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Abstract

Administration of high doses of fluoride (F) can alter glucose homeostasis and lead to insulin resistance (IR). This study
determined the profile of protein expression in the gastrocnemius muscle of rats with streptozotocin-induced diabetes that
were chronically exposed to F. Male Wistar rats (60 days old) were randomly distributed into two groups of 18 animals. In
one group, diabetes was induced through the administration of streptozotocin. Each group (D-diabetic and ND-non-
diabetic) was further divided into 3 subgroups each of which was exposed to a different F concentration via drinking water
(0 ppm, 10 ppm or 50 ppm F, as NaF). After 22 days of treatment, the gastrocnemius muscle was collected and submitted
to proteomic analysis (2D-PAGE followed by LC-MS/MS). Protein functions were classified by the GO biological process
(ClueGO v2.0.7+Clupedia v1.0.8) and protein-protein interaction networks were constructed (PSICQUIC, Cytoscape).
Quantitative intensity analysis of the proteomic data revealed differential expression of 75 spots for NDO vs. DO, 76 for ND10
vs.D10, 58 spots for ND50 vs. D50, 52 spots for DO vs. D10 and 38 spots for DO vs. D50. The GO annotations with the most
significant terms in the comparisons of NDO vs. DO, ND10 vs. D10, ND50 vs. D50, DO vs. D10 and DO vs. D50, were muscle
contraction, carbohydrate catabolic processes, generation of precursor metabolites and energy, NAD metabolic processes
and gluconeogenesis, respectively. Analysis of subnetworks revealed that, in all comparisons, proteins with fold changes
interacted with GLUT4. GLUT4 interacting proteins, such as MDH and the stress proteins HSPB8 and GRP78, exhibited
decreased expression when D animals were exposed to F. The presence of the two stress proteins indicates an increase in IR,
which might worsen diabetes. Future studies should evaluate whether diabetic animals treated with F have increased IR, as
well as which molecular mechanisms are involved.
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Introduction [9]. Impairment of glucose homeostasis occurs when plasma levels
of F exceed 5 pM. In addition, plasma insulin levels increase as a

The development of type 2 diabetes mellitus is critically related function of the F concentration in drinking water [9-12].
to insulin resistance (IR) [1]. IR is an impairment of insulin action Moreover, it has been shown that chronic F exposure can
in insulin-target tissues. It results from the inability of peripheral decrease the frequency ppl185 tyrosine phosphorylation in muscle
target tissues to respond appropriately to normal concentrations of and white adipose tissues, while it increases the ppl85 serine
circulating insulin and provokes impaired glucose tolerance despite phosphorylation in white adipose tissue: these changes result in
elevated insulin concentrations [2,3]. decreased insulin signaling [13,14]. The negative effects of the
Fluoride (F) is a therapeutic agent that protects against dental chronic ingestion of F on glucose homeostasis can be ameliorated
caries [4]; therefore, it is added to public drinking water and dental by physical activity [15]. Previous studies have reported that the
products [5,6]. However, studies in humans have shown that retention of F is greater in animals with chemically induced
ingesting I in excessive doses can lead to glucose intolerance. The diabetes [16]. However, the effects of chronic F administration on
development of glucose intolerance depends on both the duration glucose homeostasis in animals with chemically induced diabetes
and dose of exposure to I [7,8]. Oral ingestion of F leads to have not been investigated. Fluoride has been shown to cause
transient inhibition of insulin secretion in both rats and humans glucose intolerance [7,8] and inhibit insulin secretion [9];
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therefore, chronic I administration may exacerbate diabetes. If
this is the case, then diabetic patients should be advised to reduce
their F intake.

Skeletal muscle is the predominant tissue for insulin-stimulated
glucose and lipid disposal, and it plays a crucial role in whole body
IR. Defects glucose and lipid disposal are responsible for most of
the IR observed in patients with type 2 diabetes [3,17]. Proteomic
analysis of skeletal muscle in exercise-trained, insulin-resistant
mice has revealed alterations in the levels of abundance of proteins
involved in molecular chaperoning, anti-oxidative stress response
and mitochondrial functions [17]. Because F causes progressive
degeneration of the structure and function of the skeletal muscles
[18], it likely affects many proteins and enzymatic systems [19,20].
However, the proteomic profile of skeletal muscle in animals with
streptozotocin-induced diabetes and chronic exposure to F has not
been mvestigated. We hypothesize that upon chronic exposure to
F, rats with streptozotocin-induced diabetes will display significant
alterations in the levels of skeletal muscle proteins involved in IR.
Therefore, the aim of this study is to describe the global changes in
the profile of protein abundance that occurs in rats with
streptozotocin-induced diabetes and chronic exposure to varying
concentrations of I' introduced through the drinking water.

