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Abstract: The engineering of vascular regeneration still involves barriers that need to be conquered.
In the current study, a novel nanocomposite comprising of fibronectin (denoted as FN) and a small
amount of silver nanoparticles (AgNP, ~15.1, ~30.2 or ~75.5 ppm) was developed and its biological
function and biocompatibility in Wharton’s jelly-derived mesenchymal stem cells (MSCs) and rat
models was investigated. The surface morphology as well as chemical composition for pure FN and
the FN-AgNP nanocomposites incorporating various amounts of AgNP were firstly characterized by
atomic force microscopy (AFM), UV-Visible spectroscopy (UV-Vis), and Fourier-transform infrared
spectroscopy (FTIR). Among the nanocomposites, FN-AgNP with 30.2 ppm silver nanoparticles
demonstrated the best biocompatibility as assessed through intracellular ROS production, prolifera-
tion of MSCs, and monocytes activation. The expression levels of pro-inflammatory cytokines, TNF-α,
IL-1β, and IL-6, were also examined. FN-AgNP 30.2 ppm significantly inhibited pro-inflammatory
cytokine expression compared to other materials, indicating superior performance of anti-immune
response. Mechanistically, FN-AgNP 30.2 ppm significantly induced greater expression of vascular
endothelial growth factor (VEGF) and stromal-cell derived factor-1 alpha (SDF-1α) and promoted
the migration of MSCs through matrix metalloproteinase (MMP) signaling pathway. Besides, in vitro
and in vivo studies indicated that FN-AgNP 30.2 ppm stimulated greater protein expressions of
CD31 and von Willebrand Factor (vWF) as well as facilitated better endothelialization capacity than other
materials. Furthermore, the histological tissue examination revealed the lowest capsule formation
and collagen deposition in rat subcutaneous implantation of FN-AgNP 30.2 ppm. In conclusion,
FN-AgNP nanocomposites may facilitate the migration and proliferation of MSCs, induce endothelial
cell differentiation, and attenuate immune response. These finding also suggests that FN-AgNP may
be a potential anti-inflammatory surface modification strategy for vascular biomaterials.

Keywords: mesenchymal stem cells; fibronectin; silver nanoparticles; endothelial differentiation;
vascular tissue engineering
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1. Introduction

Various biomolecules used for the surface modification of biomaterials have been
certified to ameliorate biocompatibility, cell proliferation, and to stimulate differentia-
tion [1,2]. For patients with severe atherosclerotic cardiovascular diseases, replacement
of blood vessels by the saphenous vein and mammary artery is the primary clinical ap-
proach [3]. Synthetic vascular grafts often fail because of at the implantation site and poor
endothelialization capacity [4]. In order to conquer these barriers, functional endothelial
cell (EC) seeding on vascular grafts was created [5]. Since the source of ECs is limited,
appropriate biological performance and superior biocompatibility of synthetic grafts as
well as high endothelialization capacity to reduce immune response after implantation
is crucial to ensure the success of a long-term implant. In recent years, various surface
modification methods were applied physically, chemically, and biologically to improve
hemocompatibility [6,7]. Fibronectin (FN) is an abundant glycoprotein in the extracellular
matrix (ECM) [8]. Previous research has indicated that fibronectin is distributed in connec-
tive tissue and contributes to angiogenesis and vascular remodeling [9,10]. Other literature
also elucidates that the interaction between cells, growth factors, and FN can modulate
appropriate microenvironment in tissue regeneration [11].

Immobilization of fibronectin on a salinized titanium surface was proved to facilitate
fibroblast attachment [12] and enhance MG63 osteoblast-like cells’ differentiation capac-
ity [13]. In addition, FN plays a critical role in constructing a temporary matrix for cell
differentiation after the inflammatory phase [8]. This evidence suggests that FN may be
employed for cardiovascular regeneration engineering.

Nanomaterials have unique properties [14] and, as biomaterials, they must be highly
biocompatible to prevent any damage in organisms [15]. Nanocomposites are defined
as filled polymers with nanofillers of a particle size smaller than 100 nm [16]. The com-
bination of polymers and nanoparticles (NP) demonstrated diversified advantages on
electrical or mechanical properties [17]. NPs such as gold nanoparticles (AuNP) and sil-
ver nanoparticles (AgNP) were widely applicable to biomedical treatments and tissue
engineering [18]. AgNP are commonly used in wound repair management due to their
superior anti-inflammatory properties and antimicrobial capacity that can enhance tissue
healing [19]. A recent research indicated that a chitosan-silk fibroin decorating with AgNP-
absorbed exosomes facilitated wound healing through angiogenesis, appropriate collagen
deposition, and nerve regeneration in a rat model [20]. In addition, polyurethane (PU)
composites containing different amounts of AgNP (~15.1, 30.2, and 75.5 ppm) revealed
deflect surface features and, with 30.2 ppm of AgNP, demonstrated the superior biocom-
patibility [21], and promoted cell attachment, migration, proliferation, and differentiation
of ECs [22]. The performance of PU-Ag nanocomposites was confirmed by a porcine
model [23]. Meanwhile, the antibacterial activities of AgNP depend on surface oxidation
and optimal particle dispersion [24]. The antimicrobial property of AgNP makes them an
efficient candidate of surface coating for medical devices [25].

Stem cell homing, migration, and differentiation ability play important roles in vascu-
lar tissue regeneration [26]. Mesenchymal stem cells (MSCs) are a potential therapeutic
tool due to self-renewal capacity, easiness for isolation, and low immunoreactivity [27].
The process of stem cell migration is regulated by specialized signals [28] and complicated
interactions between adhesion molecules, chemokines, cytokines, and extracellular matrix-
degrading proteases [29]. Moreover, the activated ECs express α5β1 and α5β3 integrins
that can interact with ECM proteins such as fibronectin to regulate cell migration during
vascular regeneration [30]. Meanwhile, stromal cell-derived factor α (SDF-1α) is a promi-
nent chemokine to promote cell migration [31]. The SDF-1α and C-X-C chemokine receptor
type 4 (CXCR4) signaling pathway is crucial in modulating stem cells migration [32], which
activates focal adhesion kinase (FAK) and Rho GTPase, subsequently affecting matrix
metalloproteinases (MMPs) activity and cell migration [33]. Moreover, various growth
factors secreted by MSCs such as basic fibroblast growth factor (bFGF) and vascular en-
dothelial growth factor (VEGF) effectively stimulate angiogenesis in the wound area [34].



Int. J. Mol. Sci. 2021, 22, 9262 3 of 20

Previously, AuNPs combined with fibronectin (FN-Au) were found to induce VEGF and
enhance cell migration via endothelial nitric oxide synthase (eNOS)/MMP signal path-
way [35]. However, vascular grafts-induced restenosis and thrombosis frequently occur
after implantation [36]. Thus, novel vascular biomaterials that can suppress foreign body
response such as inflammation, thrombus, and neointimal hyperplasia causing in-stent
restenosis are highly demanded [37].

