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Abstract

Animals must respond selectively to specific combinations of salient environmental stimuli in order to survive in complex
environments. A task with these features, biconditional discrimination, requires responses to select pairs of stimuli that are
opposite to responses to those stimuli in another combination. We investigate the characteristics of synaptic plasticity and
network connectivity needed to produce stimulus-pair neural responses within randomly connected model networks of
spiking neurons trained in biconditional discrimination. Using reward-based plasticity for synapses from the random
associative network onto a winner-takes-all decision-making network representing perceptual decision-making, we find that
reliably correct decision making requires upstream neurons with strong stimulus-pair selectivity. By chance, selective
neurons were present in initial networks; appropriate plasticity mechanisms improved task performance by enhancing the
initial diversity of responses. We find long-term potentiation of inhibition to be the most beneficial plasticity rule by
suppressing weak responses to produce reliably correct decisions across an extensive range of networks.
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Introduction

Most environmental stimuli, to which an animal must develop

an appropriate response, comprise multiple features and sub-

features that are common to many other stimuli. Since these other

stimuli could engender an alternative response by the animal, it is

essential that an animal is able to recognize specific combinations

of stimulus features in order to distinguish and respond effectively

to differing stimuli that share many features. The simplest step in

the formation of specific responses to complex stimuli is the ability

to combine two inputs and produce a response distinct from either

input alone or other input pairings. Associative learning is

necessary for an animal to recognize that at least two previously

unrelated objects or events comprise a composite stimulus that

requires a specific response [1,2,3,4,5].

Some of the most difficult associative learning processes involve

tasks that utilize exclusive-or, XOR, logic (Figure 1A). Associative

learning tasks that employ XOR logic include pair-associative

learning [3,6], transitive inference [7], and biconditional discrim-

ination tasks [8,9], among others. These tasks vary in design and

sensory modality, but they all share one requirement, the

development of stimulus-pair selectivity to solve the task. Rats

and monkeys require extensive training [2,10] to perform well in

such tasks. The difficulty in XOR tasks (Figure 1A) arises from the

requirement for an animal to produce a response to stimulus-pairs

(e.g. A+B) selectively, in a manner that differs from its response to

the individual stimuli that comprise them (e.g. A or B). For

example, in biconditional discrimination (Figure 1A) [9], if the

animal learns to respond to one member of the stimulus-pair (e.g.

B from A+B) then while it will respond correctly to stimulus-pair

A+B it would respond incorrectly to C+B. Thus, in biconditional

discrimination, as in other tasks based on XOR logic, successful

decision-making requires responses selective to stimulus-pairs (e.g.

A+B vs. C+B). The results of our studies based on the

biconditional discrimination task can be applied to a number of

associative learning tasks that employ XOR logic such as visual

association [3,6], transitive inference tasks [11], and many others

[4].

What remains unclear in these tasks is how the requisite

stimulus-pair representations form. Here we investigate how cells

responsive to specific conjunctions of stimuli form, by examining

what synaptic plasticity rules can generate stimulus-pair specificity

within a randomly connected network of spiking neurons and

compare with the likelihood of their initial chance occurrence

[12]. Our work shares some similarities to a previous computa-

tional study [13], which produced associations between individual,

temporally separated stimuli in structured networks. However, our

focus is on the general role of network connectivity [12] and

synaptic plasticity rules described in vitro, necessary to solve

multiple tasks requiring pair-associative learning.

We study the well-known correlation-based mechanism for

changing excitatory synaptic strengths, spike-timing-dependent

plasticity (STDP) [14,15] as well as a more recent formulation,

triplet STDP [16]. Triplet STDP is distinguished from standard

STDP through its rate dependence – favoring potentiation over

depression as overall rate increases. Standard STDP determines
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the sign of plasticity from the relative times of each single

presynaptic and single postsynaptic spike pair but fails to replicate

such rate dependence. The higher order spike interactions

included in triplet STDP fit recent in vitro data better

[16,17,18,19], as well as the observed rate dependence of more

classic experiments data [17,18,20,21,22] while maintaining

standard STDP observations [16]. Thus, we incorporate a recent

computational model of triplet STDP to determine how its affects

the network differently from that of standard STDP.

Recent modeling studies of recurrent networks undergoing

STDP suggest the plasticity mechanism could be detrimental in

the formation of pair-specific responses for two reasons. First, the

competition among inputs to a single cell inherent in STDP [23]

could lead single cells to become responsive to a single stimulus, or

the complete network to respond to only one stimulus-pair [24].

Alternatively, plasticity among the excitatory connections can lead

to a phenomenon termed attractor accretion in recent work [25]

whereby cells associate with multiple stimulus-pairs. Such over-

association would be detrimental when a specific stimulus-pair

response is necessary, but has been shown to be useful when

generalization is necessary [25].

Thus, in addition to excitatory plasticity, we model a recently

described form of inhibitory plasticity [26,27] long-term potenti-

ation of inhibition (LTPi), which produces an increase in strength

of inhibitory connections to excitatory cells if the inhibitory cell

spikes while the excitatory cell is depolarized but not spiking. We

study how these excitatory and inhibitory plasticity rules operate in

conjunction with multiplicative postsynaptic scaling, a mechanism

for homeostasis [28].

We make minimal assumptions regarding network structure by

studying networks with random afferent projections and random

recurrent connections. To demonstrate the robustness of learning

rules, we study them in a variety of networks, with differing levels

of sparseness, excitability and degree of correlation in the

connections from input groups that respond to individual stimuli.

We define a measure of pair selectivity at the neuronal level, and

measure the distribution of selectivity across cells before and after

training. When comparing multiple networks, we use the mean of

the stimulus-pair selectivity across cells. In order to determine

whether or not the information about stimulus-pairs within a given

associative network is sufficient to produce a reliable behavioral

response, we train a binary winner-takes-all (WTA) network,

whose inputs are obtained from our associative network. The

WTA network serves as a model for perceptual decision-making

[29,30]. Its afferent synapses are modified by a Dopamine (DA)

reward-based plasticity rule that, in principle, can lead it to

produce responses that maximize reward [31].

We found that in many cases, both standard STDP and triplet

STDP produced lower selectivity to stimulus pairs and less reliable

decision-making performance than found in the network before

learning. This limitation on the ability of STDP to produce pair-

selective cells arose from potentiation of synaptic connections

between cells, which were initially selectively responsive to

different stimulus pairs, but gained responses to the stimulus pair

favored by the connected cell. We term this undesirable

phenomenon of losing selectivity through the gaining of extra

responses as ‘over-associativity.’ Over-associativity was prevented

by LTPi, which could produce cross-inhibition. Networks trained

with LTPi alone or in combination with STDP produced reliable

decision-making across the largest range of networks tested in this

study. Thus, these results demonstrate a valuable role for this

recently discovered form of inhibitory plasticity.

Results

Stimulus-pair selectivity
Throughout this paper we describe how learning rules affect

stimulus-pair selectivity. Stimulus-pair selectivity can be plainly

stated as how responsive a neuron’s firing rate is to one stimulus-

pair (e.g. A+B) over all other stimulus-pairs (for a formal definition,

see the experimental procedures). Any cell responding equally to

all four stimulus-pairs is least selective (giving a measure of 0) while

any cell responding to a single stimulus-pair is the most selective

(giving a measure of 3). A concrete example of a single neuron

(Figure 2A,B) is useful for understanding the selectivity metric.

Initially, the neuron is approximately equally responsive (as

measured by the number of spikes produced) to each stimulus-

pair (giving a measure of near 0) (Figure 2A); however after

training with LTPi and triplet STDP, the neuron becomes

selective to only stimulus-pair A+B (giving a measure of 3),

maintaining its initial firing rate in response to the combination

A+B, despite the pruning of other stimulus-pair responses

(Figure 2B).

