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Plant immunity is crucial to plant health but comes at an expense. For optimal plant growth,
tight immune regulation is required to prevent unnecessary rechannelling of valuable re-
sources. Pattern- and effector-triggered immunity (PTI/ETI) represent the two tiers of im-
munity initiated after sensing microbial patterns at the cell surface or pathogen effectors
secreted into plant cells, respectively. Recent evidence of PTI-ETI cross-potentiation sug-
gests a close interplay of signalling pathways and defense responses downstream of per-
ception that is still poorly understood. This review will focus on controls on plant immunity
through phosphorylation, a universal and key cellular regulatory mechanism. Rather than a
complete overview, we highlight “what’s new in protein kinase/phosphatase signalling” in
the immunity field. In addition to phosphoregulation of components in the pattern recog-
nition receptor (PRR) complex, we will cover the actions of the major immunity-relevant
intracellular protein kinases/phosphatases in the ‘signal relay’, namely calcium-regulated
kinases (e.g. calcium-dependent protein kinases, CDPKs), mitogen-activated protein ki-
nases (MAPKs), and various protein phosphatases. We discuss how these factors define a
phosphocode that generates cellular decision-making ‘logic gates’, which contribute to sig-
nalling fidelity, amplitude, and duration. To underscore the importance of phosphorylation,
we summarize strategies employed by pathogens to subvert plant immune phosphopath-
ways. In view of recent game-changing discoveries of ETI-derived resistosomes organizing
into calcium-permeable pores, we speculate on a possible calcium-regulated phosphocode
as the mechanistic control of the PTI-ETI continuum.

Introduction
In the ‘zig-zag’ model of plant immunity [1], the terms ‘pattern- and effector-triggered immunity
(PTI/ETI)’ are used to designate immune systems initiated after recognition of pathogen-derived (or
plant-derived) molecules at the cell surface or translocated effector proteins in the cytosol, respec-
tively. PTI is mediated by cell surface pattern recognition receptors (PRRs) after sensing of conserved
microbial molecules (so-called microbe-associated molecular patterns (MAMPs), e.g. EF-Tu, flagellin,
peptidoglycans), or via the detection of endogenous plant molecules released from damaged tissues
(damage-associated molecular patterns (DAMPs), e.g. AtPep1) [2]. Binding of these ligands to PRRs or
PRR complexes belonging to receptor-like kinase (RLK) or receptor-like protein (RLP) families repre-
sents the first layer of immunity (Figure 1). To overcome PTI, many phytopathogens secrete/translocate
effectors directly into the host cytosol, where they interfere with host immune pathways to support
pathogen proliferation [3,4]. In resistant plants, effectors or effector activity is recognized via cyto-
plasmic nucleotide-binding leucine-rich repeat domain-containing receptors (NLRs), triggering a ro-
bust immune signalling cascade (ETI) that often culminates in local programmed cell death (the
so-called hypersensitive response), presumably to limit pathogen spread [1]. Recent characterization of
the coiled-coil-type NLR ZAR1 has shown that upon activation ZAR1 oligomerizes as part of the ‘resis-
tosome’, a multicomponent resistance-triggering complex, which in this case forms calcium-permeable
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Figure 1. Overview of phospho-dependent immune signalling facilitated by endogenous protein kinases, edited by phos-

phatases, and manipulated by pathogen-derived effectors

At the surface of the plant cell, pathogen-derived molecules (e.g. fungal chitin or bacterial flg22/elf18; in red) are recognized by PRR

complexes comprised of RLK receptors LYK5, FLS2, or EFR (light blue) and coreceptors CERK1 and BAK1 (dark blue) embedded

in the plasma membrane (PM). The FLS2-BAK1/EFR-BAK1 complexes are also regulated through membrane nanodomains as-

sisted by the FER/LLG1 scaffold in a RALF-dependent manner. On the cytoplasmic side, phosphorylation (orange circles marked

with P) activates PRR signalling, leading to the phosphorylation and release of RLCKs of the VII subfamily, including BIK1 (purple

rectangles). Subfamily VII RLCKs activate the MAPK cascade (green), while BIK1 phosphorylation of CNGC calcium channels (yel-

low) and RBOHD (fuchsia,) activates calcium (yellow orbs) influx and ROS (fuchsia stars) production, respectively. CPKs (yellow

pentagon) sense and decode the calcium signals and write the phosphocode on diverse targets. On the PM, CPK5, as well as

additional protein kinases (gray box, and BIK1), mediate phosphorylation of RBOHD to guarantee ROS production, which can in-

duce further calcium influx and thus form feed-forward calcium-ROS amplification loops. In the nucleus, CPK5 targets transcription

factors, some of which are commonly phosphorylated by MAPKs (e.g. WRKY33 or CAMTA3). The distinct phosphosite specificities

of MAPKs and CPKs generate a phosphocode-defined ‘logic gate’ that dictates transcriptional reprogramming during defense.