FN combined with type I collagen, VEGF and SDF-1α was reputed to improve en-
dothelialization [38]. A novel biostable polyurethane elastomer (TPCU) biofunctionalized
with FN and decorin (DCN) did not induce major immune responses, and it could attract en-
dothelial colony-forming cells (ECFCs), suggesting the potential of FN to be an appropriate
natural biomolecule for creating nanocomposites [39]. Previously, FN-Au nanocompos-
ites were found to reduce monocyte activation and enhance biocompatibility [35,40]. In
the current study, AgNP combined with fibronectin (FN) because the polyurethane–Ag
nanocomposites were observed to have better hemocompatibility than polyurethane–Au
nanocomposites [21,41]. In vitro and in vivo evaluation showed FN-AgNP to be a novel
antimicrobial and anti-inflammatory surface modification coating for vascular repair and
regeneration engineering.

2. Results
2.1. Characterization of FN and FN-AgNP

The surface morphology of AgNP was observed by SEM analysis (Figure 1A). The
nanoparticle size of AgNP is about 5 nm. Furthermore, TEM imaging also confirmed the
diameter of AgNP was about 5 nm as shown in Figure 1B. Indeed, the nanotopography
were observed by AFM assay as shown in Figure 1C. The value of root mean square (Rq)
and average roughness (Ra) were semi-quantified and indicated as Figure 1D. The value of
Rq and Ra were significantly higher at 30.2 ppm of FN-AgNP (Rq: ~1.16 nm, Ra: ~0.85 nm),
compared to FN-AgNP 75.5 ppm (Rq: ~0.77 nm, Ra: ~0.52 nm), FN-AgNP 15.1 ppm (Rq:
~0.77 nm, Ra: ~0.60 nm) and pure FN (Rq: ~0.67 nm, Ra: ~0.50 nm). FN is an adhesion
molecule that composes of three different repeating domains, and contains amino-terminal
FN dimers which can be assembled into ECM of fibroblasts. The above results indicated
that FN and AgNP may facilitate cellular interactions with ECM contributing to effect
differentiation of stem cells. The UV-Vis absorption peak at 407 nm was attributed to the
increasing concentration of AgNP from 15.1 ppm to 75.5 ppm (Figure 1E). According to
Figure 1F, the position of the amide-I band maximum was at approximately 1636 cm−1 [42].
When FN was combined with AgNP, there was a shift in the peak position of amide I from
1623.98 cm−1 (pure FN) to 1622.21 cm−1 (FN-AgNP 15.1 ppm), 1621.61 cm−1 (FN-AgNP
30.2 ppm) and 1621.56 cm−1 (FN-AgNP 75.5 ppm). The above findings indicated that the
amide I band may have strong interaction with AgNP. [43]. After the combination of AgNP
into pure FN, significant changes occurred in the spectra near 1610~1700 cm−1 (peptide
carbonyl stretching vibration, CO). According to Figure 1F, there was a shift in the peak
position of amide I from 1623.98 cm−1 (pure FN) to 1622.21 cm−1 (FN-AgNP 15.1 ppm),
1621.61 cm−1 (FN-AgNP 30.2 ppm) and 1621.56 cm−1 (FN-AgNP 75.5 ppm). The above
findings indicated that the amide I band may have strong interaction with AgNP.

2.2. Cytoskeletal Change and Migration Ability of HSF and MSC on FN-AgNP Nanocomposites

It has been reported that co-culture of fibroblasts and endothelial could significantly
enhance the angiogenesis of endothelial cells. It was indicated that there are intimate com-
munications between fibroblasts and endothelial cells for angiogenesis, and the paracrine
effect may play a crucial role in these communications [44]. Therefore, the effects of differ-
ent materials on biocompatibility and the biological activity of fibroblast (HSF) were also
investigated in this study. The assessment of actin fiber staining via phalloidin-rhodamine
conjugate is demonstrated in Figure S1A and Figure 2A. In control group, the actin fibers of
HSF and MSC were mostly near the cell body and exhibited in circumferential shape. While
seeding cells with FN-AgNP 30.2 ppm, the actin fibers became more extended. The length
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of actin fiber was much longer in MSC culturing in FN-AgNP nanocomposites, especially
in FN-AgNP 30.2 ppm (~1.46-fold) and following by FN-AgNP 15.1 ppm (~1.35-fold),
pure FN (~1.23-fold) and FN-AgNP 75.5 ppm (~1.20-fold). The above condition could also
be observed in HSF, but had a less extension comparing to MSCs: FN-AgNP 30.2 ppm
(~1.39-fold), FN-AgNP 15.1 ppm (~1.28-fold), pure FN (~1.20-fold) and FN-AgNP 75.5 ppm
(~1.15-fold) (Figure S1C and Figure 2C).Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 20 

 

 
Figure 1. Materials characterization. The preparation procedure of fibronectin-silver nanoparticle (FN-Ag) composites. 
(A) SEM images of AgNP and (B) TEM image of the diameter of AgNP was about 5 nm. (C) Preparation of FN-AgNP 
nano-composites. The surface topography of pure FN and FN-AgNP containing various amount of Ag were observed by 
AFM. (D) Rq is the roughness, while Ra represents as the average roughness of each material. * p < 0.05, ** p < 0.01: greater 
than the control (FN). (E) UV-Visible absorption peak of pure FN and FN-Ag containing various amount of AgNP (~15.1 
ppm, ~30.2 ppm and ~75.5 ppm). (F) FTIR spectrum of pure FN and FN-Ag nanocomposites in the total wave number 400 
cm−1 to 4000 cm−1. Data results from one representative experiment of three independent experiments. 
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Figure 1. Materials characterization. The preparation procedure of fibronectin-silver nanoparticle (FN-Ag) composites.
(A) SEM images of AgNP and (B) TEM image of the diameter of AgNP was about 5 nm. (C) Preparation of FN-AgNP
nano-composites. The surface topography of pure FN and FN-AgNP containing various amount of Ag were observed
by AFM. (D) Rq is the roughness, while Ra represents as the average roughness of each material. * p < 0.05, ** p < 0.01:
greater than the control (FN). (E) UV-Visible absorption peak of pure FN and FN-Ag containing various amount of AgNP
(~15.1 ppm, ~30.2 ppm and ~75.5 ppm). (F) FTIR spectrum of pure FN and FN-Ag nanocomposites in the total wave
number 400 cm−1 to 4000 cm−1. Data results from one representative experiment of three independent experiments.

As Figure S1B and Figure 2B showed, the real-time observation of cell migration
distance was observed in pre-migration (t = 0 h) and post-migration (t = 24 and 48 h). The
semi-quantitative data (Figure 2D and Figure S1D) in MSCs from 24 to 48 h on FN-AgNP
30.2 ppm (~1.24 to ~1.46-fold) was significantly greater than other materials [FN-AgNP
15.1 ppm (~1.18 to ~1.39-fold), FN-AgNP 75.5 ppm (~1.10 to ~1.22-fold) and pure FN (~1.07
to ~1.18-fold)]. The similar condition could be observed in HSF particularly in FN-AgNP
30.2 ppm (~1.28 to ~1.46-fold), following by FN-AgNP 15.1 ppm (~1.20 to ~1.35-fold),
FN-AgNP 75.5 ppm (~1.15 to ~1.25-fold) and pure FN (~1.12 to ~1.22-fold). Based on the
results, FN-AgNP 30.2 ppm could induce advanced cell adhesion and migration behaviors.