Non-linearity is necessary for cells to generate stimulus-pair

selectivity greater than one, however selective it is to individual

inputs. For example, a cell responding linearly to inputs only from

stimulus ‘‘A’’ would fire at a rate, rA, to stimulus-pairs ‘‘A+B’’ and

‘‘A+D’’ and at a rate of zero to stimulus-pairs ‘‘C+B’’ and ‘‘C+D’’,

producing a stimulus-pair selectivity of 1. Such a cell could not

help in the task. Similarly, a cell responding linearly to the

individual inputs ‘‘A’’ and ‘‘B’’, firing at rate rA+rB, to the pair

‘‘A+B’’, at rate rA, to pair ‘‘A+D’’, at rate rB, to pair ‘‘C+B’’ and a

rate of zero to pair ‘‘C+D’’ would also have stimulus-pair

selectivity of one. Such cells are also unlikely be unhelpful in

training an XOR task, since they produce equal numbers of spikes

for the two desired responses producing equal drive to the

decision-making network (spikes fired to stimulus-pairs ‘‘A+B’’ and

‘‘C+D’’ equals spikes fired to ‘‘C+B’’ and ‘‘C+D’’).

Author Summary

Learning to associate relevant stimuli in our environment is
important for survival. For example, identification of an
object, such as an edible fruit, may require us to recognize
a unique combination of features – color, shape, size –
each of which is present in other, perhaps inedible,
objects. Thus, how the brain associates distinct stimuli to
produce specific responses to particular combinations of
stimuli is of fundamental importance in neuroscience. We
aim to address this question using computational models
of initially non-functional, randomly connected networks
of spiking neurons, which are modified by correlation-
based learning rules identified experimentally. Correlation-
based learning rules use the spikes of neurons to change
connection strength between neurons. Correlation-based
learning rules can enhance stimulus-pair representations
that arise naturally in random networks. Altering the
strength of inhibitory-to-excitatory connections alone was
the most beneficial change, generating high stimulus-pair
selectivity and reliably correct decisions across the widest
range of networks. Surprisingly, changing connections
between excitatory cells alone often impaired stimulus-
pair selectivity, leading to unreliable decisions. However,
such impairment was ameliorated or reversed by changes
in the inhibitory-to-excitatory connections of those net-
works. Our findings demonstrate that initial heterogeneity
and correlation-based changes of inhibitory synaptic
strength can help generate stable network responses to
stimulus-pairs.

Learning Stimulus-Pair Responses
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Figure 1. Biconditional discrimination task logic and network architecture. A. In an example of this task, two of four possible stimuli (A, B, C
and D) are presented simultaneously to a subject [9]. If either both A and B are present or neither is present, the subject should make one response
(such as release a lever). If either A or B but not both are present, the subject should make an alternative response (such as hold the lever until the
end of the trial). To perform this task successfully, neurons must generate responses to specific stimulus-pairs (e.g. A+B). A response to a single
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The excess spikes of a single cell in response to a stimulus-pair

are likely to be swamped by noise, unless other cells respond

similarly to the same stimulus-pair. Thus, to assess how well the

network as a whole produces pair-selectivity, we measure the

distribution of selectivity across all excitatory cells before and after

learning (Figure 2C). We assess network responses by examining

how the final distribution compares to the initial distribution.

Figure 2C provides an example of a population that increased its

selectivity following training, as seen by the rightward shift in the

final overall distribution, along with many cells reaching the

maximum selectivity value of 3. Hereafter, we use the mean of the

distribution across cells as a measure of the network’s pair

selectivity (Figure 2D). In the Supplementary Information (Figure

S2) we describe how well measures of pair-selectivity correlate with

our measure of behavioral performance described in a later section

of the results.

Stimulus-pair cells by chance
Initial networks. In all regimes, randomly projecting inputs

can generate cells with strong stimulus-pair selectivity without

learning [12]. A few networks – those with the sparsest inputs (with

connection probabilities of 1/10 or 1/20) – demonstrated strong

stimulus-pair selectivity before learning if one only averaged across

active cells (Figure S3A); however, when network selectivity

included all cells, fewer initial networks had strong stimulus-pair

selectivity and did not include the sparsest networks (1/20). High

initial pair-selectivity still arose in some cells in these networks by

chance, because with very few independent inputs to the network,

the probability of a cell receiving input from multiple stimuli is

very low. For those cells that did receive strong input from multiple

stimuli, the majority receives strong input from just 2 stimuli,

rather than more. Such cells were automatically pair-selective if

they had a super-linear response to input – as occurred particularly

in the high-threshold regime. The requirement of highly

correlated inputs reduced the number of independent inputs per

stimulus to the network, increasing the number of cells that

received inputs from only two stimuli. On the other hand,

networks with dense inputs had weak initial pair-selectivity,

because more neurons received inputs from 3 or more stimuli

than from just a pair of stimuli.

Stimulus-pair cells through learning
Long-term potentiation of inhibition (LTPi) increases

stimulus-pair selectivity. LTPi has been described in vitro as

a process that occurs when inhibitory-to-excitatory synapses

strengthen following an inhibitory spike, if the postsynaptic

excitatory neuron is depolarized and does not spike

coincidentally within a short time window [26,27]. We termed a

coincidental excitatory spike as a ‘veto’ because it leads to no

change in the synaptic strength. LTPi generates strong cross-

inhibition, because the inhibitory neurons most responsive to a

stimulus-pair strengthen their inhibitory connections preferentially

to those excitatory cells which are least responsive to that same

stimulus-pair (Figure 3), thus they produce fewer vetoes of LTPi.

We grouped cells according to the stimulus-pair producing the

greatest response post-training and calculated the mean changes in

synaptic strengths wrought by LTPi within and between groups

(Figure 3C). Since the dominant contribution to LTPi is the total

number of presynaptic spikes, in Figure 3D we plot the mean

inhibition produced by presynaptic cells in a group to cells in all

groups relative to the mean inhibition to other cells in the same

group. The cross-inhibition resulting from LTPi is clear.

As a result of this cross-inhibition, LTPi, without any plasticity

of excitatory synapses, produced strong stimulus-pair selectivity

across networks (Figure 4D). The strengthening of inhibition via

LTPi also led to a sparsening of the neural responses and lower

average firing rates (Figure S1D), even in the presence of

homeostatic multiplicative scaling of the inhibitory synapses. The

majority of cells in the final network had little or no response to

any stimulus-pair (thus reducing the network’s overall mean firing

rate), while the remaining cells had very high stimulus-pair

selectivity.

In summary, LTPi alone improved the stimulus-pair selectivity

of all networks, except those with very sparse connectivity, where

the initial selectivity was maintained.

Standard and triplet spike-timing-dependent plasticity

(STDP) produce poor stimulus-pair selectivity. Surprisingly,

we found that neither standard STDP (Figure 4C) nor triplet STDP

(Figure 4B) were able to generate strong stimulus-pair selectivity

relative to initial conditions in the majority of networks studied. In

fact, in a large number of, networks, standard STDP strongly

reduced the network mean stimulus-pair selectivity relative to initial

conditions. While triplet STDP did improve a majority of networks

relative to initial conditions, in these cases the overall stimulus-pair

selectivity remained moderate and in multiple networks triplet

STDP worsened the initial selectivity (Figure 4B). Both standard and

triplet STDP generated cross-associations, causing cells initially

responsive to one or two stimuli to become response to three, or even

all four stimuli. We refer to this process as ‘over-associativity’.

