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*e use of medical image synthesis with generative adversarial networks (GAN) is effective for expanding medical samples. *e
structural consistency between the synthesized and actual image is a key indicator of the quality of the synthesized image, and the
region of interest (ROI) of the synthesized image is related to its usability, and these parameters are the two key issues in image
synthesis. In this paper, the fusion-ROI patch GAN (Fproi-GAN)model was constructed by incorporating a priori regional feature
based on the two-stage cycle consistency mechanism of cycleGAN. *is model has improved the tissue contrast of ROI and
achieved the pairwise synthesis of high-quality medical images and their corresponding ROIs. *e quantitative evaluation results
in two publicly available datasets, INbreast and BRATS 2017, show that the synthesized ROI images have a DICE coefficient of
0.981± 0.11 and a Hausdorff distance of 4.21± 2.84 relative to the original images.*e classification experimental results show that
the synthesized images can effectively assist in the training of machine learning models, improve the generalization performance
of predictionmodels, and improve the classification accuracy by 4% and sensitivity by 5.3% compared with the cycleGANmethod.
Hence, the paired medical images synthesized using Fproi-GAN have high quality and structural consistency with real
medical images.

1. Introduction

Medical imaging is a clinically important noninvasive
diagnostic method; imaging specialists can diagnose
breast cancer or precancer through mammography im-
ages [1]. With the development of deep learning tech-
nology, medical image synthesis [2, 3], classification [4],
and segmentation [5] based on deep learning have become
topical issues in medical research. Deep neural networks
usually require a large number of training samples, and
the size of medical image data is usually small because of
the high collection cost, thus limiting the application of
deep learning models for medical images [6]. Generative
adversarial networks [7] usually learn feature mappings

from source modality to target modality by constructing
generators and discriminators that can be used to syn-
thesize medical images and thus expand training samples
[8, 9]. However, the gradient disappearance, pattern
collapse, and structural consistency problems between
real and synthetic images in the current GAN research
process seriously affect the quality of synthetic images [3].
In addition, the region of interest (ROI) of medical images
is a key factor in aiding imaging research and is often used
in training medical image segmentation tasks. However,
we found that the synthesis of the ROI has rarely been
studied [10, 11]. *us, in the present study, we focused on
the synthesis of high-quality medical images and their
ROI images.
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Nie et al. [12] were the first to propose a generative
adversarial model using a fully convolutional neural network
as a generator that implements the conversion between MRI
and CT images of brain tumor images. *e 3D-based fully
convolutional neural network proposed in this paper well
solves the problem of discontinuity across slices in 2D neural
networks, and the method improves the quality of the
generated images by calculating the gradient difference of
the images as a loss function. *e experimental results show
that the method proposed in this paper can effectively
predict CT images from MRI images, which is an early
research and exploration of generative adversarial networks
in the field of medical image synthesis. Guibas et al. [13]
propose a novel pipeline model based on generative
adversarial networks for the current medical images that are
not easily accessible. *e model proposed in this paper
consists of Stage-I GAN and Stage-II GAN, which enables
the generation of higher quality images by enhancing the
learning of mask image features of images. In addition, John
et al. created an online synthetic medical image database
called SynthMed, while again demonstrating the feasibility
of GAN-based synthesis of medical images. In addition,
Chartsias et al. [8] proposed a multi-input, multi-output
fully convolutional neural network for MRI synthesis, which
embeds all input modalities into a shared potential space and
converts the shared features into target output modalities by
learning the potential space mapping through a decoder.
Although this method can achieve multimodal output, the
generated images are adulterated with redundant infor-
mation. Wolterink et al. [9] used cycleGAN to learn the
mapping of source modality to target modality through
adversarial loss, resulting in synthetic CT images that are
similar to the real CT images. Considering the lack of direct
constraints between the real CT images and the synthesized
CT images, this approach still cannot guarantee the struc-
tural consistency between the synthesized and the input
images. Kang et al. [14] proposed a conditional GAN to
improve model estimation and quantitatively evaluate the
resulting images, but this approach resulted in uneven
quality across domains of the synthesized images. Huang
et al. [15] synthesized glioma images by using the WEENIE
model, which uses a priori information instead of noise as
input to the model, but the consistency of the synthesized
images with the real images needs to be improved.