Int. J. Mol. Sci. 2021, 22, 9262 5 of 20

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 20 

 

15.1 ppm (~1.18 to ~1.39-fold), FN-AgNP 75.5 ppm (~1.10 to ~1.22-fold) and pure FN (~1.07 
to ~1.18-fold)]. The similar condition could be observed in HSF particularly in FN-AgNP 
30.2 ppm (~1.28 to ~1.46-fold), following by FN-AgNP 15.1 ppm (~1.20 to ~1.35-fold), FN-
AgNP 75.5 ppm (~1.15 to ~1.25-fold) and pure FN (~1.12 to ~1.22-fold). Based on the re-
sults, FN-AgNP 30.2 ppm could induce advanced cell adhesion and migration behaviors. 

 
Figure 2. Cytoskeletal fibers examination and Migration ability of MSCs. (A) The cytoskeleton stain-
ing for the actin fibers of MSCs cultured with pure FN and various concentrations of FN-AgNP 
nanomaterials at 48 h observed by fluorescence microscopy. F-actin: red color fluorescence, DAPI: 
blue color fluorescence. Scale bar equals to 50 μm. (B) MSCs migrated into central area was con-
firmed through fluorescence microscopy. After incubating for 24 and 48 h, calcein-AM (2 μM) solu-
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Figure 2. Cytoskeletal fibers examination and Migration ability of MSCs. (A) The cytoskeleton
stain-ing for the actin fibers of MSCs cultured with pure FN and various concentrations of FN-AgNP
nanomaterials at 48 h observed by fluorescence microscopy. F-actin: red color fluorescence, DAPI:
blue color fluorescence. Scale bar equals to 50 µm. (B) MSCs migrated into central area was confirmed
through fluorescence microscopy. After incubating for 24 and 48 h, calcein-AM (2 µM) solu-tion
was used to stain the MSCs prior to observation. Scale bar = 200 µm. (C) The length of actin fiber
was measured for MSCs on various nanomaterials and the results were semi-quantified at 48 h.
The migration distance of MSCs seeding on various materials was semi-quantified at 48 h. Data
are mean ± SD (n = 3). * p < 0.05; ** p < 0.01: greater than the control. (D) MSC proliferation after
seeding on pure FN and FN-AgNP nanocomposites containing ~15.1 ppm, ~30.2 ppm and ~75.5 ppm
of AgNP was investigated by MTT assay. Data are the mean ± SD (n = 6). * p < 0.05; ** p < 0.01:
greater than the control (MSC). Data results from one representative experiment of six independent
experiments The ROS production was targeted by DCFH-dA and was quantified by FACS analysis
for (E) MSC on various materials. Data are mean ± SD (n = 3). * p < 0.05; ** p < 0.01: smaller than
the control. Data results from one representative experiment of three independent experiments.
Control group = tissue culture plate (TCPS).
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2.3. Cell Proliferation and ROS Production

The proliferation of HSF and MSCs culturing on various materials for 24 and 48 h are
demonstrated in Figure S1E and Figure 2E. The cell viability of HSF (OD570nm = ~0.92) and
MSC (OD570nm = ~0.80) at 48 h was both the highest on FN-AgNP 30.2 ppm, following
by FN-AgNP 15.1 ppm (HSF: OD570nm = ~0.83, MSC: OD570nm = ~0.70), FN-AgNP 75.5
ppm (HSF: OD570nm = ~0.69, MSC: OD570nm = ~0.69) and pure FN (HSF: OD570nm = ~0.66,
MSC: OD570nm = ~0.68). ROS generation of HSF and MSC on various materials is depicted
in Figures S1F and S2F. At 48 h, the FN-AgNP 30.2 ppm induced the lowest amount of
ROS generation in both HSF (~0.5-fold) and MSC (~0.42-fold), comparing to FN-AgNP
15.1 ppm (HSF: ~0.7-fold, MSC: ~0.65-fold), FN-AgNP 75.5 ppm (HSF: ~0.73-fold, MSC:
~0.7-fold) and pure FN (HSF: ~0.87-fold, MSC: ~0.8-fold).

2.4. Biocompatibility Assay

The monocyte activation was further evaluated by CD68 staining (the marker of
macrophage) shown in Figure 3A. The quantification of CD68 expression resulting from flu-
orescent intensity was demonstrated in Figure 3B. While in FN-AgNP 30.2 ppm (~0.52-fold),
the expression of CD68 was the lowest, following by FN-AgNP 15.1 ppm (~0.52-fold), FN-
AgNP 75.5 ppm (~0.60-fold) and pure FN (~0.88-fold). And a similar trend of conversion ra-
tio among different materials was shown in Figure 3C. Furthermore, the pro-inflammatory
cytokines (TNF-α, IL-1β, IL-6) expression were also examined via ELISA assay (Figure 3D).
The quantitative data indicated the lowest expression in FN-AgNP 30.2 ppm. These results
suggested that FN-AgNP nanocomposites may stimulate lower inflammatory response.
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Figure 3. CD68 expression of macrophages on various materials at 96 h and the expression of pro-inflammatory cytokines
(TNF-α, IL-1β, IL-6) at 24 and 48 h. (A) The cells were stained by primary anti-CD68 antibody and conjugated with
FITC-immunoglobin secondary antibody (green color). DAPI solution was used to locate cell nuclei (blue color). The
results were captured using fluorescence microscopy. Scale bar = 20 µm. (B) The expression level of CD68 was analyzed
based on fluorescence intensity. (C) The conversion yield of human monocytes activation after culturing on pure FN
and various concentrations of FN-AgNP for 96 h. (D) The expression of proinflammatory cytokines at 24 and 48 h was
analyzed based on the expression intensity. Data are the mean ± SD (n = 3). * p < 0.05; ** p < 0.01: smaller than the control.
Control group = glass cover slide.

2.5. Effect of FN-AgNP Nanocomposites on SDF-1α Expression and MMPs Activation in MSCs

The representative zymograms for MMP-2 (62 kDa) and MMP-9 (90 kDa) at various
times (24 and 48 h) are displayed as Figure 4A. The semi-quantification of MMP-9 gene
expression is represented in Figure 4B. Indeed, the expression of MMP-9 in MSCs at
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48 h is the greatest in FN-AgNP 30.2 ppm (~1.29-fold), following by FN-AgNP 15.1 ppm
(~1.22-fold), FN-AgNP 75.5 ppm (~1.20-fold) and pure FN (~1.11-fold). On the basis of
previous study, the SDF-1α protein is investigated which plays a critical role in MSCs
migration for promoting tissue repair. Semi-quantitative results (Figure 4C) showed that
after 24 and 48 h of incubation, the SDF-1α expression in MSCs on FN-AgNP 30.2 ppm
(~1.22-fold to ~1.28-fold) examined by ELISA assay was significantly greater than other
groups [FN-AgNP 15.1 ppm (~1.19-fold to ~1.2-fold), FN-AgNP 75.5 ppm (~1.11-fold
to ~1.12-fold) and pure FN (~1.1-fold to ~1.12-fold)]. The MMP-9 expression in HSF
was also showed in Figure S2 [FN-AgNP 30.2 ppm (~1.34-fold to ~1.44-fold), FN-AgNP
15.1 ppm (~1.26-fold to ~1.3-fold), FN-AgNP 75.5 ppm (~1.4-fold to ~1.28-fold) and pure
FN (~1.2-fold to ~1.22-fold)].
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Figure 4. The MMP enzymatic activities and SDF-1α protein expression in MSCs culturing on various materials at 24
and 48 h. (A) The representative MMP-2 and MMP-9 zymogram for (a) 24 and (b) 48 h is shown. The semiquantitative
meas-urement of (B) MMP-9 and (C) SDF-1α protein expression revealed a significantly greater expression culturing MSCs
with FN-AgNP 30.2 ppm at 24 and 48 h. Data are presented as mean ± SD (n = 3). * p < 0.05; ** p < 0.01: greater than the
control. Control group = glass cover slide.

