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Abstract

In developing a microwave tomography system, we started by examining the fundamental signal 

measurement challenges-i.e., how to interrogate the target while suppressing unwanted multi-path 

signals. Beginning with a lossy coupling bath to suppress unwanted surface waves, we have 

developed a robust and reliable system that is both simple and low profile. However, beyond the 

basic measurement configuration, the lossy coupling medium concept has also informed our 

choice of array antenna and imaging algorithms. The synergism of these concepts has produced a 

novel concept which is embodied in a system that has been successfully translated to the clinic.

Introduction

While there are often numerous ways to approach scientific challenges, some are often more 

productive than others. In the area of microwave tomography, the vast majority of efforts 

have started with and focused on developing algorithms to deal with the inherent 

nonlinearity of the problem [1,2]. By itself, these nonlinear problems are very challenging 

and the genesis for numerous reports, books and conferences. Conversely, our motivation 

began with the simple question of assessing whether we could gather suitable measurement 

data and what were the fundamental challenges. Following this line of enquiry, we quickly 

realized, as was well known in related microwave applications, that multi-path signal 

corruption was the single greatest factor in confounding our measurement systems [3]. As 

we became aware of over time, multi-path signals come in a variety of forms including 

reflections off of illumination chamber walls, surface waves along support structures and 

feed lines and even as cross-channel leakage within the system electronics [4,5]. It is not a 

matter of eliminating them, but attenuating them to a sufficient level that their impact on the 

desired signals is tolerable.

At an early stage, we became aware that surface waves were particularly problematic in near 

field measurement systems. These waves are capable of traveling large distances with only 
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minimal degradation and can readily re-couple through an alternative propagation path and 

corrupt the desired signals [6,7]. Our earliest solutions were to utilize lossy coupling baths 

such as saline and mixtures of glycerin and water to attenuate the signals [8,9]. In addition, it 

was important to maintain long enough feed line lengths and keep the tank boundaries 

sufficiently far from the antennas and field of view [4,5]. While inconvenient because of the 

practical challenges involved with working with liquids, it became a useful benchmark for 

experimenting with different configurations. An equally daunting problem involves the fact 

that the desired signals are also substantially attenuated by the lossy medium, to the extreme 

that we needed to develop custom measurement equipment to measure the signals down to 

abnormally low power levels [10]. Interestingly, the levels required are essentially out of the 

range of conventional test and measurement equipment, but not impractically impossible 

given theoretical limits [11]. The challenge becomes a trade-off between a nearly impossible 

problem for most approaches- i.e., suppressing or accounting for multi-path signals-versus 

developing a customized, multi-channel, high dynamic range measurement system- a 

dauntingly challenging problem, but eminently doable.

The insights gleaned from this line of investigation have informed a range of system design 

decisions and shaped the overall framework of our system. In terms of antenna design, 

conventional wisdom encourages one to design larger antennas that both operate over 

broader bandwidths and include higher gain levels to propagate across larger distances and 

through lossier material [12]. Conversely, we opted for extremely simple monopole antennas 

because, while they essentially have no gain, their small size allows them to be packed 

closer to the target which more than compensates for the lack of gain associated with their 

larger and more directive counterparts [12]. For the imaging algorithm, we rely on classic 

engineering observations and intuition in dealing with signal levels that span many orders of 

magnitude. Microwave engineers have long displayed signals in terms of their log magnitude 

and phase as a way to derive critical insights into the impacts of circuit, antenna and system 

designs [13].

In fact, the ubiquitous default measurement display on virtually all commercial test and 

measurement equipment is in terms of decibels (the most widely used logarithmic-based 

scale) and degrees. The rationale is particularly prescient when measuring signals for 

antennas operating in a lossy bath. We exploit algorithms developed for competing imaging 

modalities that equivalently operate with highly attenuating media such as optical coherence 

tomography [14,15]. Only after use for a number of years did we discover that the 

mathematics underpinning this concept were developed and validated many decades ago 

[16]. In fact, these alternative means of framing the algorithmic challenges have led to 

approaches that no longer require a priori information for reconstruction convergence which 

is one of the more vexing problems for microwave tomography and we can now recover 

quality images in a fraction of the time and with fewer computational resources than 

competing concepts [17]. Figure 1: Simulated radiation patterns for a monopole antenna 

submerged in a coupling liquid above a slab of Plexiglas for different conductivity values: 

(a) 0.0, (b) 0.2, (c) 0.5, (d) 0.9, and (e) 1.2 S/m, respectively.