In the study of GAN-based generative models, the
structural consistency between the real and synthetic images
usually affects the quality of the synthetic images [3]. To
improve the structural inconsistency between the real and
synthesized image during image synthesis and synthesize the
ROI of the image, we proposed a new method for synthe-
sizing paired medical images based on cycleGAN. *e
method incorporates regional a priori features on the basis of
cycleGAN two-stage cycle consistency to achieve high-
quality medical images and their ROI synthesis. In the
medical image synthesis process, the first stage model im-
plements feature mapping from the medical image domain
to the ROI domain and targets the learning contrast features
of ROI and non-ROI tissues. *e second stage network
reduces the ROI domain to the medical image domain to

synthesize medical images. By contrast, in the synthesis
process of ROI, the input ROI image is first reduced to a
medical image, and then a high-quality ROI image is syn-
thesized based on the regional contrast of the medical image.
*e two-stage synthesis process is implemented through the
cycle consistency function of cycleGAN [16]. In this paper,
we validated the quality of the synthesized images by using
two publicly available datasets, where the benign data of the
INbreast dataset has no corresponding ROI images. *en,
we quantitatively analyzed the synthesis results from various
metrics only. *e results show that our proposed method
effectively improves the structural consistency between the
synthesized and real image, and the quality of the synthe-
sized image is better than several recent popular models. In
addition, we have verified that the images synthesized in this
paper can improve the classification performance of the
prediction model in the brain glioma classification experi-
ment.*e experimental results demonstrate that the method
in this paper can effectively generate high-quality paired
medical images, which will bring new solutions for medical
disease research where it is difficult to obtain data.

*e contribution of this work is summarized as follows.

(1) We proposed a new synthesis method for the
synthesis of paired medical images on the cycle
consistency mechanism of cycleGAN and called it
Fproi-GAN

(2) To improve the quality of the synthesized images,
this paper assists the generative model to learn ROI
and non-ROI organizational features by supple-
menting a priori regional features

(3) Fproi-GAN proved its effectiveness on two experi-
mental datasets, and the experimental results show
that our method can effectively improve the struc-
tural consistency of synthesized images with real
images and outperform many popular image syn-
thesis methods

2. Materials and Methods

2.1. Dataset. INbreast [17, 18] contains 303 normal (no
mass) mammograms and 107 pairs of mammograms, in-
cluding mass data and corresponding ROI images. Con-
sidering that training requires paired data, only 107 pairs of
images containing masses were finally selected as the ex-
perimental data and then preprocessed. *e mammograms
had a resolution of 3,328× 4,084 pixels or 2,560× 3,328
pixels, and the images were stored in dicom format. We first
cropped the original images according to the provided lesion
areas, and the cropped images to 256× 256 were converted
into PNG format, as shown in Figure 1(a). *e processed
paired data were divided into training and test sets in a ratio
of 7 : 3, and the image intensity was linearly normalized to
[0,1] by using maximum normalization. Subsequently, the
influence of data irregularity on the experimental results was
eliminated, and the network was accelerated to determine
the optimal solution.

*e BRATS 2017 [19, 20] dataset contains 285 medical
images and their corresponding ROI images from four
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sequences, Tl-weighted (T1), Tl-weighted and contrast-en-
hanced (T1ce), T2-weighted (T2), and FLAIR, including 210
high-grade gliomas (HGG) and 75 low-grade gliomas (LGG),
with image sizes of 240× 240×155 voxels. T2 sequences were
selected as the experimental data, and the 90th and 100th
layer slices of the HGG images (the middle layer contains
more brain image information relative to the edge of the voxel
images) and the corresponding ROI slices were extracted first.
Similarly, the 90th, 95th, 100th, and 105th layer slices of LGG
images and the corresponding ROI slices were extracted, and
each of the 272 pairs of HGG and LGG images were collected,
as shown in Figure 1(b). Finally, all images were adjusted to
256× 256 pixels.*e two small datasets, HGG and LGG, were
normalized according to INbreast’s partitioning and pro-
cessing method.

