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Bone Strain Index predicts fragility fracture
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Abstract

Background: We applied an artificial intelligence-based model to predict fragility fractures in postmenopausal
women, using different dual-energy x-ray absorptiometry (DXA) parameters.

Methods: One hundred seventy-four postmenopausal women without vertebral fractures (VFs) at baseline (mean
age 66.3 ± 9.8) were retrospectively evaluated. Data has been collected from September 2010 to August 2018. All
subjects performed a spine x-ray to assess VFs, together with lumbar and femoral DXA for bone mineral density
(BMD) and the bone strain index (BSI) evaluation. Follow-up exams were performed after 3.34 ± 1.91 years.
Considering the occurrence of new VFs at follow-up, two groups were created: fractured versus not-fractured. We
applied an artificial neural network (ANN) analysis with a predictive tool (TWIST system) to select relevant input data
from a list of 13 variables including BMD and BSI. A semantic connectivity map was built to analyse the
connections among variables within the groups. For group comparisons, an independent-samples t-test was used;
variables were expressed as mean ± standard deviation.

Results: For each patient, we evaluated a total of n = 6 exams. At follow-up, n = 69 (39.6%) women developed a
VF. ANNs reached a predictive accuracy of 79.56% within the training testing procedure, with a sensitivity of 80.93%
and a specificity of 78.18%. The semantic connectivity map showed that a low BSI at the total femur is connected
to the absence of VFs.

Conclusion: We found a high performance of ANN analysis in predicting the occurrence of VFs. Femoral BSI
appears as a useful DXA index to identify patients at lower risk for lumbar VFs.

Keywords: Neural network models, Dual-energy x-ray absorptiometry, Finite element analysis, Artificial intelligence,
Osteoporosis
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Key points

� Bone strain index (BSI) is a new finite element
analysis Dual-energy x-ray absorptiometry-based
parameter.

� Artificial neural network analysis showed high
performance in predicting osteoporotic vertebral
fractures.

� Femoral BSI appears useful in identifying patients at
a lower risk for lumbar fractures.

Background
Osteoporosis is a metabolic bone disease characterised
by a reduction in bone mass and deterioration in the
texture and architecture of the bone, leading to fragility
fractures [1].
In clinical practice, the diagnosis of osteoporosis is

based on the measurement of bone mineral density
(BMD) by dual-energy x-ray absorptiometry (DXA) [2].
Areal BMD is responsible for about two-thirds of bone
strength, and fracture risk increases proportionally with
the reduction of BMD [3]. Nevertheless, BMD measure-
ments alone are not fully capable of detecting fracture
risk, as an overlap of BMD values exists between pa-
tients with or without fractures [4]. Therefore, there is a
need to evaluate other factors that can predict fracture
risk in addition to BMD, such as bone microarchitecture
and textural structure [5]. Such evaluation can be done
invasively with bone biopsy or with imaging techniques
such as high-resolution peripheral quantitative computed
tomography or magnetic resonance imaging [6, 7]. These
techniques are, however, expensive or expose a high ionis-
ing radiation dose to the patient, and therefore not access-
ible for screening. For these reasons, other DXA indexes
have been developed for bone micro-architecture analysis.
An example is the Trabecular Bone Score (TBS), a lumbar
spine DXA-derived tool that correlates with histomorpho-
metric bone parameters [8]. Previous studies showed that
the TBS can predict the fracture risk partially independent
from BMD [9, 10].
Recently, a new DXA-based structural parameter has

been introduced with the name of Bone Strain Index
(BSI). This tool is a deformation index derived from the
lumbar and femur DXA scans based on a mathematical
model called finite element method (FEM) [11]. Finite
element models are based on the idea that a complex
object can be divided into smaller and simpler elements
to simplify problem-solving. In bone structural analysis,
finite elements can be used to identify the area most
prone to higher stresses, strains and fracture risk.
BSI represents the average equivalent strain in the re-

gions of interest identified by the DXA software. There-
fore, it is able to provide a quantitative description of
the strain distribution inside the relevant bone segment.