Materials and Methods

Animals and treatment

Male weanling Wistar rats (60 days old) were randomly
distributed into two groups of 18 animals. In one group, diabetes
was induced through the administration of streptozotocin (Sigma
Aldrich, Saint Louis, MO, EUA) in a single intraperitoneal dose
(50 mg/kg b.w., dissolved in saline, at 4°C) [21]. After 7 days,
diabetes was confirmed by measuring blood glucose levels (Accu-
Chek Performa, Roche Diagnostics, Mannheim, Germany). Each
group, diabetic (D) and non-diabetic (ND), was further divided
into 3 subgroups treated with different concentrations of F via the
drinking water (O ppm, 10 ppm or 50 ppm F, as NaF; designated
as 0, 10 and 50, respectively). The animals were housed in groups
of three per cage and received food and water ad libitum for 22
days. The temperature and humidity in the climate-controlled
room, which had a 12 h light/dark cycle, were maintained at
23+1°C and 40%-80%, respectively. At the end of the study, the
rats were anaesthetized with sodium thiopental (Thiopentax,
Cristalia Produtos Quimicos e Farmacéuticos Ltda., Itapira, SP,
Brazil). The gastrocnemius muscle was collected and stored at
—80°C until proteomic analysis. All experimental protocols were
approved by the Ethics Committee for Animal Experiments of
Bauru Dental School, University of Sao Paulo (Protocol 13/2010).

Sample Preparation for 2DE

The frozen tissue was homogenized in a cryogenic mill, model
6770 Freezer Mill (Spex, Metuchen, NJ, EUA). For the protein
extraction, gastrocnemius muscle homogenate was incubated in
lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS, 1% IPG buffer
pH 3-10, 40 mM DT'T) supplemented with a protease inhibitor
cocktail (Roche Diagnostics, Mannheim, Germany; 5 uL./mg of
tissue) for 1 h at 4°C with occasional shaking. The homogenate
was then centrifuged at 15,000 rpm for 30 min at 4°C and the
supernatant containing the soluble proteins was recovered. The
proteins were precipitated using the kit PlusOne 2-D Clean-up kit
(GE Healthcare, Uppsala, Sweden), as recommended by the
manufacturer. The resulting pellets were then resuspended in
rehydration buffer (7 M urea, 2 M thiourea, 0.5% CHAPS, 0.5%
IPG buffer pH 3-10, 18 mM DT'T, 0.002% bromophenol blue).
The protein concentration of each sample was measured by the
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Bradford protein assay [22]. After quantification, 1000 pg of
muscle protein from each animal in a single test- group was pooled
and submitted for proteomic analysis in triplicate, as described
below.

2-D Separation

Skeletal muscle protein (1000 pg) was taken from each pooled
sample and mixed with a rehydration buffer to a final volume of
400 pL. This sample was subsequently applied to immobilized, pH
gradient strips (24 cm, pH 3-10) and focused in Ettan IPGphor 3
(GE Healthcare, Uppsala, Sweden) following the manufacturer’s
instructions. After focalization, the strips were equilibrated for
15 min with buffer (6 M urea, 75 mM Tris—HCI, 2% SDS, 29.3%
glycerol) that was supplemented with 1% (w/v) DTT. The sample
was then incubated for an additional 15 min with the same buffer
supplemented with 2.5% (w/v) iodoacetamide (IAA). The second
dimension analysis was performed in homemade, 12.5% acryl-
amide gels using the Ettan DALTsix (GE Healthcare, Uppsala,
Sweden) electrophoresis system according to the manufacturer’s
recommended conditions. The electrophoresis was halted when
the dye front reached the bottom of the gel. The resolved protein
spots were then stained with Colloidal Coomassie Brilliant Blue
G-250.

