (see Supplementary Table 14 for 

grid search coordinates). Test set AUCs from each fold were averaged to form a final AUC 

estimate. Final ROC curves were computed using the combined test set scoring and test set 

labels from each fold.

In addition to the models shown in the main text, we tested a range of classifiers, feature 

sets, and data aggregation strategies for their performance at predicting COVID-19 test 

results from HWF survey data (shown in Extended Data Fig. 4). Input data was restricted to 

v3 survey data collected between 04–24 and 05–12, and to qPCR tested users who 

responded within −10 and +14 days of their test: total of 3,514 negative tests and 315 

positive tests. Three different feature sets, each consisting of a series of binary input 

variables from the HWF survey, were used: 56 symptoms, 77 additional features, or all 133 

features together (see ‘HWF_model_comparison_final.py’ for full feature lists). Note that 

this featurization differs slightly from the featurization used in the logistic regression 

described above, the goal of which was inference rather than prediction. Each of the 3,829 

qPCR tested users responded between 1 and 25 times within the time window of analysis. To 
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account for time and sparse response rates we binned data across time in four different ways: 

i) average response for each feature in the 9 days preceding the test data (‘pre-test’); ii) 

average response from −10 to +14 days (‘average’); iii) bin the data into three weeks 

([−10,−1], [0,7], [8,14]) and average each separately, creating a separate time indexed 

feature label for each time bin (‘week_bins_avg’); or iv) imputing the response for days with 

no data by backfilling, then forward filling, then proceeding as in iii (‘week_bins_imp’). The 

classifiers were implemented from the scikit-learn and XGBoost Python packages with the 

following parameter choices: LogisticRegression(), LassoCV(max_iter=2000), 

ElasticNetCV(max_iter=2000), RandomForestClassifier(n_estimators=100), 

MLPClassifier(max_iter=2000), XGBClassifier(). Hyperparameters for CV methods were 

automatically optimized by grid-search using 5-fold cross-validation. Mean AUC was 

calculated for each classifier using 5-fold cross-validation. See FigS4.1 for results and 

‘HWF_model_comparison_final.py’ for full implementation.

Post-Test Behavior Analysis (Fig. 4d–g)—Users with post test information (in the 2–7 

days) after their test date (or hypothetical test date for untested users) were collected and 

analyzed. All featurization on this post test window was identical to that of the selection/test 

outcome models. For computing if a user went to work at least once, all responses for which 

users either leaving the house or not from version 3 were used, and if any response for a user 

contained a yes answer to leaving the house for work, the user was marked as leaving the 

home for work. Similar analysis was performed for leaving to work without a mask by 

marking the user as a yes if they reported they were going to work and separately reported 

not using a mask when leaving the house that day. Proportions of each behavior across the 

three populations (tested positive, tested negative, and untested) were computed, and were 

bootstrapped with 2000 replicates to generate confidence intervals. Estimated number of 

contacts was performed similarly, except using the average value over individual user 

responses across the 2–7 days after their test.

Logistic analysis was performed to understand the effect of PCR test result on user behavior 

in the 2–7 days after test, adjusting for other potential covariates. Supplementary Table 15 

lists the covariates used in the unadjusted outcome regression model, as well as the 

estimated coefficients, 95% confidence intervals, and P-values.

Allen et al. Page 17

Nat Hum Behav. Author manuscript; available in PMC 2021 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data

Extended Data Fig. 1. HWF Survey Structure
Flow of questions through the HWF survey V3 for both first time users and returning users.
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Extended Data Fig. 2. Number of Repeat Uses Per HWF User
The number of times each HWF user checked into the app.

Extended Data Fig. 3. Analyses Regarding Receiving PCR-based Viral Tests
a, A univariate plot of the frequency of people receiving a PCR-based viral test in each state. 

b, Correlations of viral tests per person (left) and percent of tests with positive results (right) 

comparing state-level data from How We Feel to testing data collected by the COVID 
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Tracking Project. Each point represents a state, and the size of the point scales continuously 

with the total number of viral tests reported to How We Feel. Tests with an unresolved result 

at time of analysis were excluded. Several sizes shown in legend for reference. The dark blue 

dotted line is the x=y line and represents the expectation if sampling was random with 

respect to testing and test-positive results. The gray line is the best-fit linear regression line 

(and 95% CI) weighted by the number of viral tests reported to How We Feel.

Extended Data Fig. 4. UMAP Visualization of Multivariate Self-Reported Symptom Structure
Plots show individual distributions for 25 self-reported symptoms on the UMAP embedding 

shown in main text Fig. 2.