BSI being a value index of strain concentration, higher
values indicate a higher risk condition, whereas lower
values a more resistant bone. In recent clinical studies,
BSI appeared to be useful in identifying osteoporotic pa-
tients with a higher fracture risk [12] and to characterise
patients affected by secondary osteoporosis [13, 14].
Osteoporosis is a multifactorial disease, characterised

by a plethora of variables, which are connected in a
complicated framework that may be difficult to investi-
gate with classical standard statistical methods. To ap-
proach the complexity of the problem, a new
mathematical methodology based on artificial neural
network (ANN) analysis named Auto-Contractive Map
(Auto-CM) has been applied to analyse a database of
osteoporotic patients [12, 15]. ANNs are machine learn-
ing (ML) algorithms particularly able to compute com-
plex/nonlinear data, as other types of ML algorithms
(e.g., SVMs, decision tree forests) [16]. ANNs adapt to
the problem through progressive approximations, reach-
ing a very high precision and allowing inferences at a
single individual level even in the presence of relatively
small samples.
In this study, we employed a ML system to address

two main questions. The first question regards the possi-
bility of predicting further vertebral fractures by analys-
ing available baseline clinical information. The second
question involves the associations among the studied
variables, with particular regard to BSI and the absence
or presence of further fractures. To do this, we have
employed a fourth-generation data mining tool repre-
sented by Auto-CM.

Methods
Study population
This study is a retrospective longitudinal multicentric
study conducted at Fondazione IRCCS Ca’ Granda
Ospedale Maggiore Policlinico of Milan, Italy; IRCCS
Istituto Ortopedico Galeazzi in Milan, Italy; and IRCCS
Policlinico San Donato, San Donato Milanese, Italy.
Female patients were selected among those who

attended our densitometric service for routine evaluation
of bone density and vertebral fractures. Among them,
we enrolled 174 women that fulfilled the inclusion/ex-
clusion criteria. The inclusion criteria were the presence
of a dorso-lumbar spine x-ray and both femoral and
spine DXA scans performed at the same time of the
x-ray. The exclusion criteria were the presence of
bone metabolic disorders (except for primary osteo-
porosis), and any history of traumatic and/or patho-
logical fractures. We also excluded those patients
undergoing pharmacological treatments known to
interfere with bone metabolism (e.g., glucocorticoid
therapy), except for osteoporosis treatments. Data had
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been collected within the time frame from September
2010 to August 2018.
All patients underwent a baseline lumbar spine and

femoral DXA scans to quantify femur and lumbar spine
bone mineral content (BMC), BMD and BSI, together
with a spine x-ray to calculate the Spine Deformity
Index (SDI) in order to quantify the severity of vertebral
fractures [17]. A fracture was considered as a one-unit
increase of SDI. Demographic, anthropometric and clin-
ical data were collected. All patients had imaging follow-
up consisting of plain x-rays and a DXA study after a
period that lasted from 1 to 9 years (mean 3.34, SD 1.91,
median 2.72). For each patient, we evaluated two sets of
exams (lumbar and femoral DXA, dorso-lumbar x-ray),
one at baseline and one at follow-up.
Patients gave their written informed consent to the

management of their sensitive data for scientific re-
search. Local Ethical Committees’ approval was

obtained: Comitato Etico Milano Area 2. Protocol N 2.0
BQ. 265_2017, 13 June 2017 for IRCCS Fondazione Ca’
Granda Ospedale Maggiore Policlinico, Milan, Italy;
Comitato Etico San Raffaele; Studio clinico 2.0 BQ, ver-
sion 4.0, 8 August 2019, for IRCCS Istituto Ortopedico
Galeazzi, Milan; and IRCCS Policlinico San Donato, San
Donato Milanese (MI). Figure 1 summarises the study
flowchart.