The gels were digitalized with an ImageScanner (GE Health-
care. Uppsala, Sweden), and all of the images were analyzed using
the ImageMaster 2D Platinum 7.0 software (GE Healthcare,
Uppsala, Sweden). Parameters used for automatic spot detection
included: minimal area = 4, smooth factor = 2, and saliency =
220. After detection, the spots were manually edited. The gel with
the highest number of spots was chosen as the reference gel. The
reference gel was then used to match the corresponding protein
spots between other gels. The mean of normalized intensity values
were run through the built-in ANOVA test in ImageMaster 2D
Platinum 7.0 software (GE Healthcare, Uppsala, Sweden) to
determine the significance of differential protein expression
between the control and experimental groups. Spots that exhibited
a statistical significance were excised from the gels.

LC-MS/MS Analysis

After excision from the gel, spots were destained three times
with 25 mM ammonium bicarbonate (Ambic)/acetonitrile (ACN)
(50:50 v/v) for 30 min. The destained gel pieces were dehydrated
twice with ACN for 10 min and dried at room temperature (RT).
The dried gel pieces were rehydrated with 20 mM DTT in
50 mM ambic for 40 min at 56°C. Excess reagent was removed
and 55 mM JAA in a 50 mM ambic was added for 30 min at RT.
Then, the remaining liquid was removed, and the gels were
washed with 25 mM ambic, followed by dehydration with ACN.
For digestion, the dried gels were incubated with 10 ng/uL trypsin
in 25 mM ambic for 15 min (Trypsin Gold Mass Spectrometry,
Promega, Madison, USA). The peptides were initially extracted
from the gels in 50% ACN (v/v) with 5% formic acid, for 14 h at
37°C.. The second extraction was performed in 50% ACN (v/v)
with 1% formic acid for 15 min, followed by 60% methanol (v/v)
with 1% formic acid for 15 min and rinsed twice with 100% ACN
at 45°C under sonication (40 kHz/30 W, Branson, Danbury,
USA). The extracts were dried using a vacuum concentrator
(Eppendorf, Hamburg, Germany) and kept at —20°C.. Prior to MS
identification, dried peptides were dissolved in 10 pL of 0.1/3%
formic acid/ACN. Peptides identification was performed on a
nanoACQUITY UPLC-Xevo QTof MS system (Waters, Man-
chester, UK). The nanoACQUITY UPLC, was equipped with
nanoACQUITY HSS T3, analytical reverse phase column
(75 umx 150 mm, 1.8 um particle size, Waters Manchester, UK)
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analytical reverse phase column. The column was equilibrated
with mobile phase A (0.1% formic acid in water). Then, the
peptides were separated with a linear gradient of 7-85% mobile
phase B (0.1% formic acid in ACN) for 31 min at a flow rate of
0.4 pL/min. The column temperature was maintained at 35°C.
The Xevo G2 Q-TOYF mass spectrometer was operated in positive
nanoelectrospray ion mode and data were collected using the
MSE method in elevated energy (19-45 V), which allows data
acquisition of both precursor and fragment ions, in one injection.
Source conditions used included capillary voltage, 2.5 kV; sample
cone, 30 V; extraction cone, 5.0 V and source temperature, 80°C.
Data acquisition occurred over 20 min and the scan range was
50-2000 Da. The lockspray, used to ensure accuracy and
reproducibility, was run with a [Glul]fibrinopeptide solution
(1 pmol/pL) at a flow rate of 1 pl./min, as a reference ion in
positive mode at m/z 785.8427. ProteinLynx Global Server (PLGS)
version 3.0 was used to process and search the continuum LC-
MSE data. Proteins were identified with the embedded ion
accounting algorithm in the software and a search of the Rattus
database (reviewed only, UniProtKB/Swiss-Prot) downloaded on
December 2013 from UniProtKB (http://www.uniprot.org/).