Extended Data Fig. 5. HWF Usage Over Time Per COVID-19 Tested User.
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Left: Response rate of tested users. COVID-19 HWF users provided between 1 and 39 

responses each, with a mean of 9 responses per user. Right: Aggregate temporal information 

showing number of responses relative to COVID-19 test date. In aggregate, we obtains > 

1,843 survey responses each day within a window of 7 days of the COVID-19 test.

Extended Data Fig. 6. COVID-19 Test-Result Prediction Model Comparisons.
Six classified models (heatmap rows) were trained to predict COVID-19 test results from 

survey data among users tested within the V3 survey (N=3,829; 315 positive; April 24 - May 

12), as assessed by cross-validation AUC measurement. Hyperparameters were optimized by 

grid search. The input survey data was treated in a variety of ways with models trained on 

either: the average of responses provided before the test (pre-test), the average of responses 

provided from 10 days before to 14 days after the test (average), the weekly average in this 

window (week_bins_avg), or the weekly average after imputing missing responses by back-

filling (week_bins_imp). The analysis was performed on three different feature sets: all 

survey features (N=133), symptoms only (N=56) or non-symptoms only (N=77). The overall 

most accurate classifier was XGBoost, which was used for the analysis in Fig. 3.
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Extended Data Fig. 7. Results of Sensitivity Analyses for Biased Geographic Locations of Users 
and Demographics.
Comparison of testing outcome regression analysis between IPW corre ction alone and a, 

census based post-stratification + IPW correction and b, IPW correction on dataset with CT 

and CA users removed from the analysis. From left to right is 1) the comparison of the 

testing selection logistic regression model, 2) comparison of the predicted probability of 

getting tested using the testing selection logistic regression model, 3) comparison of the 

bootstrapped mean model coefficient from the testing outcome model, 4) comparison of the 

bootstrapped 95% confidence interval widths from the testing outcome model.
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Extended Data Fig. 8. Firth regression sensitivity analysis.
a, Comparison of regression coefficients (left), p-values (center) and standard errors (right) 

from Firth regression (y-axis) vs. logistic regression from Fig. 2c in the manuscript (x-axis) 

for the model predicting which users would be tested. The dotted line is the identity (y = x) 

line. b, Comparison of regression coefficients (left), p-values (center) and standard errors 

(right) from Firth regression (y-axis) vs. unweighted logistic regression from Fig. 3a in the 

manuscript (x-axis) for the model predicting which users among the tested users would test 

positive. The dotted line is the identity (y = x) line.
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Extended Data Fig. 9. Timecourse of User Behavior in Different States.
Time course of fraction of users in each state reporting wearing masks, socially distancing, 

covering their faces when leaving home, as well as leaving home for other reasons or for 

work from April 25 through May 11. Arrows indicate states that reopened before May 10. 

The wide dark bands in “Left for Work” and “Left for Other” correspond to weekends. Users 

per state: AK 487, AL 2590, AR 1858, AZ 5302, CA 28860, CO 6373, CT 45295, DC 749, 

DE 752, FL 12621, GA 6803, HI 702, IA 2797, ID 1483, IL 9799, IN 4882, KS 2476, KY 

2879, LA 1882, MA 7174, MD 4696, ME 1242, MI 8157, MN 5269, MO 4544, MS 1176, 

MT 784, NC 7314, ND 451, NE 1508, NH 1425, NJ 5758, NM 1667, NV 2057, NY 11072, 

OH 8244, OK 2608, OR 4371, PA 9804, RI 1051, SC 3298, SD 551, TN 4513, TX 17088, 

UT 3755, VA 7239, VT 587, WA 7560, WI 4711, WV 1153, WY 440.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: The How We Feel Application and User Base.
a, The How We Feel (HWF) app: longitudinal tracking of self-reported COVID-19-related 

data. b, Responses over time, as well as percentage of users reporting feeling unwell, with 

releases of major updates to survey indicated. c, Information collected by the HWF app. d, 
Users by state across the United States. e, Age distribution of users. Note: users had to be 

older than 18 to use the app. f, Distribution of self-reported sex. g, Distribution of self-

reported race or ethnicity. Users were allowed to report multiple races. “Multiracial” = the 

user indicated more than one category. “Other” includes American Indian/Alaskan Native 

and Hawaiian/Pacific Islander, as well as users who selected “Other”.
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Figure 2: SARS-CoV-2 PCR Testing and Symptoms.
a, Stacked bar plot of user-reported test results over time, overlaid with official number of 

tests across US based on COVID Tracking Project data. N = 4,759 users who took the V3 

survey and reported a test result, out of 277,151 users. b, Left: Map of per-capita test rates 

across the United States. Right: Map of COVID-19 tests per number of users by state. c, 