Protein phosphatases act in opposition to protein kinases at multiple levels of the immune phosphocascade (targets shown as

green stars), erasing the phosphorylation marks. Effectors (red orbs) injected into the cytosol by pathogenic bacteria may be rec-

ognized in resistant plants through NLRs (blue). Recently it was shown that an effector-modified RLCK serves as a ligand to trigger

oligomerization of a coiled-coil-type NLR into a calcium-permeable pore, further increasing cytosolic calcium flux. In susceptible

plants, effector activity mimics or hijacks endogenous control mechanisms to rewrite the phosphocode and ultimately suppress

immunity at all levels (example targets mentioned in this review are marked with red lightning bolts).

pores in the plant membranes [5,6]. ETI is normally of long-lasting and stronger intensity than PTI. However, PTI
and ETI share several signalling components and are, in fact, more intertwined than previously thought. They may be
viewed as a defense continuum of increasing amplitude rather than separate entities [7], but the mechanistic control
of the PTI/ETI interplay is still unknown. Post-translational modifications (PTMs), such as defined phosphorylation
pattern(s), maintained through the activity of specific protein kinases and phosphatases, could be a possible mode. Re-
cent evidence of cross-potentiation between PTI and ETI [8,9] would support this notion. To bypass the constraints
of the binary PTI/ETI definition, terms such as surface- or intracellular-immunity have emerged to designate the
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site of immune activation. In this spatially defined context, the plant immune system continuum can be extended
beyond subcellular localization to local/systemic immunity at the plant level or even at the community level through
interplant signalling mechanisms. Using this spatial definition, we summarize recent phosphorylation-related stud-
ies from the surface PRR complexes to the regulation of intracellular (de)phosphorylation and manipulation of
these phosphopathways by pathogen effectors (graphically depicted in Figure 1). Phosphorylation generates a ‘pro-
tein mark’ at the modified site that encodes information representing different functional states of the protein. We
discuss how such a phosphocode, particularly through multisite phosphorylation, could generate decision-making
‘logic gates’ and/or graded responses of tuneable amplitude. Finally, we highlight and speculate on how phos-
phoregulation of the calcium-ROS (reactive oxygen species) amplification loop may delineate signalling generated
by the recently discovered calcium-permeable pores formed by ETI resistosome complexes in host membranes
[5,6].

Modulation of protein kinase recruitment and activity within
PRR complexes initiates surface immune signalling
PTI signalling begins at the cell surface upon PRR recognition of immunogenic microbial patterns. Individual
PRRs possess distinct ectodomains that bind ligands and convert this into intracellular signalling processes through
phosphorylation events. To achieve this, RLPs, which lack a cytoplasmic kinase domain, would require protein
kinase-containing partners for transmembrane phosphosignalling, while RLKs may directly employ their intracellular
kinase domains. Yet, even RLKs show ligand-induced receptor/coreceptor oligomerization and recruitment/release
of additional kinases (e.g. receptor-like cytoplasmic kinase (RLCK) family members) [10]. Some of the best stud-
ied receptor–coreceptor pairs include FLS2-BAK1, EFR-BAK1, LYK5/CERK1, and PEPR1-BAK1 (see glossary for
full names), which detect MAMPs (flg22, elf18, fungal chitin) or DAMPs (AtPep1) [11]. On the cytoplasmic side,
these PRR complexes is associated with the RLCK, Botrytis-induced kinase  (BIK1) [12], which is released from
the complex after phosphorylation and monoubiquitination [13]. Reciprocal transphosphorylation has been shown
for the receptor/coreceptor and BIK1. Importantly, phosphorylation in the activation loop of FLS2 or EFR plays
a central role for full activation of downstream responses [14,15]. Most eukaryotic protein kinases are so-called
RD-kinases, which harbor an arginine in the conserved catalytic loop of the HRD motif and require activation loop
(auto)phosphorylation for full catalytic activity. FLS2 and EFR are, however, non-RD kinases as they lack this arginine
and either do not need phosphorylation-dependent activation or employ other activation mechanism. Non-RD ki-
nases typically have lower in vitro kinase activities compared with their RD counterparts [16]. Thus, the PRR complex
transphosphorylation described above is consistent with the notion of the RD-kinase, BAK1, activating the non-RD
kinases, FLS2 or EFR. Surprisingly, the catalytic activity of EFR cytoplasmic kinase domain was recently found to
be dispensable for initiating antibacterial immunity although transphosphorylation of the EFR activation loop was
essential for downstream signalling [17]. The authors proposed that it is phosphorylation-dependent conformational
changes within EFR that initiate downstream signalling, for instance, by enhancing the BAK1 coreceptor activity. This
challenges the above-mentioned concept of signal activation through activity enhancement of non-RD-type RLKs. It
additionally questions the role of the kinase domain within the PRRs for the signal relay: can the substrates down-
stream of the PRR complexes be redundantly phosphorylated by either the receptor or coreceptor, or is this exception
restricted to EFR?