Figures 5A, B show the consequences of over-associativity for an

exemplar cell with an initially selective response, in a network

trained with standard STDP. Initially the cell had a predominantly

selective response to the stimulus-pair A+B with a stimulus-pair

selectivity value of 2.22 (Figure 5A). However, after learning via

standard STDP, the cell increased responsiveness to stimulus-pair

A+D, reducing its stimulus-pair selectivity value to 1.77

(Figure 5B). The broadening of the response arose from the large

overlap between combined stimuli. Any cell that responded

strongly to stimulus-pair A+B typically had weaker initial

responses to stimulus-pairs A+D and C+B. However, other cells

which received a stronger input during stimulus-pair A+D tended

to fire before the cells with weaker response to stimulus-pair

A+D – in fact those with a weaker response often fired spikes as a

consequence of input via recurrent connections within the

stimulus (e.g. A) is not sufficient to drive the correct response in one pairing without activating the incorrect response for the opposite pairing of that
stimulus. B. The network consists of Poisson input groups that randomly project to a random recurrent network of excitatory (red) and inhibitory
(cells). Excitatory-to-excitatory connections (arrows) and inhibitory-to-excitatory connections (balls) are probabilistic and plastic. All-to-all inhibitory-
to-inhibitory synapses are also present but not plastic. In the relevant simulations, STDP occurs at excitatory-to-excitatory and input-to-excitatory
synapses, while LTPi occurs at inhibitory-to-excitatory synapses. Inhibition is feed forward only (i.e. the network does not include recurrent excitatory-
to-inhibitory synapses). C. Excitatory cells from the Associative layer project all-to-all, initially with equal synaptic strength to excitatory cells in both
the hold and release pools of the decision-making network. The decision-making network consists of two excitatory pools with strong recurrent
connections, which compete via cross-inhibition [29]. Strong self-recurrent excitation ensures bistability for each pool, while the cross-inhibition
generates winner-take-all (WTA) dynamics such that only one population can be active following the stimulus, resulting in one decision. Whether the
motor output (based on the decision of hold versus release) is correct for the corresponding cue, determines the presence of Dopamine (DA) at the
input synapses, according to the rules of the task in part A.
doi:10.1371/journal.pcbi.1001091.g001
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associative network. These spikes in response to recurrent input

caused a strengthening of those connections, which in turn

increased the originally weak response. Thus, during training,

strengthening of the recurrent connections to a cell originally

selective to stimulus-pair A+B could produce an increased

response in that cell to the stimulus-pair A+D. Such over-

associativity was problematic because the cell would lose its ability

to discriminate stimulus-pair A+B from A+D.

We observed (Figure 5C–D) in initial networks that the

postsynaptic AB cell fired spikes more often after the AD cell

during stimulus-pair A+D. Standard STDP strengthened synapses

uni-directionally from the cell that fired first to the cell that fired

afterwards. Consistent with this, we observed that the overall

synaptic strength from the presynaptic AD cell increased with

trials, and that there is an increase in the synaptic strength due to

STDP during A+B trials as well as A+D trials. This led to an

increase in response from the AB cell during stimulus-pair A+D. In

agreement, we found (Figure 5E) that following standard STDP, at

the population level that synaptic strengthening lead to multiple

groups forming greater between different stimulus-pair groups (e.g.

AD to AB) than within a group (e.g. AD to AD).

The mechanism of over-associativity for triplet STDP was

distinct because the prime determinant of triplet potentiation

versus depression of a synapse was the postsynaptic firing rate. If

the postsynaptic neuron’s activity was below a threshold,

depression dominated triplet STDP and potentiation dominated

when postsynaptic activity was supra-threshold [16]. Thus, while

there was desirable potentiation of synapses between all cells

responsive to stimulus-pair A+B and above threshold during A+B

trials, there was also a small amount of undesirable depression of

these synapses during all other trials when the same cells fire at a

rate below threshold.

Moreover, triplet STDP produced a net potentiation of any

synapse from a weakly responsive cell – either because it was non-

selective or because it was selective to another stimulus-pair – to a

selective cell during the selective cell’s preferred stimulus-pair.

Recurrent synapses that were strengthened caused the selective

postsynaptic neuron to respond strongly to other stimulus-pairs

and to become less selective.

LTPi combined with standard and triplet STDP produces

networks with high stimulus-pair selectivity. Given the

stimulus-pair selectivity produced by LTPi’s cross-inhibition, we

investigated whether combining LTPi with either form of STDP

could prevent deleterious over-associativity. This would be

particularly important in networks whose function requires

strong recurrent excitatory connections that would arise from a

Hebbian mechanism, such as triplet STDP operating on excitatory

synapses to excitatory cells (e.g. generating persistent neural

activity [32]. Figures 4E–F show that networks trained with LTPi

and either standard or triplet STDP possess strong stimulus-pair

selectivity. The strong cross-inhibition generated by LTPi

prevented standard STDP from producing over-associativity as

shown by a sample cell retaining and strengthening its initial

response to stimulus-pair A+B (Figure 5F). For example, the cell

shown in Figure 5A with a strong initial response to stimulus-pair

A+B and a weaker response to A+D produced fewer vetoes of

LTPi during stimulus-pair A+D. This led to a strengthening of

synapses from those inhibitory neurons highly responsive during

the stimulus-pair A+D, further weakening the cell’s response

during stimulus-pair A+D, i.e. cross-inhibition (Figure 5F). Thus,

excitatory cells that responded initially to stimulus-pair A+B and

then both stimulus-pairs A+B and A+D following standard or

triplet STDP alone, maintained strong selectivity to A+B when

LTPi was also present as well as strong mean firing rates (Figure

S1E–F).

Because LTPi prevented over-association and thus reduced or

even eliminated potentiation during multiple stimulus-pairs (e.g.

A+B and A+D), it was expected that the excitatory synapses from

AD-selective cells to AB-selective cells would be weaker than in a

network trained with STDP alone. However, homeostasis

operated counter to this expectation, by multiplicatively scaling

up all excitatory synaptic strengths as each neuron’s overall mean

firing rate diminished. Therefore, an excitatory cell firing strongly

to only one of four stimulus-pairs and silent to the other three, may

have excitatory synapses increased by homeostasis due to the cell’s

low mean firing rate on three out of four trials. Moreover, the

synaptic strengths would only be increased by triplet-STDP when

the cell fired above the threshold rate for LTP during the optimal

stimulus-pair, while being unaffected when it fired no spikes. Thus

we found that mean synaptic strength of excitatory synapses of all

networks with LTPi in combination with triplet-STDP were

greater than the mean strength found in 24 of the 25 networks

with triplet-STDP alone.

In summary, LTPi, in combination with standard and triplet

STDP, produced some networks that had both high firing rates

and strong selectivity due to the prevention of over-associativity

and promotion of selective potentiation. LTPi with triplet STDP

produced more networks with stronger stimulus-pair selectivity

than LTPi with standard STDP.

Selectivity & behavior
Decision-making network is trained by a DA-modulated

Hebbian reward rule. We investigated whether reliable

behavioral responses to stimulus-pairs depended on the existence

of a sufficient number of cells with strong stimulus-pair selectivity.

To test this behavioral dependence within our model networks, we

connected excitatory neurons in the associative layer as inputs to

excitatory neurons in a winner-takes-all (WTA) network that

models perceptual, two-alternative decision-making [29,30]

(Figure 1C). The binary responses of the WTA network were

taken as surrogates for the binary motor responses only one of

which was rewarded in a stimulus-dependent manner in the

behavioral task, according to a Dopamine (DA)-modulated

Hebbian reward rule [31,33].

For example, when stimulus-pair A+B was presented, reward

only occurred with a motor output of ‘‘Release’’ which in our

model was produced when the corresponding WTA layer cells

were active. Since only coactive cells were strengthened, a correct

Figure 2. Stimulus-pair selectivity from the single neuron to the network level. Response of a single neuron to stimulus-pairs cues (A black
bar underneath the figure represents cue presentation time of 1 s) before learning (A) and after learning (B). Initially, by chance, each neuron may be
more responsive to some stimulus pairs than others, leading to a non-zero level of simulus-pair selectivity. C. Distribution of stimulus-pair selectivity
across the network before learning (above). Following learning with LTPi and triplet STDP (below), there is a rightward shift in the population
stimulus-pair selectivity distribution, indicating that the population as a whole is moving from non-selective to strongly stimulus-pair selective. We
normalize this metric by the rate, which produces a maximum stimulus-pair selectivity value of 3. D. The mean population stimulus-pair selectivity
distribution is plotted as a function of trial. In this network (with 6 input groups per stimulus and base input connection probability = 1/3), neither
triplet (green) nor standard STDP (cyan) generate significant selectivity. However, if LTPi is added to standard STDP (yellow) or triplet STDP (magenta),
strong selectivity emerges, and even stronger selectivity is observed during training with LTPi alone (blue).
doi:10.1371/journal.pcbi.1001091.g002
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response led to a strengthening of synapses from AB-selective cells

to WTA cells representing ‘‘Release’’. Conversely, if the other

WTA population of cells, corresponding to a motor response of

‘‘Hold’’ became activated, then we treated the trial as unrewarded.

The corresponding dip in dopamine led to a weakening of

synapses from coactive AB-selective cells to WTA cells represent-

ing ‘‘Hold’’.