2.2. Methods. To enable the network learn the contrast
information of ROI and non-ROI tissues, we improved the
cycleGAN model and proposed a pairwise image synthesis
method that incorporates regional features. Figure 2 shows
the flowchart of the model, where the input of the network is
the medical image and its corresponding ROI. Before the
network started training, the medical image matrix was first
multiplied with its ROI image matrix to obtain the regional
image containing only the tumor. *en, we designed a re-
gional feature extraction block (RFB) to extract the semantic
features of regional images and fuse the extracted regional
features with medical images as the input of source domain
X and ROI as the input of target domain Y. During network
training, the model discriminates between ROI and non-
ROI organizational features by learning the mapping of
domain X to domain Y. *e a priori regional features en-
hance the learning process and then reduces domain Y to
domain X to synthesize medical images. ROI synthesis first
reduces the mapping of domain Y to domain X and

synthesizes high-quality ROI images based on the mapping
of domain X to domain Y. Figure 2(c) shows the synthesis of
medical images, and the process can be represented as:
x⟶ G(x)⟶ F(G(x)) ≈ x as shown in (i); similarly, the
synthesis process of ROI can be represented as:
y⟶ F(y)⟶ G(F(y)) ≈ y, as shown in (ii). *e model
proposed in this paper is composed of two generators,
namely,G and F, and two discriminators, namely,Dx andDy.

2.2.1. Regional Feature Extraction. First, the medical image
was multiplied with the ROI matrix to obtain the regional
image, and the operation steps are shown in Figure 2(a). We
designed the RFB for extracting high-level semantic features
of the region image, and its structure is shown in Figure 3.
*e feature extraction block is a simple convolutional neural
network consisting of two mirror fill layers, three con-
volutional layers, and one deconvolutional layer. In the
network, the operational details of the three convolutional
layers are zoomed into the right side of Figure 3, where the
convolutional details include convolution, instance nor-
malization, and activation operations. *e feature map
output after the RFB is fused with the medical image as the
input of domain X.

2.2.2. Network Architecture. *e Fproi-GAN model consists
of two generators and two discriminators, where the
structures of the generators G and F are shown in Figure 4.
*e generator consists of four convolutional layers, two
fusion layers, and two deconvolutional layers, and the op-
eration details of each convolutional layer include convo-
lution, instance normalization, and activation operations. To
extract each pixel in the fused image, the generator first
performs a 3× 3 mirror fill of the image, and the feature map
size is filled from 256× 256 pixels to 262× 262 pixels after
filling. After three convolution processes, a 128-dimensional

3328

4084

256

(a)

×

240 × 240 × 155 (voxels)

(b)

Figure 1: (a) Cropping of the INbreast. (b) Slices containing tumor regions were extracted from the 3D images of glioma; × indicates that
images that do not contain tumor domains were excluded.

Journal of Healthcare Engineering 3



64× 64 feature map is obtained. *e convolution aims to
downsample the image and extracts its structural features,
where the details of the three convolution layer operations
are zoomed into the corresponding color boxes on both
sides. In addition, we added two fusion layers to the gen-
erator to preserve the low-level image information. Finally,
two deconvolution layers restore the image to its initial size
and complete the image synthesis.

*e inputs of the discriminator Dx include real and
synthetic medical images, while the inputs of the discrim-
inator Dy include synthetic and real ROI images. *e dis-
criminator consists of four convolutional layers, flatten
layer, dense layer, and sigmoid activation layer. *e

convolved image is flattened by the flatten layer, and the
dense layer reduces the features to one dimension. Finally,
the sigmoid function determines whether the image is
synthetic or real, and the details of the discriminator layers
are depicted in Figure 5. *e discriminator is executed
immediately after the output of the generator.