2.6. Endothelialization of MSCs Induced by FN-AgNP Nanocomposites

Immunofluorescence staining analysis can be clearly observed in Figure 5A,B, to
characterize the expression of EC marker (CD31 and vWF) after seeded MSCs on FN-
AgNP for 7 days. Figure 5C,D demonstrate the semi-quantitative data of CD31 and vWF
expression. The CD31 and vWF expression on FN-AgNP 30.2 ppm (CD31: ~1.52-fold,
vWF: ~1.47-fold) are significantly greater than other groups [FN-AgNP 15.1 ppm (CD31:
~1.40-fold, vWF: ~1.34-fold), FN-AgNP 75.5 ppm (CD31: ~1.24-fold, vWF: ~1.29-fold) and
pure FN (CD31: ~1.25-fold, vWF: ~1.22-fold)]. The above results strongly suggest that
FN-AgNP nanocomposites may facilitate MSC differentiate into ECs. The differentiation
capacity of MSCs induced by various materials was then evaluated. The phenotypes of
endothelial cells were also observed at days three and five. After culturing MSCs with
various materials, FN-Ag 30.2 ppm induced a slight expression level of endothelial markers
at days three and five as compared to the control, with the immunostaining images shown
in Figure S3A,B. The semi-quantitative data showed that the mineral? differentiation in the
FN-Ag 30.2 ppm group was the greatest at days three and five (p < 0.01) (Figure S3C,D).
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Figure 5. Differential expression of CD31 and vWF protein in MSCs culturing with various nanomaterials at day seven.
The MSCs were firstly stained by primary (A) anti-CD31 and (B) anti-vWF antibody and conjugated with FITC secondary
antibody (green color). The cell nucleus was located by DAPI (blue color). The images were taken by fluorescence micros-
copy. Scale bar = 20 µm. (C,D) The quantitative results of fluorescence intensity for CD31 and vWF revealed a higher
expression amount in FN-AgNP 30.2 ppm group. Data are the mean ± SD (n = 3). * p < 0.05; ** p < 0.01: greater than the
control. Control group = TCPS.
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2.7. Biocompatibility and Endothelialization Ability in the Rat Subcutaneous Model

Indeed, chronic inflammation may cause fibrosis and then leads to poor tissue regen-
eration and affect biocompatibility of nano biomaterials. In brief, a successful implantation
is commonly determined by the interaction of cells and molecules between the implanted
body and host tissue. The fibrotic encapsulation caused by foreign body response from
the different materials was observed via subcutaneous after one month of implantation in
order to confirm the biocompatibility and biosafety in vivo (Figure 6A). Indeed, it was also
calculated the intensity of tissue fibrosis effect using Masson’s trichrome staining, which re-
vealed collagen deposition in response to the control treated group (glass) (Figure 6B). The
semi-quantification analysis results are represented in Figure 6C,D. The value of capsule
thickness was the lowest in FN-AgNP 30.2 ppm group (~0.3-fold), comparing to FN-AgNP
15.1 ppm (~0.4-fold), FN-AgNP 75.5 ppm (~0.45-fold) and pure FN (~0.92-fold). And the
collagen deposition was also investigated and had a similar trend with capsule thickness
[FN-AgNP 30.2 ppm (~0.34-fold), FN-AgNP 15.1 ppm (~0.4-fold), FN-AgNP 75.5 ppm
(~0.5-fold) and pure FN (~0.78-fold)]. In addition, the endothelialization marker CD31,
and VEGF were also investigated (Figure 7). As Figure 7A,B showed, the expression of
CD31 was significantly higher in FN-AgNP 30.2 ppm (~1.46-fold) group than in other
materials [FN-AgNP 15.1 ppm (~1.26-fold), FN-AgNP 75.5 ppm (~1.12-fold) and pure
FN (~1.13-fold)]. And the expression of VEGF was measured at 24 and 48 h through
ELISA assay (Figure 7C). The results showed the expression in FN-AgNP 30.2 ppm group
(~1.23-fold to ~1.33-fold) was greater than other materials [FN-AgNP 15.1 ppm (~1.12-fold
to ~1.23-fold), FN-AgNP 75.5 ppm (~1.12-fold to ~1.22-fold) and pure FN (~1.08-fold to
~1.11-fold)]. Furthermore, the macrophage polarization was examined and demonstrated
as Figure 8A,B. The marker for M1 polarization, CD86, was significantly lower expressed in
FN-AgNP 30.2 ppm group (~0.22-fold), then followed by FN-AgNP 75.5 ppm (~0.38-fold),
FN-AgNP 15.1 ppm (~0.44-fold) and pure FN (~0.82-fold) groups (Figure 8C). Next, CD163
was selected as t M2 polarization marker, then found a reverse trend. Indeed, the tissues
in the FN-AgNP 30.2 ppm group (~1.42-fold) was the greatest expression, comparing to
FN-AgNP 15.1 ppm (~1.32-fold), FN-AgNP 75.5 ppm (~1.20-fold) and pure FN (~1.12-fold)
(Figure 8D). The above results elucidated FN-AgNP 30.2 ppm could remarkably suppress
inflammatory responses and enhance endothelialization ability. The biocompatibility ca-
pacity, biological performance, endothelial differentiation ability, and anti-inflammatory
response was enhanced by FN-AgNP nanocomposites both in in vivo and the in vivo assay
as illustrated in Figure 9.
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Figure 6. Subcutaneous implantation to measure the foreign body reactions induced by various nanomaterials. After four
weeks of implantation, (A) H&E staining, white arrows indicate the thickness of the capsule, and (B) Masson’s staining were
applied to process further investigations. Scale bar = 100 µm. (C,D) Semi-quantification of capsule thickness and collagen
deposition was revealed based on the histology examination. Control group = glass cover slide. * p < 0.05; ** p < 0.01: less
than the control (n = 5).
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histology images for CD31 were showed after implanting various materials for four weeks. Scale bar = 100 µm. (B) The CD31
expression was also investigated and then semi-quantified according to fluorescence intensity. * p < 0.05; ** p < 0.01: higher
than the control (n = 5). Control group = glass cover slide. (C,D) The expression level of VEGF protein was evaluated via
ELISA assay at 24 and 48 h, then the fluorescence intensity were semi-quantified by Image J software. Control group = TCPS.
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Figure 8. Images of immunohistochemistry staining for macrophage polarization after four weeks subcutaneous implant-
ation. (A,B) The IHC staining for markers of macrophage, CD163 (M2, green color) and CD86 (M1, red color), were
inves-tigated after implanting various materials. (C) The expression of CD163 was semi-quantified. * p < 0.05; ** p < 0.01:
greater than the control (n = 5). (D) The expression of CD86 was also analyzed resulting from fluorescence intensity.
* p < 0.05; ** p < 0.01: less than the control. cell nucleus was located by DAPI (blue color). Control group = glass cover slide.
Scale bar = 100 µm. Data are presented as mean ± SD (n = 5).
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Figure 9. Schematic illustrations that indicate the efficacy of FN-AgNP nanocomposites. FN-AgNP nanocomposite coating
enhanced the migration and differentiation ability of MSCs while inhibiting monocyte activation. Furthermore, after
im-planted into the rat model, FN-AgNP induced thinner capsule formation, lower collagen deposition, and had an
anti-immune response. Based on these evidences, FN-AgNP nanocomposites are suggested to be a promising surface
modifi-cation strategy for biomedical applications.
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3. Discussion