Given sufficient stimulus-pair information in the associative

layer, DA reward plasticity caused WTA network performance to

improve from its initial chance level (Figure 6B) to above 95%

correct (Figure 6C). While networks with stimulus-pair selectivity

of less than <0.75 never achieved reliable decisions (defined as

greater than 85% correct) many, but not all networks with greater

stimulus-pair selectivity, generated reliable decisions. Stimulus-pair

Figure 3. LTPi generates stimulus-pair selectivity via cross-inhibition. A. Initially an AB inhibitory neuron (blue) projects with equal strength
to one AB and one AD excitatory neuron (red). The top voltage trace for each cell is during an A+B trial, while the lower voltage trace is during an A+D
trial (The black bar underneath the figure represents cue presentation time of 1 s). B. Synaptic strength from the AB inhibitory neuron to the AD
excitatory neuron increases substantially following training, as the excitatory AD cell rarely fires during the A+B stimulus-pair to veto, via coincident
firing, the LTPi arising from inhibitory spikes. Meanwhile, synaptic strength from the AB inhibitory neuron increases by only a small margin to the AB
excitatory cell due to the large number of vetoes of LTPi produced by coincident excitatory and inhibitory spikes as they share inputs A+B. C. The
change in synaptic weight at the inhibitory-to-excitatory synapse is shown by the magnitude of change from the initial weights. The stronger
synapses are from inhibitory to excitatory neurons that share the least inputs off the diagonal, i.e. cross-inhibition. Excitatory neurons that share the
same input have the weakest inhibitory presynaptic connections due to the strongest veto effect. D. We illustrate cross-inhibition by LTPi, by taking
the weight changes between groups (shown in C) and subtracting the within-group value (the diagonal) for each presynaptic cell (each row).
Inhibition is visibly strongest off diagonal (cross-inhibition) while weakest along the diagonal (self-inhibition) for similarly responsive inhibitory and
excitatory cells.
doi:10.1371/journal.pcbi.1001091.g003
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selectivity was correlated with decision-making performance

(r2 = 0.72, Figure S2). Thus, while stimulus-pair selectivity, by

our metric, alone describes the majority of the decision-making

performance, there are other factors, such as the mean activity of

neurons (r2 = 0.1) that influence performance. We trained both the

associative layer and decision layer simultaneously in order to

observe how changing synapses in the associative layer directly

affected decision-making behavior (Figure 6D).

Associative learning enhances the generation of reliable

decisions. We found that only one out of the 25 initial

associative networks based on our standard parameters could

generate reliable decision-making (at least 85% correct) through

reward-based plasticity of synapses to the decision-making network

(Figure 7A). Other sparse initial networks did not reach reliable

decision performance, because the selective cells had too low a

firing rate (typically a few Hz) to produce strong synaptic plasticity

or to drive reliable decisions.

Amongst trained networks, using our standard parameters, only

networks trained with LTPi proved to be successful at generating

reliably correct decisions (Figures 7D–F). Networks trained with

LTPi alone generated the most networks with reliable decisions as

well as many other borderline networks defined by the range of

76–84% correct (Figure 8). Interestingly, networks trained with

LTPi in addition to standard STDP produced two networks

(Figure 7F) whereas LTPi in addition to triplet STDP generated

four networks (Figure 7E) with reliable decision-making. These

latter results indicate that the added rate-dependence present in

triplet STDP was valuable towards learning paired-stimulus tasks

as well as selectivity. None of the networks based on our standard

parameters, trained with standard STDP or triplet STDP alone

(Figures 7B,C) were capable of reliable decisions (Figure 8).

A range of network excitability for reliable decision-

making. The firing threshold of neurons is a major source of

non-linearity, so if overall firing rates are low, such that cells only

reach threshold in the presence of multiple stimuli, one can find an

increase in non-linear responses and generate high selectivity in

networks with very sparse firing amongst active cells, as seen in

Figure S3, bottom row. One might suppose it is just the reduction

in firing rate by LTPi and resulting sparseness of activity that leads

to high selectivity and hence reliable decision-making in networks

trained with LTPi, and any means of reducing the average firing

rate would produce similar results. However, results of our sets of

control simulations, using three different methods to reduce overall

activity, suggest that while specificity can be increased for active

cells, the number of active cells becomes too small to drive reliable

decision-making.

First, we increased the firing threshold of neurons by increasing

their leak conductance (Figures S4, S5). Second, we increased the

initial inhibitory-to-excitatory synapses by a factor of four (Figure S6).

Finally, we reduced the excitatory goal rate from 8 Hz to 4 Hz and

allowed homeostasis to operate on initial networks with no other

plasticity (Figure S7). All three of these manipulations, in the absence

of LTPi, increased stimulus-pair selectivity of the subset of cells that

remained active. However, the overall mean stimulus-pair selectivity

did not improve nor did decision-making performance improve.

Moreover, adding LTPi alone to these networks enhanced both mean

selectivity and decision-making performance in a qualitatively similar

fashion to our results with standard parameters.

Figure 4. Network mean stimulus-pair selectivity. Each matrix contains the results for 25 networks, with 5 levels of input correlation (x-axis) and
5 levels of sparseness (y-axis) in one of six conditions: A. Before learning. B–F. following 800 trials with plasticity. B. after triplet STDP. C. after
standard STDP. D. after LTPi alone. E. after triplet STDP+LTPi. F. after standard STDP+LTPi.
doi:10.1371/journal.pcbi.1001091.g004
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In a final set of networks we repeated our main simulations

with the addition of recurrent inhibition via 25% random

connectivity from excitatory to inhibitory cells (Figure S8).

Recurrent inhibitory feedback produced no qualitative differenc-

es in our main results, as networks with LTPi showed the same

improvement over networks without LTPi. Recurrent inhibition

Figure 5. STDP over-associates. A–B. The voltage trace of a postsynaptic AB selective neuron (selectivity index = 2.22 before training) is shown in
A before training the network with standard STDP. Following training with STDP the postsynaptic AB neuron, B, is now responsive to stimulus AD as
well, reducing its selectivity (to a value of 1.77). C and D show the cross-correlation function between a presynaptic AD selective neuron and the
postsynaptic AB selective neuron shown in A–B during the initial and final AD trials after standard STDP. Following training with standard STDP the
synapse from the AD cell to the AB cell potentiates, as seen in the cross-correlation function by looking at the shift in the distribution from right to
left of time lag t= 0 (red bar) in the initial (C) to final (D) histograms. E. The net change in mean population recurrent excitatory weights demonstrates
undesirable strengthening between multiple different stimulus-pair responsive populations, for example the AD-to-AB mean synaptic strength is
greater than the recurrent AD-to-AD synaptic strength (network with 10 inputs per group with connection probability of 1/2). F. Standard STDP
training with LTPi added eliminates the AB neuron’s response to stimulus A+D due to strengthening of the presynaptic AD inhibitory synapse,
illustrated on the right.
doi:10.1371/journal.pcbi.1001091.g005
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caused mean network firing rates to be uniformly lower (by 1–

3 Hz). Thus some of the denser networks (with input probability

of K) produced reliable decisions with LTPi (Figure S8H).

In summary, the increase in stimulus-pair selectivity among

active cells produced by sparsening the neural activity alone was

not associated with increased decision-making performance.

Adding LTPi to these sparsened networks produced a large

number of reliably correct decision-making networks. Thus, the

correlation-based changes in connectivity, in particular inhibito-

ry-to-excitatory weights (i.e. cross-inhibition) as wrought by LTPi

Figure 6. DA modulated reward learning increases decision-making performance. A. Single A+B trial spike raster shows the activity during
a ‘‘Release’’ trial where spiking from the Associative layer correctly drives a release response, resulting in DA and thus reward. Before reward-based
learning (B) the network operates at chance performance. Following reward-based learning in the trained network (C) the network generates reliably
correct decisions. D. Decision-making performance in 40 trial bins for each plasticity rule and initial conditions. The three networks trained with LTPi
(LTPi alone (blue), LTPi with standard (cyan) or triplet STDP (magenta)) all produce reliably correct decisions consistent with their high selectivity. The
initial network (red) or networks trained with only triplet (green) or standard (yellow) STDP fail to generate reliable decisions consistent with their
lower stimulus-pair selectivity (network 2,1/3).
doi:10.1371/journal.pcbi.1001091.g006
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(Figure 3) are essential for producing high performance in the

task.