In the following sections, we more closely describe the fundamental challenges in 

developing microwave tomography in the context of each of the practical issues outlined 
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above. Ultimately, the synergism of novel solutions to each of these issues have contributed 

to an overall concept that has led to deployment of actual imaging technology that has now 

been used in various medical scenarios [18,19]. While the different solutions may appear 

counterintuitive in an isolated context and contrary to alternative approaches in the 

microwave imaging world, when viewed together, they comprise a range of fundamental 

solutions to difficult challenges which have been key to clinical success [20].

Design Trade-Offs

Multi-Path Suppression Via Lossy Coupling Bath

Scientists have been aware of the surface wave phenomenon for many decades [21]. While 

researchers are currently looking to exploit this behavior [22], for many applications the goal 

is to suppress them [6,7]. One of the more perplexing challenges with surface waves is that 

they are the same frequency as the desired signal and can appear as if they are the desired 

scattering from an object in the field of view, similarly to how the human body’s defense 

mechanism has trouble distinguishing cancers from normal tissue. Figure 1 shows a series of 

simulations of a monopole antenna radiating into a dielectric space above a solid slab of 

Plexiglas (εr = 2.2, σ = 0.0S/m). The permittivity of the coupling liquid was εr= 20.0 and the 

conductivity were artificially varied from 0.0 to 1.2S/m, the latter being typical for an 80% 

concentration of glycerin in water. The length of the coaxial feed line above the Plexiglas 

was 14 cm and the length of the monopole antenna was 3.5 cm. There are several important 

features to note from these results. For the lowest conductivity case, the radiation pattern of 

the antenna is quite erratic, propagating in multiple directions.

There is also a significant coaxial mode traveling down the outside of the cable and right on 

into the Plexiglas. At the interface between the liquid and Plexiglas, it also excites a planar 

mode which travels along the interface with only minor attenuation as it moves away from 

the coax. As the conductivity increases to 1.2S/m, the aberrant beam pattern of the 

monopole antenna diminishes but the coaxial and planar surface wave modes are still 

prevalent. Interestingly, for the planar mode, the signal strength is decidedly stronger on the 

Plexiglas side of the interface indicating that the waves propagate preferentially on the lower 

loss side of a boundary.

As the attenuation increases further, the horizontal planar mode disappears and eventually 

the entire coaxial mode disappears- essentially the coaxial mode is completely eliminated 

before it has an opportunity to couple to the coax in the Plexiglas. In the un-attenuated or 

under-attenuated scenarios, these coaxial and planar modes are exactly the propagation paths 

that generate the corrupting multi-path signals. In situations such as a near-field, multi-

antenna array, there is simply insufficient distance between elements to keep the unwanted 

signals from interfering with the desired ones. Simple signal analysis shows that when the 

undesired signals are 25dB below that of the desired signals, the maximum amplitude and 

phase errors can be as large as 0.1 dB and 3.2 degrees. These can increase to as much as 0.4 

dB and 17.5 degrees for a multi-path signal that is only-10 dB below the desired one. These 

types of errors could dramatically impact the overall image quality. While the lossy bath is a 

real, albeit inconvenient solution, there is a conspicuous lack of viable alternatives in the 
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near field scenario. The multipath challenge has proven to be the most challenging aspect in 

developing an actual system.

One major drawback for using this approach is that the desired signal strength is 

dramatically reduced at the receiver antennas. Fig. 2 shows plots of the S21 (transmission) 

measurements for a single monopole antenna radiating into a homogeneous, 70% glycerin 

bath and being received by the complementary antennas positioned on a 15.2 cm diameter 

circle (measurements were acquired utilizing a Rohde & Schwarz ZNBT8 16-channel vector 

network analyzer). As can be seen, the attenuation at the furthest antennas can easily exceed 

120 dB which exceeds the capability of most commercial VNA’s. In fact, the primary 

limitation is not necessarily physical, because the noise floor can theoretically be driven 

arbitrarily low by dramatically increasing the IF measurement bandwidth [11].

For most devices, the limitation is most likely related to meeting the needs of the majority of 

customers who would rarely require such an expanded dynamic range. While the R&S VNA 

is a useful option, in prior efforts we chose to fabricate custom equipment to meet these 

specifications. It is worth noting that there is a wide misconception on how to configure a 

measurement system that has essentially equivalent consequences. The most typical 

measurement configuration is to utilize a single, two-channel VNA in conjunction with a 2 x 

16 channel multiplexer [23,24]. The challenge is that most switching networks rarely have 

isolation greater than 80 dB. This would effectively reduce a VNA with a 100dB dynamic 

range to one with fewer than 80 dB. If the requirement is greater than 100dB, the switch 

matrix solution can cause even more problems.