DXA data acquisition
Bone density was assessed by DXA, using a Hologic Dis-
covery A for Fondazione IRCCS Ca’ Granda Ospedale
Maggiore Policlinico and IRCCS Policlinico San Donato,
and a Hologic QDR-Discovery W for IRCCS Istituto
Ortopedico Galeazzi.
Experienced and dedicated technicians performed all

the exams according to the International Society for
Clinical Densitometry guidelines [18]. All patients

Fig. 1 Overview of the study. After applying the inclusion/exclusion criteria, we enrolled a final number of 174 women
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underwent an L1–L4 spine scan and hip scan. Those
vertebrae affected by fragility fractures were manually
excluded from the DXA analysis, in order to avoid ficti-
tious BMD values. Both BMD and BSI were automatic-
ally obtained from the same region of interest of the
lumbar spine and hip scans.
BSI computation was obtained by an automated soft-

ware with the use of a constant strain FEA triangular
mesh. The pressure applied to the vertebra and hip is
specific for each patient and is based on the relationship
between forces and the patient’s weight and height, as
postulated by Han et al.’s study [19]. The definition of
the model’s mechanical properties was done in a stiff-
ness matrix by assigning an elastic modulus depending
on the regional BMD values, in accordance with the
Morgan's equation [20]. BSI calculation is obtained using
a triangular mesh designed on the bone, segmented by
the DXA software. In the case of the lumbar spine, the
loading force applied to each vertebra is calculated

following simulation data provided by Han et al.’s study
in standing conditions [19] and uniformly distributed
onto the upper facet of each vertebra, whereas the lower
side is used as a constraint. In the case of hip scans,
loading and constraints follow the indications provided
by Terzini et al. [21], with the head and distal femur
constrained, and force applied on the greater trochan-
teric area following a sideway fall condition.
Ultimately, the BSI values relate to the average strain

inside the specific lumbar vertebra and hip region, ob-
tained with linear elastic analysis and with the assump-
tion that a higher strain level (high BSI) indicates a
greater risk condition. Figure 2 shows an example of a
DXA scan with the corresponding BSI analysis.

X-ray data acquisition
Patients underwent an anteroposterior and lateral x-ray
of the spine in order to investigate the presence of verte-
bral fractures (VFs) at the beginning and at the end of

Fig. 2 An example of lumbar and femur DXA scans (A and C, respectively) with corresponding BSI analysis (B and D, respectively). On the right
side, a bar explains the different colours of BSI values, with high BSI reported in red and low BSI reported in blue
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the follow-up. The vast majority of spine x-ray examina-
tions were performed in the supine position, and all
scans were performed in two projections (frontal and
lateral). A radiologist with more than 10 years of experi-
ence in osteoporosis imaging assessed all the plain films
to evaluate the presence/absence of VFs. We preferred
to directly evaluate the images and not the radiological
reports as it has been shown that many mild fractures
may go unreported [22]. The SDI was calculated using
Genant’s semi-quantitative approach by evaluating the
vertebrae from T4 to L4; Genant’s visual semiquantita-
tive method consists of giving each vertebra a degree of
deformity (mild, moderate and severe) based on the
visually apparent degree of vertebral height loss. Frac-
tures are also classified according to the type of deform-
ity (wedge fractures, biconcave fractures, or compressive
fractures) [23, 24].