The one condition to produce a qualitative change from our

standard results was the combination of low goal rate (4 Hz) for

homeostasis with triplet STDP. This combination produced 3

reliably correct decision-making networks; nonetheless, adding

LTPi to triplet STDP still increased the number of reliably correct

networks to 6 (Figure S7). Meanwhile, lowering the goal rate for

homeostasis further (to 1 Hz) resulted in no reliable networks

trained with triplet STDP alone (data not shown).

Network heterogeneity and cellular heterogeneity is

advantageous. We found that replacing heterogeneity with

homogeneity reduced both stimulus-pair selectivity as well as the

number of reliably correct decision-making networks. We assessed

the value of two types of heterogeneity: that produced by

randomness in the network connectivity and that of variability in

the values of intrinsic cell properties and initial synaptic strengths.

In all cases, we trained with LTPi alone because it produced the

best performance in fully heterogeneous networks.

We could remove heterogeneity in the connectivity, simply by

making any type of connection all-to-all rather than sparse and

random. Unsurprisingly, if inputs were homogeneous, then no

network could reliably produce correct decisions. Since each cell

would respond essentially equally to all stimuli – the only

remaining variation from differences in synaptic strengths being

much smaller than the variation produced by presence or absence

of a synapse – and inputs do not change with LTPi, specific

responses to stimulus-pairs could not form. Networks with full

heterogeneity among the input connections, but loss of sparseness

in all recurrent connections produced only 1 successful network

out of 25, as measured by decision-making performance. If only

excitatory connections were homogeneous, we found 2 out of 25 to

be successful, and if only inhibitory connections were homoge-

neous then 5 out of 25 were successful. These results compare with

9 out of 25 successful in the fully heterogeneous network trained

with LTPi.

Moreover, keeping the full structural heterogeneity, but now

enforcing all cells of the same type to have identical intrinsic

properties and identical initial synaptic strengths, we still found an

overall reduction to 7 out of 25 successful networks.

Discussion

A biophysical model of stimulus-pair learning
In this work, we have demonstrated how local cell-specific rules

[14,16,27,34,35] affect global network function to produce the

stimulus-pair selectivity as a solution to cognitive tasks with the

underpinnings of exclusive-or, XOR, logic [36,37]. The qualita-

tive robustness of our results, demonstrated by modeling a broad

range of networks and conditions, extends these findings broadly,

showing they are not the result of a specific set of hand-tuned

parameters.

Our associative network starts as a completely general one, but

becomes sculpted via the paired stimuli it receives to maximally

respond to those stimulus-pairs. Combining the unsupervised

learning of the associative network with the reward-based learning

Figure 7. Decision-making performance. In all but one network, learning is required for reliable decision-making. A. One out of 25 initial
networks generate decisions above criterion. B&C. Triplet but not Standard STDP generates one network near criterion for reliable decisions but no
networks demonstrate reliable decisions. D. LTPi alone demonstrates the strongest decision-making networks performances, consistent with its
strong stimulus-pair selectivity. E&F. The addition of LTPi to standard or triplet STDP results in networks capable of reliable decisions and more near
threshold. These results demonstrate that LTPi is required necessary for reliable decisions in addition to strong stimulus-pair specificity.
doi:10.1371/journal.pcbi.1001091.g007
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of connections to the decision-making layer, leads to a system that

learns to respond to salient stimuli (i.e. those that determine

reward) in the environment.

The condition of our network before learning is based on the

minimal assumption of random connectivity, yet with appropriate

plasticity rules, the functional structure can evolve to allow a

fundamental cognitive task to be solved. It is likely that the base

structure of specific areas of the brain – such as the structured

connectivity typical of cortex [38] – provides an advantage in solving

relevant tasks. Thus, future investigations can be illuminating of the

effect on learning of other structures that more closely resemble

cortex for initial connectivity, such as a small-world network [39,40].

Figure 8. Summary of network stimulus-pair selectivity and decision-making performance. Top: Network change from initial
conditions. Networks are classified as improved (Left) or worsened (Middle) if stimulus-pair selectivity increased or worsened, respectively, by
more than 5%. If mean selectivity remained within 5% of its initial value, then the network’s stimulus-pair selectivity change is defined as unchanged
(Right). LTPi alone produced the most improved networks (15/25), and did not produce worsened networks. Networks with LTPi and either triplet or
standard STDP produced more improved networks and fewer worsened networks than the networks with the same STDP but without LTPi. Bottom:
Summary of network decision-making performance with a criterion threshold of 85% correct. Left: One network generated reliable
decisions without plasticity. The remaining networks each require LTPi to make reliable decisions. Middle: Initial, standard, and triplet STDP networks
dominate making unreliable decisions (#75%), while LTPi alone has the fewest unreliable networks. Right: Borderline networks in the range of 76–
84%. Note that performance up to 75% can be achieved without information based on stimulus-pairs.
doi:10.1371/journal.pcbi.1001091.g008
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We find that homeostasis is essential within our networks, since

all the plasticity rules (including standard STDP) can be unstable

in a sparse, recurrent network. With homeostasis, we find that

firing rates converge to a steady state value, though it is not the

same as the goal rate dictated by homeostasis. That is, when

multiple plasticity mechanisms combine simultaneously within a

network, the steady state (i.e. the final stable) activity pattern differs

from that of any single plasticity mechanism acting alone.

Sparse versus dense activity for solving paired-stimulus
tasks

One question we investigated is whether sparse or dense activity

of cells is beneficial for producing solutions to paired-stimulus

association tasks. The argument for sparse firing runs as follows. If

one input is insufficient to cause a cell to fire, then cells only fire

when two of their inputs are active. If input connections are highly

sparse, then given only 4 stimuli are used, the chances of any cell

receiving inputs from greater than 2 stimuli become negligible.

Thus, any cell receiving multiple inputs and being able to become

active does so when its unique stimulus-pair is present. Indeed, we

did find that as networks became sparser, the number of active

cells became lower, but the selectivity of those active cells became

higher. Nevertheless, when measuring decision-making perfor-

mance, these networks were unreliable, essentially because the

downstream neurons received too little input from such sparse

firing to overcome random fluctuations from background activity.

Mongillo et al. [13] have shown that when different inputs are

non-overlapping, Hebbian plasticity of excitatory synapses alone is

sufficient to produce paired associations, even when the stimuli are

separated in time. Such a sparse extreme of no overlap is optimal

for producing discrete pools of cells, which respond persistently to

single stimuli. The paired association corresponded to the synaptic

connection from one discrete pool to another. In essence, the

initial sparseness led to individual stimulus-specific pools that

became homogeneous via intra-pool excitatory plasticity. These

properties are not ideal when one stimulus can be paired with

multiple other stimuli with the required response dependent on the

particular pairing (as with XOR logic). Essentially, A-responsive

cells cannot be pooled together if stimulus A combined with

stimulus B (e.g. A+B) requires a different response from stimulus A

combined with stimulus D (e.g. A+D). The need for heterogeneity

is more readily satisfied with randomly overlapping inputs.

Recent work by Rigotti et al. [12] suggests that dense activity,

found with an input connection probability of K, would be

optimal for solving tasks that incorporate XOR logic. Their work

with binary neurons operates in a regime where the non-linearity

of saturation at maximal activity is as useful as the non-linearity of

the firing threshold at zero activity. In our network, neurons were

far from saturation, which is perhaps one reason we did not

observe greatest selectivity in these dense networks. However, if

cortical neurons operate at a level where input saturation (e.g. via

NMDA synapses) is as strong as the firing threshold non-linearity,

and if noise fluctuations added to the network by neurons of

maximal firing rate are no greater than those at minimal firing

rate, then the results based on binary synapses [12] are more

relevant than those of our sets of networks.

Since the main non-linearity in the responses of our neurons is

their firing threshold, optimal selectivity among firing neurons

arises if all cells are silent except for those most responsive to a

particular stimulus-pair. However, such a limit of sparse activity

leads to very few selective cells, which fire at very low rates (mean

rate during the stimulus is ,3 Hz in the sparsest networks, Figure

S1) and are insufficient to drive a reliable response in a

downstream decision-making network with typical levels of noise.