Antenna Choice

In conventional applications, mainly involving propagation in air, monopole antennas are 

extremely narrow band, inefficient and excite unwanted surface waves [6,7]. However, when 

immersed in a lossy coupling medium, the antennas effectively become resistively loaded 

and are reasonably well matched over a broad frequency range [25]. Unfortunately, the 

resistive loading also includes the unwanted feature of significantly reducing the overall 

efficiency. From a system design perspective, the primary goal is to measure a signal with 

sufficient SNR so that it can be used in an imaging algorithm. A classic means of doing this 

is to select an antenna with reasonable gain for both transmitter and receiver. However, this 

invariably implies utilizing a larger antenna-the gain is typically proportional to its size [12].

In a near field setting, this is problematic because the trade-off then becomes the number of 

antennas versus the surrounding array diameter. Decreasing the number of antennas would 

induce unintended consequences such as reduced image quality because of the lower number 

of measurements [26]. Increasing the array diameter is also suboptimal because of the added 

signal loss between antennas. As was illustrated above in Figure 2, the signal attenuation in 

these lossy baths is dominated by the plane wave attenuation through the conductive 

medium. By selecting the low profile monopole antennas and placing them close to the 

target, the plane wave attenuation is dramatically reduced by virtue of the shorter 

propagation paths with only minimal degradation in gain since there would be practical 

limits on the antenna sizes. A further and not insignificant benefit is that these antennas have 

virtually no mutual coupling effects even when packed quite closely [27].
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Beyond this fundamental trade-off, the monopole presents further opportunities in the 

context of microwave imaging. For instance, researchers have speculated on ways of 

exploiting multi-frequency and even time-domain imaging techniques [28–30]. In these 

instances, it is critical to utilize broadband antennas. Our current model operates from 

roughly 500MHz to 3GHz with nominally 10 dB return loss or better across the band which 

is quite broad within the context of available alternatives [25]. Interestingly, as will be 

discussed below, for the log transform-based algorithm, the signal phases need to be 

unwrapped. We have pioneered a novel strategy of exploiting the multi-frequency 

information for the unwrapping [20].

As we progress towards lower cost and even semi-portable imaging system designs, we are 

continually finding new opportunities utilizing the monopole antennas. Recently we have 

begun using the discrete dipole approximation (DDA) as a means for efficiently computing 

the forward solution part of the reconstruction algorithm [31]. This has produced a nearly 

order of magnitude reduction in computation time. However, to take advantage of this 

concept, it is critical that the field propagation occur in a low scattering environment - 

preferably no metal. Because of the low profile of the monopole antennas and the lossy 

coupling bath, the presence of the non-active antennas (i.e. the remainder of the surrounding 

array) has very little impact on the field distribution and the low scattering criteria is met. 

These advantages and more obvious ones including the reduced illumination tank size have 

been crucial in translating this technology into the clinic.

Reconstruction Algorithm

Researchers and engineers have long known that displaying electric field values in terms of 

decibels and phase provides a more intuitive appreciation of the signals versus viewing them 

in terms of the real and imaginary parts of the complex signal. In fact, the log magnitude and 

phase are simply the natural results of the log transformation of the complex signal [32]. For 

instance, in radar applications, the phase is generally directly related to distance, and with a 

modest amount of phase unwrapping can be used for range finding [11]. In fact, for most test 

and measurement equipment, the default display settings are the log magnitude and phase 

(Figure 3). This insight translates directly into the imaging world. In x-ray computed 

tomography (CT), while the reconstruction algorithm is linear and the data is purely real, it 

only operates properly after the measurement data has been logarithmically transformed 

[33]. Figure 3: Displays of an Agilent E5071B vector network analyzer measuring the 

transmission loss of a 20 dB coaxial attenuator and length of cable in both the (a) log 

magnitude and (b) phase modes.

More recently, the log transform has been widely used in optical coherence tomography 

(OCT) [14]. A large part of the advantage in this situation is that the amplitudes of the 

signals span many orders of magnitude. As alluded to above, one of the main challenges 

with the log transform is the question of how to handle the phase and possible wrapping. 

This is generally not an issue for OCT since they use transport equations for the light 

propagation modeling and artificially introduce the phase by way of a low frequency 

modulation-for breast imaging they typically use 100 MHz [34–36]. In this situation, the 

wavelength is sufficiently long that the phase never exceeds + /− π.
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Exploiting the log transformation in microwave tomography presents important 

opportunities and challenges. In the context of measuring signals many orders of magnitude 

lower than the initially broadcast fields, the log scale is ideal for distinguishing signals. 