Together with the above-mentioned EFR data, other recent studies are revealing that the regulation of kinase activ-
ities within PRR complexes is more complicated than previously thought. Feronia (FER), an RLK with malectin-like
ectodomains, was found to regulate EFR-BAK1 or FLS2-BAK1 complexes independent of its intracellular kinase ac-
tivity [18]. FER functions as a conventional receptor for sensing extracellular matrix or cell wall changes, where it
forms (with its partner, Lorelei-like glycosylphosphatidylinositol (GPI)-anchored protein (LLG)) heterotypic PRR
complexes to bind endogenous rapid alkalinization factor (RALF) peptides [19]. For immune regulation, FER ‘moon-
lights’ as a RALF-regulated scaffold to facilitate ligand-induced FLS2-BAK1 or EFR-BAK1 complex formation. Stud-
ies of single FLS2-GFP particle trajectories and their diffusion coefficients show that FER contributes to mem-
brane nanoscale spatial partitioning and assembly of other PM PRR complexes [20]. Several additional examples
of malectin-containing RLKs that regulate immunity by modulating immune PRRs have emerged recently (reviewed
in [21]), so that the interplay between immune PRRs and these sensors that otherwise govern cell wall integrity,
peptide hormone signalling, or other growth processes may contribute to growth-defense trade-off maintenance in
plants. A future question will be to assess how the nanoscale partitioning of PRRs contributes to signalling fidelity of
downstream phosphorylation events.
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Several intracellular protein kinases translate the surface
immune signals into cellular phosphocode(s)
To transduce the danger signal from the surface PRRs to intracellular responses, two major cellular phosphorylation
pathways are activated downstream of the PRR complexes, namely mitogen-activated protein kinases (MAPKs) [22]
and calcium-regulated kinases [23,24]. In regard to the latter, emphasis will be placed on calcium-dependent protein
kinases (CDPKs) [25]. Large gene families encode both MAPKs and CDPKs, with individual members contributing
to signal specificities [22,25], and while both are protein kinases, they exhibit distinct activation mechanisms and
target specificities. Enzymatic activity of CDPKs that are involved in immune signalling is directly enhanced after
sensing calcium changes triggered by PRR activation [24] (see below). MAPKs operate as a multicomponent cascade,
requiring phosphoactivation by an upstream MAPK kinase (MKK), which itself also requires another MKK kinase
(MKKK) [26]. While an upstream MKKK kinase exists in some organisms and has also been proposed for plants [27],
it has been unclear how MKKKs are activated after the immune PRR complex activation.

RLCKs, as central players in receptor complexes linking PRRs to downstream signalling, are obvious candidates
to target MKKKs [28], but analyses have been complicated by functional redundancies among the huge numbers of
RLCKs. For instance, little-to-no reduction in MAPK activation could be detected in double mutants lacking two
related RLCKs, BIK1 and PBL1 [29], although these PRR-interacting RLCKs clearly contribute to PTI signalling.
PTI-relevant RLCKs include the family VII (46 members) and family XII (12 members) [30]. Recently, system-
atic mutant analysis including higher-order mutants was undertaken [31–33] and clarified three previous uncertain-
ties in the field: (I) Members of the RLCK-VII clade 4 indeed directly phosphorylate MKKK5 to positively regu-
late chitin-induced defense activation, thus finally revealing the missing link between RLCKs and MKKK activa-
tion. (II) Subsets of RLCK members are differentially recruited to distinct PRR complexes. EFR, FLS2, and BAK1
mainly engage BIK1 and PBL1 (clade 8) [10,29], whereas chitin signalling occurs through BIK1, several clade 4
members [15,31,32] and possibly PBL27 (clade 1) [33], while downstream signalling of lipooligosaccharide-specific
reduced elicitation (LORE)-mediated detection of bacterial 3-OH fatty acid [34,35] occurs through PBL34-36 (Clade
5) [36]. (III) The MKKK upstream of the MKK4/5-MPK3/6 cascade is now identified to be MKKK3 and MKKK5
[31] rather than being assigned to MEKK1 [37]. Altogether, these findings show how distinct members of multigene
families such as the RLCKs confer signal specificity by connecting the PRR complex to activation of distinct MAPK
cascade components, thus tailoring the activation of different stages of the signalling cascade. Additionally, as de-
scribed in the next section, RLCKs also trigger the release of additional signalling molecules such as calcium and
ROS.