2.2.3. Training Loss. *e loss functions used in the synthesis
of the images include the traditional adversarial [7] and cycle
consistency loss [16]. *e model uses adversarial loss as the
mapping function. *e mapping function G: X⟶ Y and
its discriminator DY are expressed in (1) as follows:

LGAN G, DY, X, Y( 􏼁 � Ey∼Pdata(y) log DY(y)􏼂 􏼃 + Ex∼Pdata(x) log 1 − DY(G(x))( 􏼁􏼂 􏼃, (1)

where G(x) generates an image similar to the Y domain, and
DY distinguishes between the synthesized sample and the
real sample. In this process, G(x) aims to distinguish be-
tween information from ROI and non-ROI tissue, resulting
in subsequent F(G(x)) restoration process. G aims to
minimize this objective against an adversary DY that tries to
maximize it, in which minGmaxDY

LGAN(G, DY, X, Y).
Similarly, in the restoration process of F(G(x)), a similar
mapping functionF: Y⟶ X learns the mapping from the
ROI image to the medical image, in which
minFmaxDX

LGAN(F, DX, Y, X), where DX represents its
discriminator.

Traditional adversarial losses can only intermittently
learn the mapping function from domain X to domain Y or
vice versa. To constrain the consistency of the real image
with the synthetic image, we used a cycle consistency loss
function in the model to enhance the reduction process. In
Figure 2(c), x⟶ G(x)⟶ F(G(x)) ≈ x constrains the
synthesis process of the medical image, while
y⟶ F(y)⟶ G(F(y)) ≈ y constrains the synthesis
process of the ROI image. *ese two components constitute
the cycle consistency loss, as shown in the following:

Lcyc(G, F) � Ex∼Pdata(x) ‖F(G(x) − x)‖1􏼂 􏼃 + Ey∼Pdata(y) ‖G(F(y) − y)‖1􏼂 􏼃. (2)

2.3. Evaluation Measures. *e peak signal-to-noise ratio
(PSNR) [21], structural similarity (SSIM) [22], and

multiscale structural similarity (MS-SSIM) [23] were used
for the quantitative evaluation of the synthesized medical

Regional feature extraction

(a) (b) (c)
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Figure 2: (a) Regional feature extraction method. (b) *e base model is a like-cycleGAN model consisting of two generators and two
discriminators. (c) Synthesis of paired images. (i) Process synthesis of medical images. (ii) Process synthesis of ROI images.
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images. Dice coefficient and Hausdorff distance were used
for the quantitative evaluation of the synthesized ROI im-
ages. Given the original input and synthetic images, the
PSNR can be defined as follows:

PSNR(x, F(G(x))) � 10log10
MAX2

range(x, F(G(x)))

N
−1
voxel‖x − F(G(x))‖

2
2

,

(3)

where MAXrange(x, F(G(x))) represents the maximum
number of pixels for x and F(G(x)) images, and Nvoxel
represents the total number of pixels for x or F(G(x)). *e
higher the PSNR value, the better the synthesis performance.
SSIMwas used to measure three metrics of image brightness,
contrast, and structure, which can be expressed as follows:

SSIM(x, F(G(x))) �
2μxμF(G(x)) + c1􏼐 􏼑 2σxF(G(x)) + c2􏼐 􏼑

μ2x + μ2F(G(x)) + c1􏼐 􏼑 σ2x + σ2F(G(x)) + c2􏼐 􏼑
,

(4)

where μ and σ2 denote the mean and variance of the image,
respectively, and σxF(G(x)) denotes the covariance of x and
F(G(x)). *e closer the SSIM is to 1, the higher the
structural similarity is. *e larger MS-SSIM values represent
a better synthesis performance [24]. Dice coefficients [25, 26]
are often used to represent the performance of the syn-
thesized ROI image based on the ROI image y and the
synthesized ROI images G(F(y)) as follows:

Dice(y, G(F(y))) �
2|y∩G(F(y))|

|y| +|G(F(y))|
. (5)

*e Hausdorff distance [27], a complement to the Dice
evaluation metric, can be expressed as follows:

Hausdorff(y, G(F(y))) � max maxy∈y(min(d(y, G(F(y))))),maxG(F(y))∈G(F(y))(min(d(y, G(F(y)))))􏼐 􏼑, (6)

where d represents the Euclidean distance.

3. Results and Discussion

Our network implementation was based on the PyTorch
framework. All experiments were performed on a 12-core Intel
Xeon 3.7GHzCPUandGeForce RTX2080 (8GB) by using the
Ubuntu 18.04 operating system. All figures were plotted on a
computer with Windows 10 (8GB) operating system. During
the synthesis task, all models were trained for 300 epochs,
where the trained models used the Adam optimizer [28] with
default parameters, and the learning rate was set to 0.0002.