Thus, denser networks with a greater number of selective cells [12]

and higher mean firing rates are beneficial. The optimal network

would be based on a trade-off between the total numbers of

selective cells, the mean firing rate of those selective cells and how

selective they are to particular paired stimuli.

Heterogeneity is beneficial for correlation-based
plasticity

No two neurons or initial synapses are the same within our

networks. Neurons are individualized by heterogeneity in intrinsic

properties (cellular time constant, leak conductance, firing

threshold and refractory time), and initial synaptic strengths are

drawn from a uniform distribution about a mean. Moreover,

sparse, random connectivity, both of inputs and of recurrent

connections, ensures that each neuron responds differently to

stimuli. That randomness in network structure is a beneficial

property [12,41] for the brain highlights the brain’s nature, as an

adaptive, biological organ.

We incorporated heterogeneity for two reasons. First, we

wanted to more closely approximate biophysical networks and

observations of the brain [42,43,44,45,46]. Second, heterogeneity

in the network is critical for its development. Heterogeneity in the

connections and cellular properties causes neurons to fire

differentially to stimuli. Correlations in the connectivity lead to

correlated activity, which plasticity rules act upon [47,48]. Thus,

plasticity can enhance initial diversity of responses to increase the

stimulus-pair selectivity of cells.

Enhancing heterogeneity with synaptic plasticity
Diversity of neural responses by initial heterogeneity provides

an animal with a framework to solve any cognitive task [12]. One

can ask whether the role of training is simply the learning of an

appropriate motor output from a constant internal representation

of the stimuli, or whether training enhances neural responses to

those stimuli. In principle, any synaptic plasticity mechanism that

increases the initial variability of neural responses should be

beneficial in solving XOR-like tasks.

Perhaps the most surprising result was that networks with STDP

alone, in nearly all cases, failed to produce reliable decisions –

indeed performing worse than untrained random networks. The

sometimes useful role of STDP in attractor concretion [25]

reduced the diversity of responses in our associative network, thus

diminishing task performance.

We did expect that cross-inhibition – an accentuation of

differences in neural responses achieved naturally by LTPi

(Figure 3) – could be produced by the combination of Hebbian

excitation and a global suppression of activity, through homeo-

stasis. However, while LTPi succeeded over a range of parameters

and networks, triplet STDP only succeeded in a finely tuned subset

of these parameters. This is likely due to an inherent instability

when adjusting the recurrent weights within a single set of cells (the

excitatory-to-excitatory connections) in a Hebbian manner. In

contrast, the changes wrought by LTPi on excitatory cells do not

affect the presynaptic activity of inhibitory cells in the networks we

consider here, so overall activity levels are more easily stabilized.

While networks modified by LTPi alone had the greatest

propensity to generate high selectivity and reliable decisions, LTPi

could be added to networks in combination with STDP to increase

reliability of decision-making. Given these findings, such a

combination of plasticity mechanisms could provide an organism

with the most robust learning method by generating a network

with strong selectivity and firing rates. Further, in networks that

produce short-term memory, it is likely that a mechanism such as

Learning Stimulus-Pair Responses

PLoS Computational Biology | www.ploscompbiol.org 13 February 2011 | Volume 7 | Issue 2 | e1001091



triplet STDP of excitatory synapses is needed to generate sufficient

recurrent excitation [29,30,49].

In summary, heterogeneity of neural responses is essential for

producing solutions to certain cognitive tasks [12]. Any plasticity

mechanisms that either specifically increase the strongest responses

or suppress the weakest responses of cells will enhance any

heterogeneity initially present in randomly connected networks

and facilitate task performance.

Materials and Methods

Neuron properties
We use leaky integrate-and-fire neurons [50] defined by the leak

conductance, gL, synaptic conductances AMPA, NMDA, GABAA,

and a refractory conductance. Further, we define the neurons by a

resting potential (i.e. leak potential), reset and threshold potential.

The threshold potential is dynamic in the sense that it is not a hard

threshold; rather, it increases to a maximal value and decreases to

a base value as the firing rate increases and decreases respectively.

This was added so that at high firing rates the neurons could

sustain persistence such as neurons in the decision-making

network. We model NMDA’s voltage dependence as described

below.

Associative layer parameters
LIF neurons had a mean leak reversal potential of

VL = 270 mV+/22.5 mV, a fixed membrane time constant of

tm = 10 ms+/20.75 ms and leak conductance of gL = 35 mS+/

21 mS in the standard low threshold regime, and values of

gL = 40 mS and gL = 50 mS+/21 mS in the high threshold regimes.

Excitatory neurons had a firing threshold of Vth = 250 mV+/

22 mV, a reset voltage of Vref = 260 mV+/22 mV, and a

refractory time constant of treset = 2 ms+/2.25 ms. Inhibitory

neurons had a firing threshold of Vth = 250 mV+/22 mV, a reset

voltage of Vref = 260 mV+/22 mV, and a refractory time

constant of treset = 1 ms+/2.25 ms. Heterogeneity of these

parameters was drawn from uniform distribution with the given

ranges.

Decision layer parameters [29]
Excitatory LIF neurons had a mean leak reversal potential of

VL = 270 mV, membrane time constant of tm = 20 ms, and leak

conductance of gL = 35 mS. Excitatory neurons had a firing

threshold of Vth = 248 mV, a reset voltage of Vreset = 255 mV,

and a refractory time constant of tref = 2 ms. Inhibitory LIF

neurons had a mean leak reversal potential of VL = 270 mV,

membrane time constant of tm = 10 ms, and leak conductance of

gL = 30 mS. Excitatory neurons had a firing threshold of

Vth = 250 mV, a reset voltage of Vreset = 255 mV, and a

refractory time constant of tref = 1 ms.

tm

dV

dt
~

gL(VL{V )zgGABA(VGABA{V )zgAMPA(VAMPA{V )z

gNMDA(VNMDA{V ) �NMDA(V )zgref (Vref {V )zgPoisson

Synaptic interactions
Synaptic currents were modeled by instantaneous steps after a

spike followed by an exponential decay described by the equation

below [51].

ds(t)

dt
~{s=tsz

X

k

d(t{tk)

Recurrent excitatory currents were modeled by AMPA (EAMPA

= 0 mV, tAMPA = 2 ms) and NMDA receptors (ENMDA = 0 mV,

tNMDA = 100 ms). Inhibitory currents were modeled by GABAA

receptors (EGABA = 270 mV, tGABA = 10 ms). NMDA receptors

were also defined by the voltage term [52]:

NMDA(V )~1=(1zMg2z
ext � (e({0:062�(V (t)=3:57�10{3)) Mg

ext2z

� �

~1mM:

Neurons do not have a hard reset; rather we use a refractory

conductance with a dynamic behavior in order to mimic a delayed

rectifier potassium current described by the synaptic ODE, with

an increase in refractory conductance per spike, dgref = 0.002 mS,

refractory time constant tref = 2 ms, and refractory reversal

potential Vref = 270 mV. Neurons do not have a hard spike

threshold either that reaches a higher depolarized value with each

spike. This is important for persistent neural activity in our

decision-making network. The max Vth = 150 mV.

Synaptic input sparseness and correlations
In order to investigate the robustness of each learning rule, we

examined their effects on sets of 25 different networks with each

set explored across six network regimes. We examined how the

sparseness and correlations of input groups affected both the initial

selectivity of a network and how the network responds to each of

the synaptic plasticity rules. Input sparseness is defined via the

probability of any input group projecting to any given cell. As

input connection probability increases, sparseness decreases. We

used the following five values for input connection probability: 1/

2, 1/3, 1/5, 1/10 and 1/20.

We produced different degrees of input correlations by altering the

number of independently connected input groups of cells per

stimulus, using 2, 4, 6, 10 or 20 independent groups. Each input

group produced independent Poisson spike trains with a mean firing

rate defined by: �rr = 480 Hz/Number of Input groups (e.g. 10 input

groups of 48 Hz). Correlations weakened progressively as the number

of inputs increased due to the increasing number of independent

input Poisson spike trains producing the same overall spike rate.