Bioinformatics Analysis

Uniprot protein ID accession numbers were mapped back to
their associated encoding Uniprot gene entries for each pair-wise
comparison (NDO vs. DO; ND10 vs. D10; ND50 vs. D50; DO vs.
D10; DO vs. D50, Tables S1, S2, S3, S4 and S5, respectively, in
File S1). Gene ontology annotation of broad biological process was
performed using ClueGO v2.0.7 + Clupedia v1.0.8 [23,24], a
Cytoscape [25,26] plugin. Briefly, Uniprot IDs were uploaded
from Tables S1-S5 in File S1 and analyzed with the following
default parameters: (1) enrichment (right-sided hypergeometric
test) correction method using Bonferroni step down analysis mode,
“Function”; 2) load a gene cluster list for Rattus norvegicus; (3),
Evidence Codes set to “All”; (4) networking specificity set to
“medium” (GO levels 3 to 8); and (5) Kappa Score Threshold set
to 0.03. The protein-protein interaction network was downloaded
from PSICQUIC [27], built in Cytoscape version 3.0.2, and
constructed as proposed by Millan [26]. A network was
constructed for each comparison described above (5 networks in
total). These networks provide a global view of potentially
relevant, interacting partners of proteins with changes in
abundance.

Statistical analysis

For proteomic data, statistical analysis was performed using ¢
tests (p<<0.05) available through the ImageMaster 2D Platinum
6.0 software (GE Healthcare, Uppsala, Sweden). Only proteins
with significantly altered levels were excised for identification by

MS.

Results

Identification of Differentially Expressed Proteins

Gels from skeletal muscle of the D0, NDO, D10, ND10, D50
and ND50 groups presented 415, 414, 414, 410, 412 and 415 total
spots, respectively (Figure 1). The results of quantitative and
qualitative intensity analyses are shown in Tables S1-S5 in File S1.
In the comparisons between NDO vs. DO, ND10 vs. D10, ND50
vs. D50, DO vs. D10, DO vs. D50, 75, 76, 58, 52 and 38 spots were
differentially expressed, respectively, of which approximately 80%
were successfully identified.
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Gene Ontology Annotation

A functional classification, according to the biological process
with most significant term, was determined for each comparison
(Figure 2). The first 3 comparisons refer to diabetic (D) and non-
diabetic (ND) animals exposed to water containing the same
concentration of F in the drinking water. The comparison of NDO
vs. DO (animals not exposed to F; Figure 2A) revealed 8 functional
categories (glycolysis, muscle contraction, protein polymerization,
ATP metabolic processes, response to unfolded proteins, Berg-
mann glial cell differentiation, protein peptidyl-prolylisomerization
and hydrogen peroxide metabolic). Among these categories,
muscle contraction (28%) had the highest percentage of associated
genes. When the animals were exposed to 10 ppm I (ND10 vs.
D10; Figure 2B), 11 categories were seen (NADH metabolic
processes, NAD metabolic processes, heart processes, muscle cell
homeostasis, regulation of muscle contraction, carbohydrate
catabolic processes, protein polymerization, cellular carbohydrate
catabolic processes, negative regulation of protein complex
disassembly, muscle contraction and adenine metabolic processes).
For the animals exposed to 50 ppm F (ND50 vs. D50; Figure 2C),
4 categories were identified (purine nucleoside diphosphate
biosynthetic processes, acetyl-CoA metabolic processes, regulation
of striated muscle contraction and generation of precursor
metabolites and energy). The largest category, generation of
precursor metabolites and energy, contained 59% of the associated
genes.

The two final comparisons were between diabetic (D) animals
exposed to F through the drinking water compared to their
respective control (D, no F). When the D animals were exposed to
10 ppm F in the drinking water (DO vs. D10; Figure 2D) only 3
categories were significant (NAD metabolic processes, negative
regulation of mammary gland epithelial cell proliferation and
muscle cell fate specification), with the largest category (43%)
representing genes associated with NAD metabolic processes.
Three categories were also observed for the group that was
administered the highest dose of I (DO vs. D50; Figure 2E) (muscle
cell fate specification, NADH metabolic processed and gluconeo-
genesis), with the largest category (43%) associated with gluco-
neogenesis.

Protein-Protein Interaction Network

For each of the comparisons discussed above, PSICQUIC was
used to create one network, employing all of the interactions
found,. After the global networks were created, nodes and edges
were filtered using the specification for Rattus norvegicus
taxonomy (10116). The p-values and the fold change values were
added. The ActiveModules 1.8 plug-in for Cytoscape was used to
generate Active Modules connecting subnetworks within the
molecular interaction network generated from those genes
presenting significant, coordinated differences in fold changes
and p-value, as shown in the original proteomic analysis. The
values for specific nodes and edges are shown in Table 1 for both
the global network and the subnetworks. Figure 3 (A, B, C, D and
E) shows the subnetworks generated by jActiveModules for each
comparison. The majority of the proteins presenting with a fold
change interact with GLUT4 (P19357; 7-26 proteins) and 14-3-3
protein zeta/delta (P63102; 4-14 proteins) for all analyzed
comparisons. Proteins presenting fold change also interacted with
Erkl (P21708; 8-18 proteins) in 4 comparisons.