3.1. Results of the INbreast Dataset. *is subsection provides
a comparison of three commonly used synthesis models,
namely, DCGAN [11], Pix2Pix [15], and cycleGAN [16].
Table 1 evaluates the whole and tumor domains of the
synthesized images, and Table 2 compares the synthesis
results of ROI images. Tables 1 and 2 compare the differences
between Fproi-GAN and the other methods using paired-
samples T-tests [29], and the underline indicates a signifi-
cant difference between Fproi-GAN and the other methods at
a significance level of 0.05. Based on the experimental results
in Table 1, the Fproi-GAN image synthesis method achieved

the highest results for the three evaluation metrics, whereas
the DCGAN synthesized image results were the lowest.
Based on the quantitative analysis results of the whole image
domain, the Fproi-GAN values were 0.832, 0.053, and 0.016
higher than those of the cycleGAN method in the three
evaluation metrics of PSNR, SSIM, and MS-SSIM, respec-
tively, and 1.813, 0.113, and 0.056 higher than the DCGAN,
respectively. In the tumor domain, the Fproi-GAN values
were 3.657, 0.085, and 0.042 higher than those of the
cycleGAN method in the three evaluation metrics of PSNR,
SSIM, and MS-SSIM, respectively, and 4.911, 0.095, and
0.052 higher than the DCGAN method, respectively. Fproi-
GAN method was significantly improved relative to other
synthesis methods in Table 1. Based on the experimental
results in Table 2, Fproi-GAN obtained the highest DICE
coefficient, which is 0.154 higher than DCGAN, and the
lowest evaluated value in Hausdorff Distance, which is 3.10
lower than DCGAN. Figure 6 shows the visual performance
of the four synthesis methods, and Fproi-GAN performs
closer to the original image in some detail positions.

3.2. Results of the BraTS 2017 Dataset. *is subsection
provides comparison with three commonly used synthetic
models, such as DCGAN [11], Pix2Pix [15], and cycleGAN

Regional image

RFB

Conv block (32)

Conv block (64)

ReflectionPadding2D

Conv2D transpose (32)

ReflectionPadding2D

Conv block (32)

Conv block (32)

Conv2D (N × 7 × 7) Stride 1

Instance_normalization

relu

Conv block (64)

Conv2D (N × 3 × 3) Stride 2

Instance_normalization

relu

Figure 3: RFB architecture; the convolution process zoomed into
the box on the right side corresponding to the dimension.
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[16]. Tables 3 and 4 compare the differences between Fproi-
GAN and other methods by using paired-sample t-test [29],
and the underline indicates that Fproi-GAN is statistically
significantly different from other methods at a significance
level of 0.05. Based on the experimental results in Table 3,
the quantitative analysis results of Fproi-GAN in the HGG
data for the whole image domain are higher than those of
cycleGAN in PSNR, SSIM, and MS-SSIM by 0.604, 0.002,

and 0.003, respectively, and by 9.135, 0.104, and 0.097,
compared with DCGAN, respectively. In the tumor do-
main, the Fproi-GAN values were higher than cycleGAN in
PSNR, SSIM, and MS-SSIM by 6.236, 0.02, and 0.023,
respectively, and 12.349, 0.094, and 0.083 higher than
DCGAN method, respectively. *e quantitative analysis
results of Fproi-GAN in LGG data in the whole image
domain are 1.999, 0.006, and 0.008 higher than cycleGAN
in the three evaluation metrics of PSNR, SSIM, and MS-
SSIM, respectively, and 6.951, 0.069, and 0.066 higher than
DCGAN, respectively. In the tumor domain, the Fproi-
GAN values were 11.248, 0.004, and 0.007 higher than
cycleGAN and 14.631, 0.105, and 0.079 higher than
DCGAN.