Calcium and phosphorylation are tightly connected and feed
into a calcium-ROS amplification loop
Downstream of PRR activation, elevation of cytosolic calcium levels and production of ROS are hallmarks of
PTI/ETI signalling, with calcium and ROS production closely linked to phosphorylation [24,38]. A genetic
screen with calcium as a read-out revealed BAK1 and membrane association of BIK1/PBL1 to be required for
full response of MAMP-triggered calcium fluxes [29,39], thus hinting to (in)direct phosphoregulation of the
plasma-membrane-localized calcium channels. Several cyclic nucleotide-gated channels (CNGCs) have been pro-
posed to be the putative MAMP-responsive calcium channels; and indeed, CNGC2/4 were found to be direct
substrates of BIK1 [40], while CNGC20 was phosphorylated by BAK1/SERK4 [41]. Similarly, the rice OsCNGC9
calcium-permeable channel, which is required for chitin-triggered calcium influx and resistance to the rice blast fun-
gus, is phosphorylated by a rice RLCK-VII isoform RLCK185 [42]. Furthermore, channel activity of the calcium
channel OSCA1.3 was also increased after BIK1-mediated phosphorylation in guard cells [43]. However, there is still
uncertainty if any of these represent the genuine calcium channel(s) responding to MAMPs in Arabidopsis foliar
tissues. The hunt for the elusive MAMP-responsive channel(s) operating under physiologically relevant conditions
continues, but screening for channels targeted by BIK1/PBL1 or BAK1 may be a feasible strategy. Likewise, it is un-
known if calcium signatures generated during ETI are mediated by the same channel(s) as PTI.

Various calcium sensors read and decode the PTI/ETI-induced calcium signature and directly or indirectly trans-
late it into changes in phosphorylation capacity [23]. While other decoders such the tomato calcineurin b-like inter-
acting protein kinase , CIPK6, translate calcium sensing into phosphorylation and play a role in plant immunity [44],
we focus mainly on CDPKs here. CDPKs function as major calcium sensor-decoder in a single entity that directly
transduce the MAMP-induced calcium signals into phosphorylation events. Like the other protein kinases mentioned
above, CDPKs are encoded by a multigene family, with 34 members in Arabidopsis [25]. In Arabidopsis, the CDPK,
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CPK5, directly phosphorylates the NADPH oxidase RBOHD at distinct sites, which leads to an increase ROS produc-
tion. Inversely, external ROS application leads to CPK5 activation and further RBOHD phosphorylation, thus forming
a calcium-phosphorylation-ROS amplification loop [45]. Multiple protein kinases up-regulate RBOHD activity (see
below). This includes BIK1, which is degraded after phosphorylation by another CDPK, CPK28 [46], thus attenuating
RBOHD activation [47]. Hence, besides regulating plant growth [48], CPK28 prevents unwarranted immune activa-
tion. Interestingly, kinase-inactive CPK28 isoforms are generated by alternative splicing during flg22 activation of
MPK4 [49] or DAMP signalling [50]. The resulting truncated CPK28 variant is thought to outcompete active CPK28,
thus countering the negative regulation of BIK1 and enabling ROS generation [51].

RBOHD-derived ROS induces secondary calcium fluxes and contributes to the MAMP-induced calcium signa-
ture [39]. Altogether, calcium fluxes and ROS accumulation are interlinked with several intracellular protein ki-
nases (RLCKs, CDPKs, and MAPKs, and additional kinases mentioned below) for maintaining and amplifying im-
mune activation. In particular, the CPK5-mediated immune signal can propagate systemically to induce systemic
acquired resistance (SAR) in distal tissues [45] and is accompanied by accumulation of the SAR-inducing metabolite
N-hydroxy-L-pipecolic acid (NHP) [52]. The physical association of CPK5 with the truncated NLR, TN2 (TIR-NBS2),
also pinpoints CPK5 to be a vital signalling node for ETI [53]. Hence, protein kinases from PTI signalling and the
calcium-ROS amplification loop may determine the phosphocodes for PTI, ETI, and possibly even SAR.