Natural polymeric grafts demonstrate no cell toxicity and low immune response in
vascular tissue engineering [45]. Therefore, biocompatibility is the focal point while design-
ing appropriate biomaterials for implantation in human body. To take the advantages of the
better mechanical properties of the synthetic polymers, and for the purpose of improving
biocompatibility, various surface modification methods such as chemical, physical, and
biomolecule immobilization have been used. Among the methods, changing the mate-
rial surface topography on a nanoscale may affect surface properties, such as protein,
cellular, and tissue interactions, thereby improving the performance of the biomaterials.
Introduction of roughness (Rq and Ra) of biomaterials in nano-scales can promote cell
adhesion [46,47]. Surface modification by several proteins such as collagen, elastin, and
fibronectin also mediate vascular cell interactions [46].

Adding an optimized concentration of AgNP in the natural polymers can generate
surface morphology favorable for cell interaction [23]. The current research focused on
creating surface functionalized coatings comprised FN and AgNP to improve cell behavior
and biocompatibility. Based on AFM results, the value of surface roughness was the highest
in FN-AgNP 30.2 ppm, confirming that the surface morphology of pure FN was remarkably
changed by adding optimal concentration of AgNP. Besides, FTIR results demonstrated
the interaction between AgNP and amide I region (peptide carbonyl stretching vibration,
CO) of FN in the FN-AgNP nanocomposites. The above evidence demonstrated that the
physical-chemical property of pure FN was altered after decorating with Ag nanoparticles.

FN-AgNP 30.2 ppm stimulated the attachment, proliferation, and migration of MSCs
in vitro. In addition, FN-AgNP 30.2 ppm showed better biocompatibility including the
reduction of monocyte activation and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6)
expression [48,49]. In other words, the addition of AgNP attenuated the inflammatory
response of biomaterials. Anti-oxidation is related to reduced inflammation after im-
plantation of nano-biomaterials [50]. A pervious study indicated that after implanting
antioxidant-modified polymer into rat models, the acute inflammatory infiltrates were
reduced [51]. Besides, FN-AgNP inhibited ROS generation in MSCs based on the results.
The above findings supported that AgNP are potent to improve the biological performances
of FN. The differentiation ability of stem cells can be stimulated by biomolecules or an ap-
propriate ECM microenvironment. Apart from the support of scaffolds, suitable ECM can
promote advanced biological responses such as cell viability, proliferation, and migration
through activating cell signaling pathways [52]. MSCs are potential cell source in tissue re-
pair engineering owing to secretion of various bioactive factors and superior differentiation
capacity for therapeutic treatments [53]. The current study demonstrated that FN-AgNP
30.2 ppm could regulate cellular morphology and biological functions of MSCs. The results
of the endothelialization marker expression, CD31, indicating that FN-AgNP 30.2 ppm
had the ability to induce endothelial cells differentiation. The above findings of promoted
EC phenotype and better biocompatibility for MSCs seeded on FN-AgNP suggested the
efficiency of FN-AgNP nanocomposites to be a suitable biomaterial for vascular tissue
regeneration treatments.

As mentioned above, the superior proliferation, migration, and differentiation ability
of MSCs coupled with biomaterials are indispensable for wound repair and regeneration.
The MMPs secretion is associated with promoting vascular remodeling and cell migra-
tion [54]. The expression of MMP-2/9 contributes to cell migration through activating
cell surface molecules such as α5β3 integrin [55]. Various angiogenic cytokines such as
VEGF and SDF-1α can modulate and improve the process of tissue regeneration [56]. The
VEGF and SDF-1α protein expression in MSCs can facilitate vasculogenesis and angio-
genesis. Our previous study demonstrated that polyurethane-AuNPs (PU-AuNPs) could
regulate ECs migration via triggering α5β3 integrin/FAK and PI3K/Akt/eNOS signaling
pathways [57]. In the current study, MMP activity, VEGF, and SDF-1α protein expression
were investigated. The results showed that FN-AgNP 30.2 ppm could induce the highest
expression of angiogenic cytokines and MMP proteinases. Owing to VEGF induces stem
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cells trafficking through the activation of SDF-1α/CXCR4 signaling pathway, the potential
of FN-AgNP to recruit MSCs may be the advantage as vascular tissue repair biomateri-
als [29]. Based on the results of IHC and immunofluorescence staining, the implantation of
MSCs cultured with FN-AgNP 30.2 ppm decreased M1 recruitment (CD86), but increased
M2 infiltration in contrast. Besides, FN-AgNP 30.2 ppm also caused the lowest fibrous
encapsulation and collagen deposition, indicating the better biocompatibility of FN-Ag
30.2 and the best tissue integrity after implantation. The above observation pointed out
that surface modification of biomaterial may influence foreign body response in vivo.

Bacterial infection during intravenous injection is a barrier for clinical treatments. The
short-term peripheral venous catheters (PVC) are one of the commonly used invasive medi-
cal devices in hospitals, but PVC often fail due to vascular or infectious complications such
as gram-negative bacteremia or other bloodstream infections before the end of treatments.
The above reasons can cause the interruption of treatments that is harmful to patients.
Moreover, PVC replacement causes pain on patients and increases treatment costs [58].
A biodegradable water absorption sponge incorporating AgNP had antibacterial proper-
ties [59]. Likewise, FN-AgNP nanocomposites can become a novel of surface modification
biomaterials for clinical treatments. After coating FN-AgNP on PVC, it may have potential
to prevent bloodstream infection and reduce inflammatory response on patients. This kind
of surface modified peripheral venous catheters may be developed as a long-term injection
medical device to reduce failure rate and decrease treatment costs.