Based on the experimental results in Table 4, Fproi-GAN
in HGG data achieved the highest DICE coefficient, which is
0.128 higher than DCGAN, and the lowest evaluated value in
Hausdorff distance, which is 3.44 lower than DCGAN. *e
DICE coefficient of Fproi-GAN in LGG data part was higher
than DCGAN by 0.101, and the Hausdorff distance was
lower thanDCGAN by 3.75. Figure 7 shows the visual results
of the four synthesis methods, in which the synthesis results
of the tumor domain, as well as the results of the non-tumor
domain, are compared, as shown in the medical images of
LGG. III shows the results of the synthesized paired images
in ITK-SNAP [30], and the results show that Fproi-GAN
method has less noise points than the other synthesis

Input image (256 × 256 × 1)

Conv block (32)

Conv block (64)

Conv block (128)

Conv2D Transpose (32)

tanh

Conv block (32)

Conv2D (N × 7 × 7) Stride 1

Instance_normalization
ReflectionPadding2D relu

Conv block (64/128)

Conv2D (N × 3 × 3) Stride 2

Instance_normalization

relu
Conv2D Transpose (64)

ReflectionPadding2D

Conv block (32)

Conv block (64/32)

Conv2DTranspose
(N × 3 × 3) Stride 2

Instance_normalization

relu

Conv block (128)

Conv block (128)

add

add

Conv block (128)

Instance_normalization

relu

Conv2D (N × 3 × 3) Stride 1

Instance_normalization

Conv2D (N × 3 × 3) Stride 1

Generator

Figure 4: Generator architecture; the convolution details of the generator are zoomed into the boxes on both sides.

Input image (256 × 256 × 1)

Conv block (64)

Conv block (128)
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Conv block (512)

Flatten + Dense

Sigmoid

Conv block (N)

Conv2D (N × 4 × 4) Stride 2

LeakyReLU (alpha = 0.2)

Discriminator

Figure 5: Discriminator architecture; Conv2D and LeakyReLU
layers were applied to all Conv blocks.
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methods. *e results of the image distribution of the four
synthesis methods are compared in Figure 8, where the
histogram indicates the distribution of the image grayscale
and the trend of the image grayscale.*e Fproi-GANmethod
is always closer to the original image than the three other
methods, both in terms of image distribution and trend of
image grayscale.

In addition to the quantitative evaluation of the syn-
thesized MR images, this paper supplements a glioma HGG
and LGG classification experiment to verify the auxiliary
effect of the synthesized MR images for the classification
experiment. Considering that the INbreast dataset without
mass data lacks corresponding ROI images, our synthesis
method is not applicable, and the auxiliary effect on its
dataset could not be verified in the classification. In the
image synthesis experiments, the training set included 380
images, consisting of 190 HGG and LGG data, and the test
set included 164 images, consisting of 82 HGG and LGG
data. In the classification experiments, the data used for
testing in the synthesis method were used as the training set
with 164 images, the data used for training in the synthesis
method were used as the test set with 380 images, and the
data from each of the four groups synthesized images were
added as comparison experiments, as shown in Table 5.
Referring to article [31, 32] for the classification method,
the first 500 features were extracted for each group of
images by using the Resnet [33] network, followed by 30
features selected by the recursive feature elimination [34]
with fivefold cross-validation, and the filtered features were
classified using the kernel-based SVM algorithm [35]. *e
metrics used to assess the classification results include
AUC, accuracy (Acc), sensitivity (Sen), and specificity
(Spe), where AUC represents the area of the ROC curve and
the other three metrics can be defined as (7)–(9):

Acc �
TP + TN

TP + FP + TN + FN
, (7)

Sen �
TP

TP + FN
, (8)

Spe �
TN

FP + TN
, (9)

where TP represents the number of samples, in which HGG
was correctly predicted, TN represents the number of
samples, in which LGG is correctly predicted, FN represents
the number of samples, in which HGG is predicted as LGG,
and FP represents the number of samples, in which LGG is
predicted as HGG. *e experimental results in Table 5 show
that, by adding the images synthesized by our method for
training the machine learning model, the prediction ability
of the model was effectively improved, in which Fproi-GAN
achieved the best results in the four metrics, and our method
achieved a high classification sensitivity of 0.913.*e ROC of
the classification experiments is shown in Figure 9.