A regulatory phosphocode through multisite phosphorylation
While most studies have focused on the impact of individual phosphosites on protein functions, phosphoproteomics
revealed many proteins to be multiphosphorylated [54]. What is the cumulative outcome of multisite phosphoryla-
tion compared with the ‘on/off’ signal transduced by single-site phospho-switches? A current view is that multisite
phosphorylation can provide a graded and tuneable response that is dependent on the level of the input protein
kinase and its opposing phosphatase (Figure 2A). If protein kinases and phosphatases from different biological path-
ways and contexts are involved, this further generates a cellular decision-making ‘logic gate’ (Figure 2B). Increasingly
complex logic gating occurs if antagonistic cross-talk exists between phosphosites where one phosphosite inhibits or
promotes phosphorylation of other sites in the same network [55]. Hence, each phosphosite forms a protein mark that
constitutes a phosphocode for information processing and this principle applies to several of the immunity-relevant
phosphoproteins. Notably, aside from the substrate proteins, the protein kinases or phosphatases themselves are of-
ten subjected to phosphocode-dependent regulation—sometimes through auto-(de)phosphorylation. In its simplest
form, multiphosphorylation of a distinct target protein can be mediated by a single protein kinase sequentially, which
could theoretically form a temporally defined phosphocode [56]. Several substrates of flg22-responsive MAPKs are
phosphorylated at multiple sites by a single MAPK, where the phosphosites contribute to protein stability [57–60].
This represents a biochemical conundrum of multiple site accessibility for the protein kinase, and raises the question
of whether substrates dislodge and re-engage for consecutive phosphorylation. While still not thoroughly investigated,
one may draw analogy to sequential multisite phosphorylation by yeast cyclin-dependent kinase 1 (Cdk1), which, like
MAPKs, is a proline-directed protein kinase. For Cdk1, multiphosphorylation is propagated in an N-to-C-terminal
direction along a disordered region of the substrate [61]. In the above-mentioned plant examples, variants mutated
in all MAPK-targeted sites were more stable than ‘partial’ mutants of some sites [57,58,60]. If each phosphosite repre-
sents a phosphodegron motif, multisite modification may increase the rate of proteasome engagement and represents
one means by which a ‘graded response’ is achieved.

When several protein kinases converge on a single substrate, the corresponding multisite phosphocode develops
into a powerful signal processing ‘logic gate’ circuitry (Figure 2B). This becomes relevant for components shared
by different signalling pathways, such as BAK1 and CPK28, where the distinct phosphosite(s) relevant for immune
functions or growth regulation were recently identified [62,63]. Thus, signalling fidelity of BAK1 and CPK28 can be
explained by this phosphocode-dependent subfunctionalization. A similar control mechanism may be assigned to
other immune signalling hub proteins, such as RIN4, which is phosphorylated by several kinases and additionally,
post-translationally modified by ADP-ribosylation and acetylation; for a recent review, see [64]. An excellent exam-
ple for multisite phosphorylation is RBOHD, where its activity is positively regulated by multiple (flg22-responsive)
protein kinases, including CPK5 [45], BIK1/PBL1 [65,66], RIPK [67], SIK1 (an MKKK kinase) [27], and cysteine-rich
RLK2 (CRK2) [68]. Here, it is noteworthy that several protein kinases converge on S343 and S347, possibly acting as
a manifold safeguard mechanism (Figure 2C) to ensure high RBOHD activity. By contrast, the RLCK, PBL13, tar-
gets T912 of RBOHD to promote proteasome-dependent degradation [69], thus functioning as a negative regulator
of ROS production. Likewise, the two major flg22-responsive cellular protein kinase pathways, CDPK and MAPK,
also converge on at least two immune relevant transcription factors [57,70]. Since these protein kinases have distinct
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Figure 2. Regulatory phosphocode through multisite phosphorylation

Schematic models of how multisite phosphorylation on a single protein (conceptually valid for both protein kinases and their sub-

strates) constitutes a regulatory phosphocode. (A) Sequential or consecutive phosphorylation by one or different protein kinases

may generate a graded response that is tuneable by actions of opposing protein kinases and phosphatases present. An example

is when all the phosphomarks result in the same outcome such as degradation (exemplified by MAPK substrates mentioned in this

review), where the frequency of modified phosphodegron motifs will correlate with the likelihood of engagement by ubiquitin-pro-

teasome machineries, and therefore increased removal as outcome. (B) Logic gating represents more complex decision-making

that is important for phosphocode-dependent regulation of protein functions. Three hypothetical scenarios are illustrated here: (1)

Outcome A arising if either phosphosite 1 OR 2 are modified; (2) Outcome B occurs only if both phosphosite 3 AND 4 are phospho-

rylated; or (3) Outcome C, a follow-up situation where, additionally, site 5 must NOT be phosphorylated. Phosphocode-dependent

subfunctionalization of BAK1 or CPK28 or the convergence of MPK3/6 and CPK5 on transcription factors WRKY33 and CAMTA3

represent such situations. (C) Response safeguard represents the scenario where multiple independent protein kinases target

one or more key phosphosite(s) required for full activity of the substrate protein. Using Outcome B (in b) as an example, if K1 is

inactivated, a safeguarding second protein kinase (K2) with overlapping phosphosite specificity will ensure activity maintenance.