In conclusion, this research suggests that via making composites with fibronectin and
AgNP, the behavior of MSCs on the biomaterial such as protein expression of SDF-1α and
MMP enzymatic activities can be affected, leading to vascular remodeling. The nanocom-
posite coating improved blood compatibility, enhanced MSCs migration, proliferation, and
EC phenotype as well as attenuated the immune response and ROS generation. With these
benefits, the FN-AgNP nanocomposite may be a promising nanobiomaterial to provide a
suitable surface coating and delivery technology for implanted cardiovascular devices.

4. Materials and Methods
4.1. Material Preparation of Fibronectin-Silver (FN-AgNP) Nanocomposite

The solution of human fibronectin was obtained through Millipore Corporation (USA)
and the silver nanoparticles (AgNP) were purchased from GOLD NANOTECH, INC
(Taiwan). The AgNP were dispersible into distilled water (~17.5 ppm). The size of silver
nanoparticles could be mechanically controlled which was described in our previous study,
and the diameter of the AgNP was approximately 5 nm [60]. The preparation of FN-AgNP
composites was mixed with pure FN solution (1 mg/mL) and various concentration of
AgNP (~15.1, ~30.2 and ~75.5 ppm). The appropriate amount of pure FN and FN-AgNP
nanocomposites at 20 µg/cm2 were then coated on cell culture tissue dishes, culture plates,
or round coverslip glasses (15 mm). The solution was adsorbed to the surface of each
culture area for 30 min. Afterwards, the residual solution was removed to form FN and
FN-AgNP thin films prior to proceeding further cell culture standard operating procedures
for following experiments.

4.2. Material Characterization of FN and FN-AgNP Nanocomposites

Surface morphology of AgNP was observed using scanning electron microscope (SEM)
(JEOL JEM-5200, Akishima, Tokyo, Japan). Surface topography were captured and the
value of average roughness was further measured by Image J 5.0 software. TEM images
were taken by transmission electron microscope (JEOL JEM-1010, Akishima, Tokyo, Japan)
with the voltage setting up at 80 keV, then observed microstructure and particle size. For
TEM imaging, 5 µL of nanoparticle solution was added onto copper grid then dried out at
RT. Atomic force microscope (AFM) coupled with a scanner (100 µm, JEOL JSM-6700 F) was
used to observe the surface morphology of FN and FN-AgNP dry coatings. Then the AFM
measurements were processed through tapping mode with force constants of 21–78 N/m in
air. The absorption spectrum of pure FN and FN-AgNP solutions were analyzed by UV-Vis
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spectrophotometer (Helios Zeta, USA). Fourier transform IR spectroscopy (IR Pretige-21,
Shimadzu, Tokyo, Japan) was applied to analyze the chemical composition of each material.
All samples were independently scanned for 8 times in the 400–4000 cm−1 spectral region
with a 2 cm−1 resolution to obtain each spectrum.

4.3. Cell Proliferation Test

Human umbilical cord Wharton’s jelly-derived mesenchymal stem cells [61] were
harvested cautiously for the following in vitro and in vivo assay. The MSCs were cultured
in high glucose DMEM medium (Invitrogen) with 10% FBS, 1% (v/v) antibiotics P/S
and 1% of sodium pyruvate. Besides, MSCs maintained correct phenotypes at passages
8–20 [33]. Human skin fibroblasts (HSF) were purchased from American Type Culture
Collection (ATCC). They can be cultured to higher passage numbers without appreciable
loss of growth rate or phenotype, thus yielding more cells for the experiments. HSF
were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) (Gibco) supplemented
with 1% (v/v) antibodies (10,000 U/mL penicillin G and 10 mg/mL streptomycin), 2 mM
glutamine, and 10% fetal bovine serum (FBS). 200 µL of cells was seeded into the bottom of
a 96-well plate with pure FN or FN-AgNP coatings at the density of 6 × 103 cells/mL in
each well. The cells seeded in blank well were represented as the control. The cells were
further examined by MTT assay to evaluate cell viability after 24 and 48 h of incubation. The
MTT [3-(4, 5-cimethylthiazol-2-yl)2, 5-diphenyltetrazolium bromide] solution (0.5 mg/mL)
was added into each well for 3 h incubation (37 ◦C, 5% CO2). Afterwards, the crystals were
dissolved in dimethyl-sulfoxide (DMSO) solution and the absorbance was measured at
570 nm using SpectraMax M2 microplate reader (Molecular Devices, San Jose,CA, USA).

4.4. Assessment of Reactive Oxygen Species (ROS) Generation

The ROS production was examined by 2, 7dichlorofluorescin diacetate (DCF-dA)
oxidation-sensitive fluorescent dye (Sigma). The MSCs (2 × 105/well) were firstly cultured
in culture plates (6 well) with pure FN or FN-AgNP coatings then incubated for 24 and 48 h.
Afterwards, the cells were washed two steps with PBS and added PBS containing DCF-dA
(20 µM, 500 µL) for 1 h incubation. Hereafter, FACS Calibur flow cytometer (Becton
Dickinson) was applied to investigate the MSCs at 530 nm after excitation at 480 nm for 4 h.
The ROS production was demonstrated an increase trend based on fluorescence intensity.
The positive cells were detected by the FCS software.

4.5. Monocyte Activation

Monocytes were obtained from whole blood of healthy volunteers through Percoll
density gradient centrifugation (Sigma, St. Louis, MO, USA) and culturing by the stan-
dard procedure [35]. The cell concentration was adjusted to 1 × 105 cells/mL. Cells
were stored in RPMI medium [10% FBS, 1% (v/v) antibiotic (10,000 U/mL penicillin G
and 10 mg/mL streptomycin)]. Twenty-four well tissue culture plates with pure FN and
FN-AgNP nanocomposites coatings were firstly prepared, then 1 mL of cell suspension
(1 × 105/mL) was sequentially added into each well and incubated for 96 h to reach ad-
herent (5% CO2). Next, the cells were collected by trypsinization. Based on the different
cell morphology, an inverted microscope was further applied to calculate the numbers of
macrophages and monocytes. The conversion ratio was then semi-quantified.

4.6. Cytoskeleton of MSC

In order to observe the cytoskeleton of MSCs, cells (5 × 103/well) were cultured in
24 well plate containing pure FN and FN-AgNP on coverslip glass then incubated for
48 h. Cells culturing on blank coverslip glass was represented as the control group. Before
the staining, MSCs were fixed by 4% paraformaldehyde (PFA) coupled with Phosphate
Buffered Saline (PBS) for at least 15 min, then permeabilized with 0.5% (v/v) Triton-X 100
(Sigma) in PBS for another 10 min. To block non-specific interactions, 5% (v/v) Bovine Serum
Albumin (Sigma) solution was used for the experiment. Ultimately, Rhodamine/phalloidin
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(6 µM, 30 min) and DAPI staining (1 µg/mL, 10 min) were performed to analyze cytoskele-
ton and nuclei in MSCs. The length of F-actin fiber in MSCs was measured as the ratio
of the length of the existing active fiber to its potentially possible length restricted by cell
margins. Length of F-actin fiber in MSCs were quantified using Image J (version 1.8.0_172)
software by obtaining data from five different positions for each cell in the measurement
(n = 3).