3.3. Discussion. Currently, most image synthesis methods
are in single-input, single-output mode, and the synthesis
of ROI images is rarely studied. Our work utilizes the
cycleGAN’s cyclic consistency mechanism to solve the
problem of structural inconsistency between real and
synthetic images and improves the contrast information
between ROI and non-ROI domains by incorporating
regional features a priori, resulting in the synthesis of
high-quality medical images as well as the corresponding
ROI images. To evaluate the quality of the synthesized
images, we compared several currently popular synthesis
methods, such as DCGAN, Pix2Pix, and cycleGAN, and
evaluated the synthesis results in terms of the whole image
domain of the images and the tumor domain. *e results
show that the Fproi-GAN method synthesized high-
quality medical images on both datasets and achieved the
best results in PSNR, SSIM, MS-SSIM, dice, and Hausdorff
distance metrics. *e poor quality of the DCGAN syn-
thesized images may be due to the collapse of the model
during training, and we found that the synthesized images
of Pix2Pix and cycleGAN are not of high quality due to the
low structural consistency of the model. In addition, the
comparison results from the whole and tumor domain of

Table 1: Quantitative evaluation of the INbreast dataset (mean± standard deviation). We compared the measurements of the different
synthesis methods over the whole image domain and the tumor domain at a significance level of 0.05, and the underline indicates that Fproi-
GAN is statistically significantly different from other methods.

Region Methods PSNR SSIM MS-SSIM

Whole image

DCGAN [11] 16.834± 3.28 0.769± 0.15 0.879± 0.21
Pix2Pix [15] 17.398± 3.81 0.843± 0.13 0.923± 0.19

cycleGAN [16] 17.815± 5.18 0.829± 0.17 0.919± 0.18
Fproi-GAN 18.647 ± 3.25 0.882 ± 0.16 0.935 ± 0.15

Tumor region

DCGAN [11] 19.231± 7.43 0.872± 0.15 0.894± 0.23
Pix2Pix [15] 21.811± 6.98 0.915± 0.11 0.902± 0.22

cycleGAN [16] 20.485± 6.15 0.882± 0.07 0.904± 0.18
Fproi-GAN 24.142 ± 6.70 0.967 ± 0.08 0.946 ± 0.18

Table 2: Results of the quantitative evaluation of the ROI images of
the INbreast dataset (mean± standard deviation) with a signifi-
cance level of 0.05; the underline indicates that the Fproi-GAN is
statistically significantly different from other methods.

Methods Dice coefficient Hausdorff distance
DCGAN [11] 0.827± 0.25 7.31± 4.95
Pix2Pix [15] 0.945± 0.17 7.27± 4.18
cycleGAN [16] 0.952± 0.13 6.83± 3.38
Fproi-GAN 0.981 ± 0.11 4.21 ± 2.84
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Figure 6: Comparison of Fproi-GAN with the three other synthesis methods on the INbreast dataset. (a) Input image. (b) DCGAN. (c)
Pix2Pix. (d) cycleGAN. (e) Fproi-GAN.

Table 3: Results of the quantitative evaluation of the BRATS 2017 dataset (mean± standard deviation), where we compare the mea-
surements of the different synthesis methods over the whole image domain and the tumor domain at a significance level of 0.05, and the
underline indicates that Fproi-GAN is statistically significantly different from the other methods.

Data Region Methods PSNR SSIM MS-SSIM

HGG

Whole image

DCGAN [11] 25.749± 3.49 0.882± 0.04 0.890± 0.05
Pix2Pix [15] 28.938± 4.68 0.952± 0.03 0.956± 0.05

cycleGAN [16] 34.280± 4.85 0.984± 0.02 0.984± 0.05
Fproi-GAN 34.884 ± 5.18 0.986 ± 0.02 0.987 ± 0.04

Tumor region

DCGAN [11] 29.539± 5.05 0.903± 0.02 0.910± 0.05
Pix2Pix [15] 33.031± 5.99 0.951± 0.02 0.952± 0.04

cycleGAN [16] 35.652± 5.97 0.977± 0.03 0.970± 0.04
Fproi-GAN 41.888 ± 6.06 0.997 ± 0.004 0.993 ± 0.03