An example for this scenario is the convergence of several protein kinases on RBOHD.
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phosphosite specificities, the resulting phosphocode can define the ‘logic gate’ decision. Indeed, DNA binding and
transactivation activities of WRKY33 are separately promoted through phosphorylation by CPK5/6 and MPK3/6,
respectively [70], so that these kinases co-operatively control the WRKY33-regulated biosynthesis of camalexin to
inhibit microbial growth. For CAMTA3, MPK3/6 regulates its destabilization and nuclear export during PTI [57],
while the effect of CPK5 has not been fully elucidated. However, the role of CPK5 in NLR signalling [53] could
mean that the convergence of MAPKs and CDPKs on CAMTA3 constitutes a phosphocode-defined rheostat for the
PTI-ETI continuum. Supporting this notion is the identification of CAMTA3-binding sites in overlapping PTI/ETI
defense genes that imply CAMTA3 defines an early convergence point in NLR- and PRR-signalling [71].

The evolution of multiple protein kinases to modify common targets underscores the importance of such signalling
nodes, which as discussed above, can contribute to signalling fidelity, strength, and duration. By contrast, phospho-
rylation can also provide interpathway cross-talk/interplay. An example being immune priming between different
pathogen pathways, such as flg22 treatment inducing enhanced antifungal immunity or antiviral activity through
phosphorylation-dependent stabilization of their corresponding receptors, CERK1 [72] and NIK1 [73]. Taken to-
gether, multikinase-mediated phosphocode enables complex decision-making in signalling.

Rewriting the immune phosphocode through protein
phosphatases as erasers
While protein kinases write the phosphorylation marks, counteracting phosphatases serve as erasers to change
the defense phosphocode, which is essential for preventing unnecessary or excessive immune signalling. While the
broad-spectrum activity of many plant protein phosphatases and functional redundancies have hindered the def-
inition of their specific roles, there is increasing evidence of stringent regulation by specific protein phosphatases
at multiple levels of the immunity phosphoproteome. Among the 150 annotated Arabidopsis protein phosphatases,
most studies have focussed on Ser/Thr phosphatases or dual-specific (Ser/Thr and Tyr) phosphatases and much less is
known about protein Tyr phosphatases [74]. Starting with the PRR complexes, kinase-associated protein phosphatase
(KAPP) associates with and attenuates signalling of the wall-associated kinase 1 (WAK1) receptor for DAMPs; the
kapp mutants show correspondingly increased resistance against Botrytis cinerea [75]. Similarly, PRR co-receptors
are also negatively regulated by phosphatases, e.g. BAK1 through PP2A holoenzyme [76] or CERK1Y428 dephospho-
rylation by CERK1-interacting protein phosphatase  (CIPP1) [77]. The phosphatase PP2C38 was initially identified
as an interactor of EFR and FLS2 but, rather than inactivating the receptors, it modulated the phosphorylation and
activation status of BIK1, thereby preventing immune signalling prior to elicitation [78]. Interestingly, PP2C38S77

(feedback) phosphorylation by its own substrate, BIK1, is needed for BIK1-PP2C38 dissociation from the PRR com-
plex. Recent data also pinpoint similar mechanism for additional PP2Cs, namely poltergeist-like 4 and 5 (PLL4 & 5)
where PLL4 dissociation is preceded by phosphorylation through BIK1 [79].

Similar feedback control is also observed for the protein phosphatases that inactivate the intracellular protein
kinases such as MAPKs. In a feed-forward loop, stability of the MAPK phosphatase  (MKP1) is promoted by
MPK6-mediated phosphorylation, thus promoting MPK6 dephosphorylation and shutting down of defense responses
[80]. While the dual-specificity MKP1 dephosphorylates both ser/thr and tyr, inactivation of MAPKs through ser/thr
phosphatases such as the protein phosphatase 2C (PP2C), AP2C1 [81] or various members from the type-one protein
phosphatase (TOPP) family has also been shown to compromise plant resistance [82], although it cannot be excluded
that additional non-MAPK targets may contribute to the disease phenotype. Nevertheless, the importance of these
phosphatases for immunity is indirectly implicated in genetic screens, such as that identifying MKP1 to be required
for Plectosphaerella cucumerina fungal resistance [83] or the absence of TOPP4 triggering an ETI-like cell death
phenotype [84].