Five levels of input sparseness, combined with five different

degrees of input correlations led to 25 variant networks in each

regime.

Random connectivity and heterogeneity
The goal of the present study is to determine how various forms

of synaptic plasticity can operate on an initially randomly

connected network (Figure 1B) to produce the functional responses

necessary to solve a cognitive task. Thus, our initial network

possessed no structure in its afferent connections and in its internal

recurrent connections. In the present work we did not alter the

random connectivity structure during training, but assessed

whether it provided a sufficient substrate for the correlation-based

synaptic learning rules to generate functional structure by

strengthening and weakening existing synapses.

Random connectivity produced cell-to-cell variability since no

two cells receive identical inputs. Such heterogeneity of the inputs

across cells leads to a network of neurons with diverse stimulus

responses. The initial diversity of stimulus responses was typically
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insufficient to produce the tuned activity needed to solve the

behavioral task (Figure 1A), but was essential to provide a basis upon

which correlation-based plasticity rules could act differentially. While

random connectivity can be thought of as a minimal assumption, in

contrast to the fine-tuning needed by many spiking neuron-based

models of cognitive tasks, such randomness also provided sufficient

variability in responses that in principle the network could be trained

to produce specific responses to any pairs of inputs.

Associative layer connectivity
Excitatory-to-excitatory connections are sparse-random with a

probability of 10%. Inhibition is feedforward only, so there are no

excitatory-to-inhibitory connections. Inhibitory-to-Inhibitory connec-

tions are all-to-all. Finally, Inhibitory-to-excitatory synapses connect

randomly with a probability of 25%. Initial synaptic strength is a

mean value of W0 = 0.05+/250% uniformly about the mean and

scales in strength with size. These simulations were carried out with

an 400 neuron network with an excitatory:inhibitory ratio of 4:1. We

examined one set of networks (Figure S8) with recurrent inhibition

where the excitatory cells connect with a probability of 25% to any

inhibitory cell with a fixed mean strength W0.

Decision layer connectivity
The decision-making network based on [29] is composed of two

excitatory and inhibitory pools of a total 500 neurons with a an

excitatory:inhibitory ratio of 4:1 and synaptic strength W0 = 0.25.

Connections within each pool are all-to-all. Cross-inhibition is

direct from each inhibitory pool to the opposing excitatory pool,

which generates winner-take-all activity so that only one pool is

stable in the up state (active). Network bistability is generated by

strong inhibition and self-excitation.

Connections to the decision layer are initially all-to-all from

excitatory neurons with a uniform strength of in all trained

networks, DW0 = 0.075. In untrained initial networks, the

disparity in firing rates between dense and sparse networks was

too large (Figure S1) for a single synaptic strength to effectively

drive all networks; thus we used a separate DW0 = 0.125 for the

sparse networks (1/10, 1/20).

The decision-making network receives a linear ramping input

initiating at the start of the cue and continues until the end of the

cue where it reaches its maximal value of gurgency = 5 mS at the end

of the cue. This input is adapted after the ‘‘urgency-gating’’ model

[53], and it ensures that a decision is made each trial.

Noise
We model two different types of noise. First, we model voltage

noise by a Gaussian distribution of zero mean with unit variance

and amplitude s~40|10{6Vs{1=2 in the associative layer.

Second, we model synaptic conductance noise for the AMPA

and GABAA conductance that is drawn from a uniform

distribution from zero to 1 with amplitude s~1:2|10{3Ss{1=2

in the associative layer and amplitude s~4|10{3Ss{1=2 in the

decision-making layer.

Plasticity rules
For all connections, changes in synaptic strength are limited to a

maximum of 50% per trial, while across all trials; synaptic strength

is bounded between zero and 20W0, where W0 is the initial mean

synaptic strength.

LTPi
LTPi is modeled after [27]: LTPi occurs when an inhibitory

cell’s fires, but the excitatory cell is depolarized and silent. If the

excitatory cell is co-active, then there is no change in the synapse

strength. We refer to this as a veto effect in our model of LTPi.

Any excitatory spike within a window of +/220 ms for an

inhibitory spike will result in a veto. For each inhibitory spike (non-

vetoed) the synapse is potentiatiated by idW = 0.005.

LTPi was reported experimentally as a mechanism for

increasing (but not decreasing) the strength of inhibitory synapses

in cortex [27]. To compensate for the inability of LTPi to depress

synapses, we use multiplicative postsynaptic scaling [28] for

homeostasis at the inhibitory-to-excitatory synapses. We explicitly

model the postsynaptic depolarization required by LTPi by

defining a voltage threshold that the postsynaptic excitatory cell

must be above in order for potentiation to occur. Because

simulation cells do not match experimentally used cells exactly, we

explored a wide range of values in Figures S9, S10. In the main

body of the paper we used a value of 265 mV, which is 5 mV

above the leak reversal. Finally, we include a hard upper bound of

inhibitory synaptic strength, such that those cells most strongly

inhibited (so being less depolarized as well as not spiking) in

practice receive no further potentiation of their inhibitory

synapses.

Standard STDP
We implement STDP using standard methods [23], assuming an

exponential window for potentiation following a presynaptic spike at

time tpre and for depression following a postsynaptic spike at time

tpost, so that the change in connection strength, DW, follows:

DW~Aze½(tpost{tpre)=tz �

if tpost{tprew0

DW~A{e½(tpost{tpre)=t{ �

if tpost{tprev0

Standard STDP produces changes in synaptic weight whose sign

depends only on the relative order of spikes, thus only on the relative

order and direction of changes in rate, not on the absolute value of

the rate. The LTD amplitude A2 was 0.80, and the LTP amplitude

A+ was 1.20. The LTD time constant, t2, was 25 ms; the LTP time

constant, t+, was 16 ms. For every spike that updates the synapse

the synaptic strength changes by dW = 0.005.

Triplet STDP
Triplet STDP was modeled after the rule published by Pfister &

Gerstner 2006 [16]. Their model includes triplet terms, so that

recent postsynaptic spikes boost the amount of potentiation during

a ‘‘pre-before-post’’ pairing, while recent presynaptic spikes boost

the amount of depression during a ‘‘post-before-pre’’ pairing.

Specifically when

tpost{tprew0

DWPG~e½(tpost{tpre)=tz �fAz
2 zAz

3

X

j

e
½(tj{tpost)=ty�g

tpost{tprev0

DWPG~e½(tpost{tpre)=t{ �fA{
2 zA{

3

X

j

e
½(tj{tpost)=tx�g

We use the parameters cited from the full model ‘‘all-to-all’’

cortical parameter sets in the paper. The amplitude terms are
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doublet LTP A2z~5:0|10{5, doublet LTD A2{~7:0|10{3,

triplet LTP A3z~6:2|10{3, and triplet LTD A3{~2:3|10{4.

The time constants we used are t2+ = 16.68 ms, t22 = 33.7 ms,

ty = 125 ms, and tx = 101 ms. These parameters generated an

LTD-to-LTP threshold for the postsynaptic cell of 20 Hz, above

which uncorrelated Poisson spike trains produce potentiation and

below which they produce depression. For every spike that updates

the synapse the synaptic strength changes by dW = 0.005.

Homeostasis by multiplicative synaptic scaling
Synapse stability is maintained by multiplicative postsynaptic

scaling [28] that is approximate to the following update on a trial-

by-trial basis:

DW!e(rgoal{�rr)

The change in synaptic strength, DW, is proportional to the

difference between the mean rate, �rr, and a goal rate, rgoal, with a

rate constant e. We use the parameters, e= 0.01 (inhibitory-to-

excitatory synapses), e= 0.0001 for input to and recurrent

excitatory synapses, excitatory goal rate rgE = 4 Hz in the low

goal rate regime and rgE = 8 Hz in the standard regime, inhibitory

goal rate rgI = 8 Hz, and inhibitory-to-excitatory goal rate of

rgIE = 8 Hz. The goal rates, rgE and rgIE, were heterogeneous

about their means with an added 5 Hz random spread from a

uniform distribution.