Predictive analysis with supervised artificial neural
networks
Advanced intelligent systems based on the novel coup-
ling of ANNs and evolutionary algorithms have been ap-
plied in this study. Supervised ANNs [25] were applied
to create a mathematical model to predict the different
class outcomes (fracture occurrence versus no fracture
occurrence) starting from available clinical and densito-
metric data. The learning mechanism of the supervised
ANNs can make their output coincide with a pre-
established target. The presence of learning constraints
allows for the supervised ANN output to coincide with
the predefined target. The standard formula of these
ANNs is y = f (x,w*), where w* represents the set of pa-
rameters which best approximates the function.
Data preprocessing was performed using a re-sampling

system named TWIST developed by Semeion Research
Centre. The TWIST system consists of an ensemble of
two previously described systems: T&T and IS [26].
To find out the connectivity traces among variables, a

new mapping method was adopted, with the use of a
mathematical approach based on an artificial adaptive
system; this was done to define the association strength
between variables within the dataset (the Auto-CM algo-
rithm). The Auto-CM system is a three-layered architec-
ture fourth-generation unsupervised ANNs able to
compute the multi-dimensional association of the
strength of each variable with all other variables in a
dataset, using a mathematical approach based on recur-
sive non-linear equations. Subsequently to the training
phase, the weight matrix of the Auto-CM reflects the
warped landscape of the dataset. Therefore, a filter rep-
resented by a minimum spanning tree is applied to the
Auto-CM system, finally producing a map of the main
connections between the variables of the dataset (con-
nectivity map, as detailed in Buscema et al.) [16, 27].

As for previous clinical studies [12, 28–30], after a
training phase, the Auto-CM determines the so-called
weights of the vectors’ matrix, proportional to the
strength of many-to-many connections across all vari-
ables, and can be easily visualised by transforming them
into physical distances: variables whose connection
weights are higher become relatively closer, and vice
versa. We transformed the thirteen input variables into
26 input variables, scaled from 0 to 1. Consider, for ex-
ample, the variable lumbar BMD: absolute natural values
range from 0.521 to 1.3. In transformation 1.3, the high-
est value becomes 1 and 0.521 becomes 0. All other
values are scaled to this new range: for example, the
value 0.64 becomes 0.15, the value 0.93 becomes 0.53
and so on. In the complement transformation, we permit
the system to point out the fuzzy position of the vari-
ables, also in accordance with its lower values. With this
approach, the projection of the preliminary variables
shows high values; on the other side, the complement
transformation showed low values of the original vari-
ables. We named these two forms as “high” and “low”
on the map. This preprocessing is required to compare
all the possible variables and to understand the possible
links between variables when the values tend to be high
or low.

Statistics
Variables were expressed as mean ± standard deviation
(SD) ranges. For comparisons between the groups, an
independent-samples t-test was used. A two-tailed prob-
ability value of 0.05 was considered statistically signifi-
cant. The linear correlation index between variables was
calculated by the Pearson test. A p-value < 0.05 was con-
sidered to be statistically significant. Statistical analysis
was performed with the XLSTAT package 2018.

Results
Full results are reported in a descriptive table, in a figure
with Pearson’s R values and in maps that are the usual
ANN output analysis. We evaluated n = 6 exams for
each patient, for a total of n = 1,044 exams. The distri-
bution of patients among the centres was as follows: n =
53/174 (30.5%) at Fondazione IRCCS Ca’ Granda Ospe-
dale Maggiore Policlinico, n = 52/174 (29.9%) at IRCCS
Policlinico San Donato and n = 69/174 (39.7%) at IRCCS
Istituto Ortopedico Galeazzi.
Table 1 shows the characteristic of the studied popula-

tion. According to the two groups of patients (developing
and not developing vertebral fractures) during the
follow-up period, the mean values of the following
variables resulted in significant differences between
women developing VFs at follow-up compared to
women without VFs at follow-up: lumbar BMC (p =
0.021), lumbar BMD (p < 0.005), neck BMC (p <
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Table 1 Study population according to the two groups of patients (fractured versus non-fractured). p-values (last column) refers to
the comparison between the group of patients in which a vertebral fracture occurred at follow-up (fracture = yes) and those who
did not develop a vertebral fracture (fracture = no)

Characteristic Whole population (n = 174) Fracture = yes (n = 69) Fracture = no (n = 105) p-value