Discussion

To the best of our knowledge, this is the first study examining
the effects of I' provided through drinking water on rats with
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Figure 1. Profile of skeletal muscle proteins of diabetic rats treated with 0 ppm F (DO0), 10 ppm F (D10) and 50 ppm F (D50), and of
non-diabetic rats treated with 0 ppm F (NDO), 10 ppm (ND10) and 50 ppm F (ND50) in the drinking water for 22 days. IEF was
performed using 24 cm immobilized linear pH 3-10 gradient strips, followed by SDS-PAGE with 12.5% polyacrylamide gels in the second dimension.
Resolved proteins were visualized with Colloidal CBB G-250. Each 2-DE gel was performed from samples pooled from six animals for each group. The

gels were done in triplicate.
doi:10.1371/journal.pone.0106646.9001
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Figure 2. Functional distribution of proteins identified with differential expression in the skeletal muscle of diabetic and non-
diabetic rats chronically treated with fluoride or not. Categories of proteins based on GO annotation Biological Process. Terms significant
(Kappa =0.03) and distribution according to percentage of number of genes association.

doi:10.1371/journal.pone.0106646.9002
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Table 1. Values of nodes/edges for each comparison considering the global network and the subnetworks (modules).

Groups Global network  Module 01 Module 02 Module 03 Module 04 Module 05
NDO vs. DO 739/1203 43/72 45/72 60/125 29/38 29/51
NDF10 vs. DF10 542/799 30/45 44/74 28/37 30/37 37/54
NDF50 vs. DF50 569/889 32/54 39/78 38/74 49/99 40/73
DO vs. DF10 446/577 17/28 18/26 26/48 18/35 30/58
DO vs. DF50 303/398 8/9 10/13 14/20 10/14 15/20

doi:10.1371/journal.pone.0106646.t001

streptozotocin-induced diabetes. Previous studies have treated the
animals with F for 6 weeks [4,28-30]; however, a pilot study
revealed high levels of mortality prior to completion of the
experimental period. Therefore, an experimental time of 22 days
was selected. The tested I concentrations, which were adminis-
tered via drinking water, were designed to correspond to 1 ppm F
(the concentration of F typically found in drinking water to prevent
dental caries) and 5 ppm F (the concentration naturally present in
the water of areas with endemic fluorosis). These concentrations
had to be modified because rats metabolize I approximately ten
times faster than humans [31]. The total number of protein spots
identified in the muscle under the different conditions was similar
to that observed for the same type of tissue in other studies [32].

Proteomic analyses reveal that the largest differences in
expression, between ND vs. D rats with no exposure to F (NDO
vs. DO), occurred in genes related to muscle contraction. D rats
displayed an increased expression of many types of myosin
proteins (Mybpcl, Myh8, Myh6, Myh7, Myl3 and Mybph)
(Table 2). The muscles of diabetic animals regularly need repair,
which requires a higher concentration of contractile proteins [33].
Conversely, the expression of gelsolin, which is responsible for the
regulation of actin cytoskeleton signaling was decreased in D
animals (Table 2). Downregulation of gelsolin suggests a disrup-
tion in filamentous actin, which leads to the impairment of
GLUTH4 vesicle trafficking and glucose transport [32,34].

The expression of genes related to catabolic processing of
carbohydrates was most strongly altered when ND and D rats
were exposed to 10 ppm F (ND10 vs. D10). The expression of
L-lactate dehydrogenase B chain (Table 2) was increased in ND
rats compared to D rats. Interestingly, in the absence of F, the
expression levels of L-lactate dehydrogenase A chain and L-lactate
dehydrogenase C chain were lower in ND rats than in D rats. A
previous study reported the absence of L-lactate dehydrogenase A
chain in the liver of rats (ND) treated with I [28]. Decreased
expression of this enzyme leads to increased aerobic glycolysis.
These data are consistent with the expectation that in the presence
of a low I concentration, the levels of aerobic glycolysis should be
lower in the muscles of D rats than in the muscles of ND rats.