However, because scattering objects in the field of view can be relatively high contrast with 

the background and often on the order of a wavelength or more size-wise, the phases can 

easily wrap over the + /−π boundaries. Unwrapping the phases is a critical step for the 

reconstruction algorithm because it is crucial that the measured and computed phases (those 

calculated at each iteration) be on the same Riemann sheet [32]. For this challenge, we rely 

heavily on insights from within the microwave community but also from external 

technologies.

Phase unwrapping is critical for certain radar approaches used in range finding [11,37]. 

Simply viewing the phase wrapping on the displays of a vector network analyzer, the 

unwrapping process is relatively obvious with respect to phase shifts as a function of 

frequency [13]. Alternatively, there is a broad variety of literature in the magnetic resonance 

(MR) imaging world related directly to phase unwrapping [38,39]. While a natural approach 

might be to unwrap the phases as a function of spatial position, we have found that this is 

often complicated and computationally intensive [40]. For our application, we treat the 

measured and computed values differently. Because our antennas operate over a very broad 

bandwidth, it is possible to unwrap the measured phases as a function of frequency similarly 

to that just described for the VNA display [20]. This would not be feasible for the computed 

phases since it would require calculating entire phase distributions at multiple frequencies.

However, because we deliberately keep the iteration step size short between reconstruction 

iterations, the computed phase changes at each iteration for each receiver antenna rarely 

exceed π/10. Because of this, it is possible to conveniently unwrap the phases at each 

receiver antenna as a function of iteration with only minimal extra computational costs [20]. 

One of the more intriguing and powerful consequences of developing this approach is that 

the algorithm no longer requires a priori information and does not converge to local minima 

or unwanted solutions [20]. Much literature has been expended in finding solutions to this 

problem [41,42]. Our working hypothesis is that when alternative approaches reconstruct 

images utilizing the complex representation of the fields, the field values are automatically 

mapped into the single Riemann sheet spanning-π to +π [43]. For a significant portion of 

the data, this can mean a loss of information.

The application of a priori information can sometimes mitigate this problem, but it is 

essentially moving the computed field values to the same Riemann sheet as the measured 

data. For the most part, a priori information remains more of a mathematical construct than 

something that could be implemented in an efficient manner in the real world. Multiple 

groups have implemented frequency hopping approaches to some benefit [44,45]. Similarly 

to the a priori information approach, this technique produces an initial image at a low 

frequency which is unlikely to exhibit phase wrapping in the measurement data because of 

the longer wavelengths. This image is subsequently used as the starting guess for the next 

higher frequency. Even though the data at this higher frequency might show wrapping 

effects, the improved initial image estimate succeeds because it forces the computed and 

measured phase values onto the same Riemann sheet. This process is repeated until an image 
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is reconstructed at the highest possible frequency. This elaborate and time-consuming 

process can be effective, but is ultimately unnec essary in light of the unwrapping procedure 

previously described.

More recently, we have also discovered that the log transformation is actually well grounded 

in fundament analyses for general parameter estimation problems. Seminal work by Box and 

Cox described and assessed a broad range of transformations for parameter estimation, 

especially when the estimations exhibit different forms of hetero-scedasticity [16,46]. One 

of the major underpinnings of least squares approaches such as our Gauss-Newton technique 

is that the error between the measured and computed values have zero mean and are 

normally distributed. In an analysis similar to that performed in Meaney [46], Figures 4a & 

4b show histograms for a different phantom imaging experiments with both the log 

transformation and without it, along with a best fitting normal distribution. These results are 

typical of what we encounter for both phantom experiments and clinical examinations and 

confirm that the log transformation provides more efficient minimization criteria for the 

reconstructions.

Conclusion

In focusing on the more practical issues surrounding developing a microwave tomography 

system, we have solved critical challenges. However, the solutions can be viewed as 

counterintuitive and unconventional in light of competing solutions. These solutions include 

using a lossy coupling medium, monopole antennas and a log transformed reconstruction 

algorithm. Further examination of these approaches has led to important new innovations 

that now make microwave tomography a viable modality, especially as we address lower 

cost and more portable configurations for developing world applications.
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Figure 1. 
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Figure 2. 
Plot of the attenuation for signals radiated from a single monopole antenna Into 70% 

glycerin:water bath and received at the complementary 15 array antennas arranged on a 15.2 

cm diameter circle.
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Figure 3. 
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Figure 4. 
Histograms of the residual field error for phantom experiment image reconstructions (a) with 

the log transformation, and (b) without.
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