Mean SD Range Mean SD Mean SD

Menopause age 48.4 5.1 38–60 48.1 5.4 48.6 4.8 0.5

Weight 60.0 9.6 37–98 58.5 7.9 60.9 10.5 0.4

Age 66.3 9.8 41–88 66.6 10.6 66.1 9.3 0.35

BMI 24.2 3.7 14.82–34.89 24.4 3.7 24.1 3.7 0.8

Lumbar BMC 41.32 9.92 14.96–81.01 37.25 8.10 44.03 10.11 0.021

Lumbar BMD 0.813 0.131 0.525–1.281 0.774 0.090 0.867 0.142 < 0.005

Lumbar BSI 2.298 0.586 1.076–4.299 2.467 0.54 2.031 0.581 0.28

Neck BMC 3.12 0.50 2.11–4.74 2.96 0.37 3.29 0.53 0.001

Neck BMD 0.667 0.091 0.365–0.879 0.603 0.073 0.698 0.102 0.006

Neck BSI 1.929 0.521 0.772–3.991 2.085 0.614 1.821 0.450 < 0.005

TF BMC 24.81 4.46 14.84–38.58 23.71 3.75 25.66 4.73 0.023

TF BMD 0.773 0.11 0.427–1.111 0.752 0.101 0.801 0.115 0.20

TF BSI 1.638 0.402 0.992–3.332 1.751 0.482 1.606 0.325 < 0.005

SD Standard deviation, BMI Body mass index, BMC Bone mineral content, BMD Bone mineral density, BSI Bone Strain Index, TF Total femur

Fig. 3 Linear correlation values (Pearson correlation coefficient) between the study variables and the presence of a vertebral fracture at follow-up.
BSI, Bone Strain Index; TF, Total femur; BMI, Body mass index; BMC, Bone mineral content; BMD, Bone mineral density
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0.005), neck BMD (p = 0.006), neck BSI (p < 0.005),
total femur BMC (TFBMC, p = 0.023) and total
femur BSI (TFBSI, p < 0.005).
Figure 3 shows the linear correlation values between

the study variables and the presence of a VF at follow-
up. As expected, BSI parameters predispose to VF at
variance with bone mineral content parameters. In any
case, the absolute value of Pearson R is rather low, and
this offers a further rationale for the application of
ANNs instead of traditional statistics.
The TWIST system selected the following variables

which took part in the modelling by artificial neural net-
works: weight, age, BMI, lumbar BMC, lumbar BMD,
neck BMC, TFBMC, TFBMD and TFBSI. Of note, the
system also selected variables with low linear correlation
index like weight (0.12) and age (0.02). A global dataset
of nine input and two target attributes was thus

generated. After that, two optimal subsets were created
to apply the training and testing procedure described in
the “Methods” section.
The performance of artificial neural networks showed an

overall high predictive accuracy of 79.56%, as shown in
Table 2. This strengthens the added value of the ANN-
TWIST pipeline compared to traditional statistical models
that reach an average of 60% accuracy. Figure 4 shows the
semantic connectivity map developed by the Auto-CM sys-
tem, illustrating the connections among variables in the area
without a fracture (“new_fracture_no”, left) and the frac-
tured area (“new_fracture_yes”, right). Figure 5 shows the
same map highlighting the link strength values. Figure 6
shows the same connectivity map with the superimposition
of a maximally regular graph depicting a sort of diamond in
which there are multiple interconnections among variables,
meaning the inherent complexity of the data structure. In

Table 2 Predictive results using artificial intelligence systems. The results refer to two testing experiments with training-testing A-B
and B-A sequences

ANNs Records Fracture, yes Fracture, no Sensitivity (%) Specificity (%) Overall accuracy (%) AUC