LGG

Whole image

DCGAN [11] 23.093± 4.71 0.895± 0.11 0.908± 0.06
Pix2Pix [15] 25.912± 4.95 0.933± 0.09 0.945± 0.07

cycleGAN [16] 28.045± 4.47 0.958± 0.08 0.966± 0.03
Fproi-GAN 30.044 ± 4.21 0.964 ± 0.08 0.974 ± 0.03

Tumor region

DCGAN [11] 25.809± 4.39 0.892± 0.09 0.911± 0.07
Pix2Pix [15] 30.228± 5.28 0.939± 0.08 0.948± 0.07

cycleGAN [16] 29.192± 7.22 0.993± 0.01 0.983± 0.06
Fproi-GAN 40.440 ± 7.51 0.997 ± 0.02 0.990 ± 0.03

II

III

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
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Figure 7: Comparison of Fproi-GANwith the three other synthesis methods on the BRATS 2017 dataset, where III is the visual performance
in ITK-SNAP. (a) Input image (HGG). (b) DCGAN. (c) Pix2Pix. (d) cycleGAN. (e) Fproi-GAN. (f ) Input image (LGG). (g) DCGAN. (h)
Pix2Pix. (i) cycleGAN. (j) Fproi-GAN.
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Figure 8: Image distribution results and grayscale trends of the four synthesis methods under HGG and LGG, where Fp(roi)-GAN
represents Fproi-GAN. (a) HGG. (b) LGG.

Table 5: Classification results.

Data Methods AUC Acc Sen Spe
BRATS2017

Resnet + SVM

0.872 0.789 0.823 0.778
BRATS2017 +DCGAN 0.881 0.803 0.720 0.831
BRATS2017 + Pix2Pix 0.894 0.815 0.857 0.855
BRATS2017 + cycleGAN 0.928 0.855 0.910 0.843
BRATS2017 + Fproi-GAN 0.943 0.882 0.913 0.868
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Figure 9: Continued.
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the images showed that the tumor domain is more in-
formative than the whole domain by incorporating re-
gional features.

As shown in Figure 7, our synthesis method resulted in
the least noise points in the medical image processing tool
ITK-SNAP, but the images generated by DCGAN contain
more noise points. Based on the image distribution and
grayscale change trend in Figure 8, the proposed method is
closest to the distribution of the original image. From the
previously mentioned experimental evaluation results, the
sets of experiments show that the method proposed in this
paper is more likely to be applied in the near future research
of medical images. At last, in the BRATS 2017 classification
experiments, we supplemented the synthesized data into the

training set to effectively assist the training of the machine
learning model and improve the classification effect of the
model, in which the highest classification accuracy was
achieved by adding the data synthesized by the Fproi-GAN
method. Although many adversarial generation models have
been proposed, the quality of the generated images has been
an important goal for researchers to pay attention to, and in
addition, whether the generated images can be used in recent
studies is also a key concern for research. In this paper, our
proposed method generates high-quality images and is
validated in brain glioma classification experiments, which
proximately illustrates the feasibility and superiority of our
proposed generation method in the process of medical
imaging research.
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Figure 9: ROC plot of the classification experiment. (a) BRATS 2017. (b) BRATS 2017 +DCGAN. (c) BRATS 2017 + Pix2Pix. (d) BRATS
2017 + cycleGAN. (e) BRATS 2017 + Fproi-GAN.
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4. Conclusions

GAN is widely studied in the field of medical imaging,
including cross-modal synthesis, super-resolution recon-
struction, and medical image denoising. In this paper, we
proposed the Fproi-GAN method to synthesize paired
medical images. Moreover, we validated the results of the
synthesized images via quantitative analysis, image distri-
bution comparison, and visual evaluation. In the BRATS
experiment, we added a classification experiment to verify
the effect of synthesized data on the classification experi-
ment. *e results show that the addition of synthetic images
effectively assisted the training of the machine learning
model and improved the classification performance of the
prediction model. Although this paper does not further
validate the impact of the synthesized ROI images on the
segmentation problem, the quantitative analysis indicated
that our method has higher quantitative evaluation results
than the other synthesis methods. In the future, we will
further determine the effect of synthetic images on tasks,
such as medical image classification and segmentation.
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