Stimulus-pair selectivity metric
Stimulus-pair selectivity defines each neuron’s selectivity for one

stimulus-pair over the other three stimulus-pairs. We define this

for each excitatory neuron, i, by its maximum firing rate minus the

mean response across all stimuli. The stimulus-pair selectivity

value is normalized by the neuron’s mean rate so that the rate

doesn’t determine selectivity, allowing even low activity neurons

that are selective to affect the value. The network value is the

mean taken across all excitatory cells unless otherwise stated. This

description is defined by the following equation.

selectivity~(max(ri){�rri)=�rri

Numerical simulations
Simulations were run for 800 trials, and numerically integrated

using the Euler-Maruyama method with a time step, dt = .02 ms.

All simulations were run across at least four random instantiations

of network structure, cell and synapse heterogeneity, and

background noise. Key networks were run for ten random

instantiations to ensure robustness. Simulations were written in

C++ on Intel Xeon machines. Matlab r2010a was used for data

analysis and visualization.

Supporting Information

Figure S1 Mean firing rates change as a function of learning. A.

Initial network activity is low in sparse networks, but otherwise

high. Note the color scale with a maximum of 50 Hz for the initial

network and those with STDP alone, while networks with LTPi

have a color scale with a maximum of 15 Hz. B. Triplet STDP. C.

Standard STDP. D. LTPi alone. E. LTPi+Triplet STDP. F.

LTPi+Standard STDP.

Found at: doi:10.1371/journal.pcbi.1001091.s001 (0.53 MB TIF)

Figure S2 Decision-Making Performance plotted against stim-

ulus-pair selectivity. Stimulus-pair selectivity is a correlate of

decision-making performance, with r2 = 0.72 using a sigmoidal fit

and nonlinear least squares fitting with the equation: y = 50+50/

(1+e2(x2x0)/d), where x0 and d were parameters fitted. As stimulus-

pair selectivity increases, more networks are above threshold for

reliable decisions, and all learned networks above threshold

incorporate LTPi and have a stimulus-pair selective value greater

than 0.75. However, strong stimulus-pair selectivity is not a

guarantee of high decision-making performance as demonstrated

by the networks with stimulus-pair selectivity significantly greater

than 0.75 that are below threshold. In addition to each plasticity

rule being fitted in the bottom, the sigmoidal curve labeled

‘‘combined’’ is a fit of the entire data set.

Found at: doi:10.1371/journal.pcbi.1001091.s002 (0.51 MB TIF)

Figure S3 Network mean stimulus-pair selectivity using only

active cells within the network. Each matrix contains the results for

25 networks, with 5 levels of input correlation (x-axis) and 5 levels

of sparseness (y-axis) in one of six conditions: A. Before learning; or

following 400 trials of B. triplet STDP C. standard STDP D. LTPi

alone E. triplet STDP+LTPi F. Standard STDP+LTPi.

Found at: doi:10.1371/journal.pcbi.1001091.s003 (0.55 MB TIF)

Figure S4 Moderately increased firing threshold stimulus-pair

selectivity and decision-making performance. Raising the leak

conductance by 5 mS increases the firing threshold. Each matrix

contains the results for 25 networks, with 5 levels of input

correlation (x-axis) and 5 levels of sparseness (y-axis) in one of six

conditions: A. Initial selectivity of only active cells in the network.

B. Initial stimulus-pair selectivity including all cells in the network.

C. Initial network decision-making performance D. LTPi stimulus-

pair selectivity including only active cells in the network E. LTPi

stimulus-pair selectivity including all cells in the network. F. LTPi

decision-making performance.

Found at: doi:10.1371/journal.pcbi.1001091.s004 (0.56 MB TIF)

Figure S5 Strongly Increased firing threshold stimulus-pair

selectivity and decision-making performance. Raising the leak

conductance by 15 mS increases the firing threshold. Each matrix

contains the results for 25 networks, with 5 levels of input

correlation (x-axis) and 5 levels of sparseness (y-axis) in one of six

conditions: A. Initial selectivity of only active cells in the network.

Some of the sparsest networks have no active cells, so selectivity is

zero. B. Initial stimulus-pair selectivity including all cells in the

network. C. Initial network decision-making performance D. LTPi

stimulus-pair selectivity including only active cells in the network

E. LTPi stimulus-pair selectivity including all cells in the network.

F. LTPi decision-making performance.

Found at: doi:10.1371/journal.pcbi.1001091.s005 (0.55 MB TIF)

Figure S6 Increased initial inhibitory-to-excitatory weights

modifies stimulus-pair selectivity and decision-making perfor-

mance. Increasing the initial inhibitory-to-excitatory weight by a

factor of four sparsens network activity. Each matrix contains the

results for 25 networks, with 5 levels of input correlation (x-axis)

and 5 levels of sparseness (y-axis) in one of six conditions: A. Initial

selectivity of only active cells in the network. B. Initial stimulus-

pair selectivity including all cells in the network. C. Initial network

decision-making performance D. LTPi stimulus-pair selectivity

including only active cells in the network E. LTPi stimulus-pair

selectivity including all cells in the network. F. LTPi decision-

making performance.

Found at: doi:10.1371/journal.pcbi.1001091.s006 (0.56 MB TIF)

Figure S7 Low homeostatic goal rate regime - stimulus-pair

selectivity and decision-making performance. Reducing the
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excitatory homeostatic goal rate from 8 to 4 Hz produces the low

homeostatic regime and sparsens network activity. Each matrix

contains the results for 25 networks, with 5 levels of input

correlation (x-axis) and 5 levels of sparseness (y-axis) in one of six

conditions: A. Initial selectivity for a network trained using only

homeostasis. B. Triplet STDP stimulus-pair selectivity. C. LTPi

stimulus-pair selectivity. D. LTPi combined with triplet-STDP,

stimulus-pair selectivity. E. Homeostasis-only network decision-

making performance. F. Triplet STDP decision-making perfor-

mance. G. LTPi decision-making performance. H. Combined

LTPi with triplet STDP, decision-making performance.

Found at: doi:10.1371/journal.pcbi.1001091.s007 (0.56 MB TIF)

Figure S8 Network with recurrent inhibition - Stimulus-pair

selectivity and decision-making performance. In this set of

simulations we supplemented the network with recurrent inhibi-

tion. The results were qualitatively similar to the default purely

feedforward inhibition network selectivity (Figure 4) and perfor-

mance (Figure 7) though mean activity was sparser. Each matrix

contains the results for 25 networks, with 5 levels of input

correlation (x-axis) and 5 levels of sparseness (y-axis) in one of six

conditions: A. Initial selectivity. B. Triplet STDP stimulus-pair

selectivity. C. LTPi stimulus-pair selectivity. D. LTPi combined

with triplet-STDP, stimulus-pair selectivity. E. Initial network

decision-making performance. F. Triplet STDP decision-making

performance. G. LTPi decision-making performance. H. Com-

bined LTPi with triplet STDP, decision-making performance.

Found at: doi:10.1371/journal.pcbi.1001091.s008 (0.56 MB TIF)

Figure S9 Network mean stimulus-pair selectivity - Varying the

voltage threshold for induction of LTPi. Each matrix contains the

results for 25 networks trained with LTPi alone with varying

postsynaptic voltage thresholds for the induction of LTPi, with 5

levels of input correlation (x-axis) and 5 levels of sparseness (y-axis)

in one of six conditions: A. LTPi with no voltage dependence B.

Voltage threshold at 270 mV (the leak reversal potential). C.

265 mV threshold. D. 260 mV threshold. E. 255 mV threshold.

F. 250 mV threshold (same as threshold for spiking).

Found at: doi:10.1371/journal.pcbi.1001091.s009 (0.57 MB TIF)

Figure S10 Network decision-making performance - Varying

the voltage threshold for induction of LTPi. Each matrix contains

the results for 25 networks trained with LTPi alone with varying

postsynaptic voltage thresholds for the induction of LTPi, with 5

levels of input correlation (x-axis) and 5 levels of sparseness (y-axis)

in one of six conditions: A. LTPi with no voltage dependence B.

Voltage threshold at 270 mV (the leak reversal potential). C.

265 mV threshold. D. 260 mV threshold. E. 255 mV threshold.

F. 250 mV threshold (same as threshold for spiking).

Found at: doi:10.1371/journal.pcbi.1001091.s010 (0.60 MB TIF)
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