Feed forward back propagation AB 100 36 64 86.11 73.44 79.77 0.781

Feed forward back propagation BA 74 33 41 75.76 82.93 79.34 0.846

Sum/mean 174 69 105 80.93 78.18 79.56 0.824

ANN Artificial neural network

Fig. 4 ANN semantic connectivity developed by Auto-CM system, illustrating the connections among variables in the area without a fracture
(“new_fracture_no”, on the left side) and the fractured area (“new_fracture_yes”, on the right side). Ftot, Total femur; BMC, Bone mineral content;
BMD, Bone mineral density; BSI, Bone strain index; LBMC, Lumbar BMC; LBMD, Lumbar BMD; LBSI, Lumbar BSI. “High” refers to high values, “low”
refers to low values
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Fig. 5 ANN semantic connectivity map showing the different strength values of connectivity as numbers. Ftot, Total femur; BMC, Bone mineral
content; BMD, Bone mineral density; BSI, Bone strain index; LBMC, Lumbar BMC; LBMD, Lumbar BMD; LBSI, Lumbar BSI. “High” refers to high
values, “low” refers to low values

Fig. 6 ANN semantic connectivity map with maximally regular graph, a sort of diamond showing the multiple interconnections among variables,
suggesting the inherent complexity of the data structure. Ftot, Total femur; BMC, Bone mineral content; BMD, Bone mineral density; BSI, Bone
strain index; LBMC, Lumbar BMC; LBMD, Lumbar BMD; LBSI, Lmbar BSI. “High” refers to high values, “low” refers to low values
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these maps “Ftot_BSI_low” (a low value of total femur BSI)
is directly connected to the outcome “new_fracture_no” and
appears to be a hub of the dense network of connection that
links the variables “menopause_age_high”, “LBMD_low”
(low lumbar BMD), “Neck_BSI_low” (a low value of neck
BSI), “LBSI_low” (a low value of lumbar BSI), “weight_low”,
“Neck_BMC_low” and “L_BMC_low (low value of lumbar
BMC)”.
A further analysis has been carried out with a tripartite

subdivision of the dataset. The first two subsets with 124
records were used for training-testing experiments while
the third subset with 50 records was employed for
the validation test. The results obtained are shown in
Table 3.

Discussion
Osteoporosis can be assimilated into a complex system
with many variables of different clinical significance re-
garding the prediction of fragility fractures. A significant
challenge in the management of osteoporotic patients is
to identify, among its many variables, those of the high-
est weight in determining the fracture event. In fact, the
vast number of variables considered in many clinical
studies may complicate the comprehension of the clin-
ical meaning of the correlations found [31]. In this con-
text, we used an innovative approach to statistical
analysis of our database, which is commonly used in
artificial intelligence systems, namely neural network
analysis, with a robust predictive tool (TWIST system)
and a robust data mining tool, Auto-CM. In our popula-
tion, we applied supervised neural network modelling on
the baseline variables selected by the TWIST system.
The analysis highlighted a high performance of ANNs
with remarkable results, with an overall predictive accur-
acy near 80%. We could not find in the literature a per-
formance superior to this in analogue studies focusing
on the prediction of VF in patients during a follow-up.
Other works used machine learning in order to predict
fractures [25], but with some limitations. De Vries et al.
presented a low performance of their machine learning
approach, reaching an accuracy of 62% [25]. Mehta
et al.’s study conducted by machine learning presented a
good performance (> 90%), but their study is a cross-
sectional one and not a prospective study [32]. Zhang
et al. provided an effective approach in the prediction of

vertebral strength, suggesting the potential clinical appli-
cations for non-invasive vertebral fracture risk assess-
ment [33]. It is interesting to note that, among the
selected variables, the TWIST system also included vari-
ables with low linear correlation index like weight and
age, which would have been almost certainly discarded
by linear modelling approaches.
Data mining is an analytic process designed to explore

data (usually large amounts of data with complex rela-
tionships) in search of consistent patterns and/or sys-
tematic relationships between variables, with the aim of
discovering elusive trends and associations. The statis-
tical techniques commonly used are principal compo-
nent analysis (PCA) and agglomerative hierarchical
clustering (AHC) [34].
PCA is mathematically defined as an orthogonal linear