Currently, there are fewer examples of protein phosphatases that target the key immunity-related calcium-regulated
protein kinases. Although not previously associated with immunity, CPK1 activity was dampened after dephos-
phorylation by the protein phosphatase, PP2A-B’γ, thereby affecting resistance to Botrytis cinerea [85]. Com-
parable to RBOHD, the paralogous RBOHF is activated by multiple protein kinases, including open stomata 1
(OST1) and two calcium-regulated protein kinases, CIPK11 and CIPK26, which is counteracted through dephos-
phorylation by the phosphatase ABI1 (ABA-insensitive ). Immunity through stomatal closure may thus be reg-
ulated by the RBOHF-mediated ROS generation [86]. Here, it is noteworthy that the ABI family of PP2Cs seem
to have additional roles other than being simply ABA coreceptors. ABI1, as well as additional phosphatases, ABI2
and HAB1, reversed the MAPK and/or CDPK-mediated activation of the rate-limiting enzyme for ethylene biosyn-
thesis, -aminocyclopropane-1-carboxylate synthases, ACS6 [87] and ACS7 [88]. Similarly, ABI2 antagonizes the
calcium-regulated CIPK5 phosphorylation of the guard cell outward rectifying k+channel (GORK) that is involved
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in jasmonic acid (JA)-induced stomatal closure [89]. Hence, the ABI PP2Cs may intersect into many other signalling
pathways than currently assumed. Collectively, erasing phosphorylated protein marks by protein phosphatases may
mediate (hormonal) signalling interplay and buffer the phosphocode for tight immunity control.

Hijacking and manipulation of immune phosphocode by
pathogen effectors
The balance of multiple protein kinases and phosphatases acting on signalling nodes facilitates the tight regulation
of immune-pertinent phosphocascades to ensure activation at appropriate time points and amplitudes. Among the
mechanisms that pathogens use to counteract plant defense, several converge on and hijack phosphoregulatory mech-
anisms to suppress host immunity. Over the last 20 years, the intense study of phytopathogen effector proteins has
revealed more than a handful of effectors capable of directly altering the phosphocode via intrinsic kinase, phos-
phatase, or lyase activity [36,90–92]. Additionally, a vast array of effectors employ alternative enzymatic strategies,
such as uridylation [93], ubiquitination [94], and ADP-ribosylation [95] to indirectly manipulate phosphorylation.
Since surface immunity is the first line of inducible plant defense [1], it is unsurprising that successful pathogens
harbor multiple effector proteins that suppress one or more of these early phospho-dependent PTI components (re-
viewed in [3]; Figure 1). Among the 28 effectors injected by Pseudomonas syringae strain DC3000 (Pto), at least
5 (HopF2; [95], HopB1; [96], AvrPto; [97], AvrPtoB; [94,98], HopAO1; [36,99]) directly interfere with phosphory-
lation of PRR complex components at the membrane and several effectors (HopF2; [95], HopAI1; [92], AvrRpt2
[100]) block downstream MKK or MAPK activities. For instance, HopAO1 (a tyrosine phosphatase) was shown to
dephosphorylate EFR at Y836 [99] and, more recently, the PRR LORE at Y600, the phosphorylation of which is crit-
ical for the activation of downstream RLCKs PBL34/35/36 [36]. Such effectors act to erase the phosphocode of the
immune component, a modification that is irreversible in some cases, e.g. the phosphothreonine lyase HopAI1 that
dehyroxylates the T residue of MAPKs and prevents rephosphorylation needed for activation [92].

Besides interfering with phosphorylation, mimicry of plant protein kinases represents a novel strategy for ma-
nipulating the defense phosphoproteome to compromise plant immunity. For example, XopC2 (Xoc) and HopBF1
(Pto) were recently identified as representatives of two new clades of ‘atypical’ protein kinases. The XopC2 family
harbors additional α-helix subdomains making the kinase domain atypically long (470 aa vs. the typical 265 aa; [91]),
while HopBF1 homologs exhibit a minimal protein kinase domain (only 183 aa; [101]). In an elegant study, Wang et
al. (2021) revealed that XopC2 directly phosphorylates the SCF complex adaptor protein, OSK1 (at Ser53), resulting
in the activation of jasmonate signalling and suppression of stomatal immunity [91]. HopBF1 (Pto), on the other
hand, inhibits ETI through the phosphorylation and resultant inactivation of the chaperone protein Hsp90. The au-
thors suggest that Hsp90 phosphorylation ultimately prevents proper folding of client proteins such as NLRs and/or
kinases important for signalling [101].

In addition to mimicking and inhibiting protein kinase activity to suppress immunity, some effectors hijack
plant phosphopathways by mimicking substrates of conserved protein kinases to facilitate their own phosphoryla-
tion/activation. For example, in susceptible plant species, the phosphorylation of Pto effectors, AvrPto (S149) and
HopQ1 (S51), via unidentified plant kinases, and subsequent recruitment of the plant phosphoform-recognizing
14-3-3 proteins to HopQ1, contribute significantly to their virulence functions [102–104]. Recently, AvrPtoB was
found to interact with several plant protein kinases, including CDPKs as well as members of sucrose nonfermenting
1 (SNF1)-related kinases (SnRKs), SnRK 1.1, 2.6, and 2.8. In this study, SnRK 2.8 was found to be the primary player
for AvrPto phosphorylation at S258, S210, and S258, which proved essential to its virulence function [105].