Associations of professions and symptoms with receiving a SARS-CoV-2 PCR test, adjusted 

for demographics and other covariates (Methods). Common symptoms listed by the CDC 

are starred. N = 4,759 users with a reported test within 14 days of a survey response out of 

277,151 users. d-f, UMAP visualization of 667,651 multivariate symptom responses among 

HWF users that reported at least one symptom. Coloring indicates: d, responses according to 

users feeling well; e, the reported number of COVID-19 symptoms listed by the CDC; and f, 
the COVID-19 test result among tested users. g, Proportion of positive COVID-19 patients 

(red) and negative COVID-19 patients (blue) experiencing either CDC-common symptoms 

(dark), only non-CDC symptoms (light), or no symptoms (grey) on the day of their test. N = 

1,170 positive users, 8,892 negative users who reported a test result between April 2 and 
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May 12, 2020. h, Histogram of reported symptoms among COVID-19 tested users. i, 
Longitudinal self-reported symptoms from users that tested positive for COVID-19. Dates 

are centered on the self-reported test-date. j, Ratio of symptoms comparing users that test 

positive versus test negative for COVID-19.
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Figure 3: SARS-CoV-2 PCR Test Result Associations and Predictions.
a, Factors associated with respondents receiving and reporting a positive test result, as 

determined through logistic regression. Left: results from unweighted model. Right: results 

from model incorporating selection probabilities via inverse probability weights (IPW). 

Reference categories are indicated where relevant, and when not indicated, the reference is 

not having that specific feature. Log odds ratios and their confidence intervals are plotted, 

with red indicating positive association and blue indicating negative association. Darker 

colors indicate confidence intervals that do not cover 0. Population density and 

neighborhood household income were approximated using the county level data. L = lower 

bound, U = upper bound of 95% confidence intervals. N = 3,829 users, 315 positive, 3,514 

negative who took the V3 survey within ±2 weeks of receiving a test. b, Prediction of 

positive test results using ±2 weeks of data from test date, using 5-fold cross validation, 

shown as receiver operating characteristic (ROC) curves. The XGBoost model was trained 
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on different subsets of questions: CDC Symptom Questions = using just the subset of 

COVID-19 symptoms listed by the CDC. All Survey Questions = using the entire survey. 4 

Question survey = using a reduced set of 4 questions that were found to be highly predictive. 

Numerical values are AUC = area under the ROC curve. N = 3,829 users.
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Figure 4: Behavioral Factors Potentially Contributing to COVID-19 Spread.
a, Proportion of responses indicated users leaving home across US (map) or overall (inset 

pie chart). N = 1,934,719 responses from 279,481 users. b, Percentage of responses of users 

reporting work or other reason for leaving home. N = 1,176,360 responses from 244,175 

users. c, Reported protective measures taken per response taken by users upon leaving home. 

N = 1,176,360 responses from 244,175 users. d, Time course of proportion of SARS-CoV-2 

PCR tested positive (+) or negative (−) users staying home, leaving for work, and leaving for 

other reasons. N=4,396 total users who reported being tested positive or negative in the V3 

survey and responded on at least one day within ±1 week of being tested. e–f, Proportion 

SARS-CoV-2 PCR tested (+) or (−), or untested (U), going to work (e) (N=14 out of 203 

positive, 664 out of 2,533 negative, 62,483 out of 269,833 untested), going to work without a 

mask (f) (N=7 out of 203 positive, 255 out of 2,533 negative, 34,481 out of 269,833 

untested) who responded within the 2–7 days post test for T = tested, or 3 weeks since last 
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check in for U = untested. Healthcare workers and other essential workers are compared to 

non-essential workers as the baseline. g, Average reported number of contacts per 3 days in 

the 2–7 days after their test date. T(+), N=138 users; T(−), N=2,269 users; U, N=254,751 

users. OR = odds ratio, LB = lower bound, UB = upper bound, CI = confidence interval, T = 

tested, P = positive, U = untested. h, Logistic regression analysis of factors contributing to 

users going to work in the 2–7 days after their COVID-19 test N=678 users going to work 

out of 2,736 users with definitive test outcome and survey responses in the 2–7 days after 

their test date.
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