4.7. Assessment of MSCs Migration

A Oris Cell Migration Assay kit (Platypus Technologies, Madison, WI, USA) was
applied to investigate cell migration. coating with pure FN and FN-AgNP were put into
each well of the plates. Cell seeding stoppers (diameter 2 mm) was placed in the central
area on the top of coverslip glasses, to prevent cells adhere to the center area of the well.
The stopper in each well was seeded with the cell density of 8000 MSCs (100 µL/well) and
incubated for 24 and 48 h to reach enrichment. Then the stoppers were removed from the
culture plate, but remaining in several wells to represent as the pre-migration references.
The seeded plates were incubated at the condition 37 ◦C/5% CO2 then observed at 0 h for
pre-migration, at 24 and 48 h for post-migration. Next, 200 µL of Calcein AM (Sigma, USA)
(2 µM) solution supplemented with serum-free culture medium was added to the plates,
then images were taken through a fluorescence microscope (Zeiss Axio Imager A1, White
Plains, NY, USA). The migration distance of MSCs in detection area was semi-quantified
based on fluorescence intensity and Image J 5.0 software.

4.8. Immunofluorescence Analysis of vWF, CD31 and CD68 Expression

The MSCs (20,000 cells) were cultured in 24 well plate containing pure FN and FN-
AgNP coatings on coverslip glass. The cultured cells were further fixed and permeabilized
using PBS solution. The primary antibodies [anti- von Willebrand Factor (vWF), anti-
CD31 (1:300 dilution) and anti-CD68 (1:150 dilution, Santa Cruz) antibodies] were used
for overnight incubation. Then the cells need further washing steps. Afterwards, the
secondary immunoglobulin, FITC-conjugate (1:300 dilution) was added for 1 h incubation.
DAPI (1 mg/mL, Invitrogen) was added to locate cell nuclei then incubated for 10 min.
Each cell suspension was added on microscope slides containing glycerol/PBS solution
then cautiously sealed with synthetic mount after washes for further observation.

4.9. Enzyme-Linked Immunosorbent Assay

Several ELISA kits (R&D Systems, USA) were purchased to investigate the expression
of SDF-1α, VEGF and proinflammatory cytokines (TNF-α, IL-1β, IL-6). The proteins were
enriched in secretion by MSCs for the following measurements. The protein samples
collected from MSCs were firstly detected with the primary antibody. Next, secondary anti-
body (HRP-conjugate) was used for signal amplification following with the manufacture’s
instruction. Then the semi-quantitative results were analyzed through an ELISA reader.
Quadruple experiments were proceeded to further obtain the data.

4.10. Gelatin Zymography Assay

The MSCs (2 × 105 per well) were cultured in 6 well plate and incubated overnight to
reach attachment. After 48 h, the culture medium was collected. The samples were sepa-
rated by 10% SDS-PAGE with 2% gelatin, and the gel incubated with a pH 8.5 denaturing
buffer (40 mM Tris-HCl, 0.2 M NaCl, 10 mM CaCl2, and 2.5% Triton X-100) for 30 min at
RT. The gel was then slowly stirred at room temperature and equilibrated with a pH 8.5
development buffer (40 mM Tris- HCl, 0.2 M NaCl, 10 mM CaCl2, and 0.01% NaN3) for
16–18 h to become activated in 37 ◦C water bath. Afterwards, the gel was stained with
0.2% Coomassie Brilliant Blue R-250 (10% acetic acid, 50% methanol) and further washed
with destaining buffer (10% acetic acid, 20% methanol). After Coomassie blue staining, the
protease-digested gelatin area appeared as clear bands against blue-stained background.
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Hereafter, resulting gel was scanned in a densitometer and MMP gelatinase activity was
semi-quantified through Image J 5.0.

4.11. Rat Subcutaneous Implantation

2–3 months olds of female Sprague Dawley (SD) rats were used in current study to
investigate biocompatibility after implanting various nano-materials following the guide-
lines which were approved by Animal Care and Use Committee (La-1071565). The weight
of rats was approximately 300–350 g for following experiments. After local anesthesia,
the dorsal skin of each rat was incised for 10 mm to implant different nanomaterials. The
wound tissue was resected for various investigations after 1 month. The capsule formation
was examined through hematoxylin and eosin staining (H&E staining) for six sites, then
the average thickness of encapsulated fibrotic tissues was semi-quantified by using Image J
5.0 software. A Masson’s trichrome staining kit (Sigma) was applied to investigate colla-
gen deposition, and the fibrosis tissue area incised from each rat was analyzed through
Image J 5.0 software. To further evaluate macrophage polarization, primary anti-CD86 and
anti-CD163 antibody (1:200 dilution) (Santa Cruz) were applied to evaluate the M1/M2
polarization. Further, the endothelialization marker CD31 was used to examine the differ-
entiation capacity. Anti-Mouse Alexa Fluor® 488 secondary antibodies were applied for
signal amplification. DAPI was applied to locate cell nuclei. A fluorescence microscope
was used to record fluorescent intensity and semi-quantitative results were measured by
Image J 5.0 Pro Plus (Media Gybertics). Data were represented as mean ± SD (n = 6).

4.12. Statistical Analysis

The experiments in current research were independently performed in triplicate to
avoid uncertainty. Data for each test (n = 3–6) were presented as mean ± standard deviation
(SD). The single-factor Analysis of Variance (ANOVA) and student t-test methods were
applied to reveal differences among various materials. Bonferroni was used for post hoc
test for ANOVA. A p value less than 0.05 was considered statistically significant.

5. Conclusions

FN-AgNP nanocomposites containing various concentrations of AgNP (~15.1, ~30.2
and ~75.5 ppm) were created in an attempt to investigate the biocompatibility and biological
performances of mesenchymal stem cells. Our findings indicated that FN-AgNP composites
with 30.2 ppm of AgNP enhanced the cell viability of MSCs, and inhibited monocytes
activation as well as attenuate ROS generation. Besides, FN-AgNP 30.2 ppm remarkably
suppressed the expression of inflammatory cytokines (TNF-α, IL-1β, IL-6) in MSCs. The
adhesion, migration, and differentiation ability of MSC on FN-AgNP 30.2 ppm were
significantly greater. The MMP enzymatic activities and expression of SDF-1α protein
were also examined. The highest expression levels of MMP9 and SDF-1α were found from
MSC on FN-AgNP 30.2 ppm. In vivo implantation showed that FN-AgNP 30.2 ppm had
the lowest capsule formation, collagen deposition, and immune response. Moreover, the
endothelial differentiation ability was enhanced by FN-AgNP nanocomposites in vivo.
FN-AgNP nanocomposites may provide effective surface modification applications for
vascular tissue regeneration.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22179262/s1.