When ND and D animals were exposed to 50 ppm F (ND50 vs.
D50), expression changes were apparent in proteins related to
generation of precursor metabolites and energy, including the
enolases (Eno3, Enol (o) and Eno2), (Table 2). The data from this
study reveal that the expression of enolases is downregulated in D
animals. In a previous study, a-enolase expression was increased in
the bladder smooth muscle of rats 2 months after the induction of
diabetes mellitus with streptozotocin, although no change in
expression was observed 1 week after treatment [35]. This
increased expression observed 2 months after the induction of
diabetes mellitus was hypothesized to be a protective mechanism
to counterbalance hypoxia in long-standing cases of diabetes
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ND - non-diabetic rats; D - diabetic rats; 10 - 10 ppm fluoride in the drinking water; 50 - 50 ppm F in the drinking water.

mellitus [36]. In contrast, results from the present study were
obtained from muscle samples collected 22 days after diabetes
induction, rather than 2 months. In addition, F has been shown to
mnhibit enolase activity by interacting with magnesium, a co-factor
for this enzyme [37]. Therefore, the reduced expression of enolase
in the D animals of the present study might result from the
combined impacts of diabetes and exposure to F. F has also been
shown to increase the expression of aldolase (an upstream
glycolytic enzyme) in liver, which can be an attempt to increase
the efficiency of glycolysis [28]. In the present study, the expression
of pyruvate kinase isozymes M1/M2 (Table 2) (downstream to
enolase) was higher in D rats than in ND. These results are
consistent with those previously reported in the muscle of rats with
type 2 diabetes [33]. In addition, there was increased expression of
other enzymes involved in glycolytic pathway, such as pyruvate
dehydrogenase E1 component subunit beta, mitochondrial and
isoform R-type of Pyruvate kinase isozymes R/L. The increased
expression of these enzymes could counterbalance the reduced
expression of enolase.

When D animals were exposed to 10 ppm F (DO vs. D10), the
most noticeable changes in expression were observed in genes
associated with NAD metabolic processes. The expression levels of
glycerol-3-phosphate ~ dehydrogenase [NAD(+)]_ cytoplasmic
(GPDI1) and Malate dehydrogenase_cytoplasmic (MDH) (Table 2)
were lower in animals treated with F than in the controls. Previous
studies have shown that I inhibits the activity of enzymes involved
in the citric acid cycle [19]. In the liver of rats treated with 50 ppm
F, MDH was not detected, which may contribute to reduced citric
acid cycle flux [28], as well as the reduced expression of GPDI,
which is a NAD(H)-dependent cytosolic enzyme. GPD1 catalyzes
the conversion of dihydroxyacetone phosphate, derived from
glucose, to glycerol-3-phosphate, which is finally acylated to form
triglycerides [38]. Reduced expression of NAD-associated en-
zymes may contribute to the decreased consumption of NADH by
the respiratory chain induced by I [39]. Fluoride reduces the
consumption of oxygen and NADH in complex I of the respiratory
chain. Therefore, higher concentrations of NADH could down-
regulate the enzymes that produce this reduced coenzyme. It has
been shown that NADH downregulates MDH [40].

The D rats exposed to 50 ppm I (DO vs. D50) displayed major
changes in the expression of proteins involved in gluconeogenesis.
Among these proteins, g lyceraldehyde-3-phosphate dehydroge-
nase (GAPDH), (Table 2) was upregulated following exposure to
F. Increased expression of GAPDH is usually observed in diabetes
[41], which is consistent with our findings of increased GAPDH
expression in D animals compared o ND animals with no
exposure to F. This increase intensified upon exposure to 50 ppm
F, which may indicate the loss of glucose and lipid homeostasis.
Insulin acts to decrease gluconeogenic enzymes. The increase in
gluconeogenic enzymes in rats exposed to 50 ppm I may result
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A

A

. Up-regulation

@ Down- regulation

Figure 3. Subnetworks generated by JActiveModules for each comparison - A Group NDO vs. DO; B Group ND10 vs. D10; C Group
ND50 vs. D50; D group DO vs. D10; E group DO vs. D50. Red and green nodes indicate protein downregulation and upregulation, respectively,
in the first group of each comparison.
doi:10.1371/journal.pone.0106646.g003
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