conversion that transforms the data to a new coordinate
system so that the biggest variance of all possible projec-
tions of the data arrives to lay on the first coordinate
(called the first principal component), the second great-
est variance on the second coordinate and so on. AHC is
one of the most popular clustering methods which tries
to build a hierarchy of clusters with a “bottom-up” ap-
proach: each variable is merged with the next most simi-
lar variable in a cluster, and the pairs of clusters are then
merged as one, moving up the hierarchy until the forma-
tion of the so-called dendrogram, which shows the pro-
gressive grouping of the variables. It is then possible to
gain an idea of a reliable number of classes into which
the data can be gathered. These classical statistical tech-
niques have limited power when the relationships be-
tween variables are non-linear.
The Auto-Contractive Map Auto-CM system is a

fourth-generation unsupervised ANNs able to overcome
these limitations, computing the multi-dimensional asso-
ciation of strength of each variable with all other vari-
ables in a dataset, using a mathematical approach based
on recursive non-linear equations.
Auto-CM has been successfully used in different med-

ical fields indicating ANNs’ utility in the contexts in
which many variables interact in complex ways [35, 36].
By applying Auto-CM in this study, we observed a com-
plex relationship between bone quantity and quality
DXA variables with high adaptive weight among the
connections (Figs. 3 and 4) with the definition of two

Table 3 Predictivity results obtained with tripartite subdivision of the dataset. The first two subsets with 124 records were used for
training-testing experiments (n = 64 and n = 60, respectively), while the third subset with 50 records was employed for validation
test

ANN Records Fracture yes Fracture no Sensitivity (%) Specificity (%) Overall accuracy (%) AUC

Backpropagation sequence AB 64 25 36 82.40 75.60 79.00 0.79

Backpropagation sequence BA 60 25 40 78.50 81.70 80.10 0.82

Backpropagation (validation set) 50 19 29 79.8 78.3 79.05 0.80
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well-distinct clusters: one characterised by low bone mass
(BMC and BMD) and the presence of a fragility fracture,
and one characterised by a good bone quality (low BSI)
and the absence of a fracture, despite the presence of high
menopause age in this group, a well-known risk factor for
osteoporotic fracture. Lower values of BSI (which means a
good mechanical strength) appear to be a significant posi-
tive factor performing better than a high age of meno-
pause in influencing the patient’s fracture prediction.
Regarding the clinical significance of our results, we

believe it is important to note that our study points in
the direction of a better assessment of individual pa-
tients’ fracture risk. Refining the prediction of fracture
risk remains the most important challenge in the clinical
management of patients with osteoporosis, which unfor-
tunately is a silent disease. In this scenario, BSI may
show the potential to represent a new DXA-derived and
easily obtainable tool that can improve the identification
of those patients at higher risk of fracture.
Our study is not without limitations. Among these, we

acknowledge that ANN analysis is particularly suitable for
clinical contexts characterised by large samples with nu-
merous variables of different clinical significances. There-
fore, the findings of this study have to be validated also in
this type of context. The results of this study, obtained
with artificial intelligence analysis, could also be validated
with a classical statistical approach. Another intrinsic limi-
tation is related to the retrospective design of our study.
Three conclusions arise from this study with artificial

intelligence analysis. First, BSI appears to be a useful
index of fragility fractured patients identification. In fact,
in the semantic map, a low value of BSI (that identify a
good status of bone resistance to loads) is very close and
directly linked to the absence of fracture. Second, BSI
appears able to identify those patients not prone to fra-
gility fractures like other femoral and spine DXA indexes
of bone status. Third, ANN Auto-CM is useful to under-
stand the complexity of a chronic multifactorial scenario
like osteoporosis and to predict its dramatic conse-
quences, namely the fragility fractures.
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