The evolution of multiple effectors, employing a variety of strategies, to converge on PRRs, MAPK elements and
other signalling nodes only serves to emphasize their importance. However, given that calcium influx and decoding of
this signal by CDPKs are equally crucial to both PTI and ETI [106,107], it is surprising that detailed studies of effectors
that directly target the calcium-sensing or calcium-regulated phosphorylation, e.g. through CDPKs or CIPKs have,
thus far, not been frequently reported. Although some putative CDPK-effector interactions have been mentioned
in the literature (e.g. between truncated versions of CPK4/5 with Pto effector AvrPtoB [105] or CPK6 with three
Xanthomonas campestris pv. campestris effectors, XopK, XopAC, and XopJ [108]), these have not been followed up.
In view of the recent revelation that several NLRs form calcium-permeable channels [5,6], we propose that effectors
that target elements of calcium signalling deserve more attention in the future.

Conclusion and future perspectives
In this review, we highlighted recent advances in our molecular understanding of phosphorylation-dependent im-
mune regulation. We also highlight the need to further explore interplay/cross-talk between complex phosphocoding
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(e.g. between phosphosites of multiphosphorylated proteins) and additional PTMs - either through plant machiner-
ies or pathogen effectors. A current proteomics bottleneck for this endeavor is the analytic limitation to obtain full
coverage of all PTM events in a given protein at a specific time, especially for low-abundance proteins. Besides tech-
nical advances, a holistic approach combining structural biology (cryoelectron microscopy, cross-linking/MS, and
nuclear magnetic resonance), machine-learning-based phosphosite prediction tools and structural modelling (e.g.
AlphaFold) will be beneficial to decipher the PTI/ETI phosphocode. For instance, how does ETI trigger a stronger
and more sustained calcium influx and phosphosignalling (e.g. MAPK activation profile) compared with PTI? The
demonstration of shared signalling components and interdependence between PTI and ETI [8,9,109] further endorses
the notion of immunity as a PTI-ETI continuum.

Three recent breakthrough discoveries in the understanding of ETI components will likely pave the way for fu-
ture understanding of how calcium fluxes and perception shape immunity. First is the previously mentioned resis-
tosome, which is made up of coiled-coil-type NLR pentamers that form calcium-permeable pores in host mem-
branes [5,6]. Second is the finding that for the second class of Toll-interleukin-1-receptor (TIR)-domain NLRs, im-
mune activation triggers tetramerization of the TIR domain to form a NAD-hydrolyzing enzyme that generates,
among others, cyclic ADP-ribose (cADPR)-like molecules [110–113]. cADPRs are well-known calcium-releasing
agonists. Third is that the so-called helper NLRs that function downstream of the TIR-type NLRs also oligomerize
into calcium-permeable pores [114]. Thus, one can anticipate that these NLR-mediated calcium fluxes will feed into
calcium-phosphorylation-ROS amplification loops described above: a likely explanation for the strong and sustained
intensity of ETI responses. However, how does the cell decode a generic signal such as calcium without erroneous
cross-talk into other calcium-regulated pathways (e.g. abiotic stress)? Here, a calcium-regulated phosphocode prob-
ably determines the signalling specificity and subsequent fine-tuning. Do the differential calcium sensitivities of de-
coders such as CDPKs [52], which are in part regulated by autophosphorylation [115], play a role in the decoding?
Are there mechanisms to close/inactivate these pores to redefine an ETI-specific calcium signature and/or to prevent
runaway cell-death through uncontrolled calcium toxicity? Finally, does the calcium signalling generated by the NLR
pores lead to the sustained MAPK activation typically seen for ETI and if so, are (and which) RLCKs involved to phos-
phorylate the MKKKs? These and additional questions have been posed recently [116] and await future clarifications
from the plant immunity community.

Summary
• Intracellular protein kinases/phosphatases control immunity in the PTI-ETI-SAR continuum.

• Multisite phosphorylation (of substrate proteins but, often, also their corresponding protein kinases
and phosphatases) defines the phosphocode for downstream mechanistic interpretation of immune
signalling.

• Phosphocodes enable tuneable ‘graded response’ or more complex ‘logic gating’ to control response
outcomes

• In light of recently discovered calcium influx generated by resistosome pores or calcium-mobilizing
molecules, understanding the phosphocode edited through calcium-regulated enzymes will be cen-
tral in future studies to dissect immune signalling.

• Effectors manipulate multiple points of immune phosphosignalling but those targeting
calcium-sensing processes deserve greater attention.
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88 Marczak, M., Cieśla, A., Janicki, M., Kasprowicz-Maluśki, A., Kubiak, P. and Ludwików, A. (2020) Protein phosphatases type 2C group A interact with
and regulate the stability of ACC synthase 7 in Arabidopsis. Cells 9, 978, https://doi.org/10.3390/cells9040978
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