Author Contributions: Conceptualization, H.-S.H.; Data curation, C.-M.T., T.-R.K., M.-L.K., A.Y.-H.Y.,
C.-C.S., Y.-C.Y. and H.-H.H.; Formal analysis, C.-M.T., T.-R.K. and Y.-C.Y.; Funding acquisition,
H.-S.H.; Investigation, K.-B.C., A.Y.-H.Y. and S.-h.H.; Methodology, C.-M.T., T.-R.K., M.-L.K., C.-C.S.
and Y.-C.Y.; Project administration, H.-S.H.; Resources, H.-H.H.; Software, C.-M.T., T.-R.K. and
M.-L.K.; Supervision, H.-S.H.; Validation, H.-S.H. and S.-h.H.; Visualization, S.-h.H.; Writing—
original draft, K.-B.C.; Writing—review & editing, S.-h.H. All authors have read and agreed to the
published version of the manuscript.

https://www.mdpi.com/article/10.3390/ijms22179262/s1
https://www.mdpi.com/article/10.3390/ijms22179262/s1


Int. J. Mol. Sci. 2021, 22, 9262 18 of 20

Funding: This work was supported by grants from Ministry of Science and Technology, Taiwan
(MOST 109-2314-B-039-046); China Medical University Hospital, Taiwan (DMR-110-133).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guarnieri, D.; De Capua, A.; Ventre, M.; Borzacchiello, A.; Pedone, C.; Marasco, D.; Ruvo, M.; Netti, P.A. Covalently immobilized

RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomater. 2010, 6, 2532–2539. [CrossRef]
[PubMed]

2. Madhavan, K.; Belchenko, D.; Motta, A.; Tan, W. Evaluation of composition and crosslinking effects on collagen-based composite
constructs. Acta Biomater. 2010, 6, 1413–1422. [CrossRef] [PubMed]

3. Perusse, R.; Goulet, J.-P.; Turcotte, J.-Y. Contraindications to vasoconstrictors in dentistry: Part I. Cardiovascular diseases. Oral
Surg. Oral Med. Oral Pathol. 1992, 74, 679–686. [CrossRef]

4. Zilla, P.; Bezuidenhout, D.; Human, P. Prosthetic vascular grafts: Wrong models, wrong questions and no healing. Biomaterials
2007, 28, 5009–5027. [CrossRef] [PubMed]

5. Knetsch, M.L.; Aldenhoff, Y.B.; Schraven, M.; Koole, L.H. Human endothelial cell attachment and proliferation on a novel vascular
graft prototype. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2004,
71, 615–624. [CrossRef]

6. Ren, X.; Feng, Y.; Guo, J.; Wang, H.; Li, Q.; Yang, J.; Hao, X.; Lv, J.; Ma, N.; Li, W. Surface modification and endothelialization of
biomaterials as potential scaffolds for vascular tissue engineering applications. Chem. Soc. Rev. 2015, 44, 5680–5742. [CrossRef]
[PubMed]

7. Catto, V.; Farè, S.; Freddi, G.; Tanzi, M.C. Vascular tissue engineering: Recent advances in small diameter blood vessel regeneration.
Int. Sch. Res. Not. 2014, 2014. [CrossRef]

8. To, W.S.; Midwood, K.S. Plasma and cellular fibronectin: Distinct and independent functions during tissue repair. Fibrogenesis
Tissue Repair 2011, 4, 21. [CrossRef]

9. Chiang, H.-Y.; Korshunov, V.A.; Serour, A.; Shi, F.; Sottile, J. Fibronectin is an important regulator of flow-induced vascular
remodeling. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1074–1079. [CrossRef]

10. Vega, M.E.; Schwarzbauer, J.E. Collaboration of fibronectin matrix with other extracellular signals in morphogenesis and
differentiation. Curr. Opin. Cell Biol. 2016, 42, 1–6. [CrossRef]

11. Sawicka, K.M.; Seeliger, M.; Musaev, T.; Macri, L.K.; Clark, R.A. Fibronectin interaction and enhancement of growth factors:
Importance for wound healing. Adv. Wound Care 2015, 4, 469–478. [CrossRef] [PubMed]

12. Middleton, C.; Pendegrass, C.; Gordon, D.; Jacob, J.; Blunn, G.W. Fibronectin silanized titanium alloy: A bioinductive and durable
coating to enhance fibroblast attachment in vitro. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc.
Biomater. Korean Soc. Biomater. 2007, 83, 1032–1038. [CrossRef] [PubMed]

13. Cairns, M.; Meenan, B.; Burke, G.; Boyd, A.R. Influence of surface topography on osteoblast response to fibronectin coated
calcium phosphate thin films. Colloids Surf. B Biointerfaces 2010, 78, 283–290. [CrossRef] [PubMed]

14. Balazs, A.C.; Emrick, T.; Russell, T.P. Nanoparticle polymer composites: Where two small worlds meet. Science 2006, 314,
1107–1110. [CrossRef] [PubMed]

15. Shin, Y.J.; Lee, H.I.; Kim, M.K.; Wee, W.R.; Lee, J.H.; Koh, J.H.; Lee, H.J.; Lee, J.L.; Min, B.M.; Sohn, Y.S. Biocompatibility of
nanocomposites used for artificial conjunctiva: In vivo experiments. Curr. Eye Res. 2007, 32, 1–10. [CrossRef] [PubMed]

16. Mitra, S.B.; Wu, D.; Holmes, B.N. An application of nanotechnology in advanced dental materials. J. Am. Dent. Assoc. 2003, 134,
1382–1390. [CrossRef]

17. Lin, Y.; Böker, A.; He, J.; Sill, K.; Xiang, H.; Abetz, C.; Li, X.; Wang, J.; Emrick, T.; Long, S. Self-directed self-assembly of
nanoparticle/copolymer mixtures. Nature 2005, 434, 55–59. [CrossRef]

18. Tang, Z.; Wang, Y.; Podsiadlo, P.; Kotov, N.A. Biomedical applications of layer-by-layer assembly: From biomimetics to tissue
engineering. Adv. Mater. 2006, 18, 3203–3224. [CrossRef]

19. Gu, H.-Y.; Chen, Z.; Sa, R.-X.; Yuan, S.-S.; Chen, H.-Y.; Ding, Y.-T.; Yu, A.-M. The immobilization of hepatocytes on 24 nm-sized
gold colloid for enhanced hepatocytes proliferation. Biomaterials 2004, 25, 3445–3451. [CrossRef]

20. Qian, Z.; Bai, Y.; Zhou, J.; Li, L.; Na, J.; Fan, Y.; Guo, X.; Liu, H. A moisturizing chitosan-silk fibroin dressing with silver
nanoparticles-adsorbed exosomes for repairing infected wounds. J. Mater. Chem. B 2020, 8, 7197–7212. [CrossRef]

21. Hung, H.-S.; Hsu, S.-H. Biological performances of poly (ether) urethane–silver nanocomposites. Nanotechnology 2007, 18, 475101.
[CrossRef]

22. Hung, H.-S.; Hsu, S.-H. The response of endothelial cells to polymer surface composed of nanometric micelles. New Biotechnol.
2009, 25, 235–243. [CrossRef] [PubMed]

http://doi.org/10.1016/j.actbio.2009.12.050
http://www.ncbi.nlm.nih.gov/pubmed/20051270
http://doi.org/10.1016/j.actbio.2009.09.028
http://www.ncbi.nlm.nih.gov/pubmed/19815100
http://doi.org/10.1016/0030-4220(92)90365-W
http://doi.org/10.1016/j.biomaterials.2007.07.017
http://www.ncbi.nlm.nih.gov/pubmed/17688939
http://doi.org/10.1002/jbm.a.30195
http://doi.org/10.1039/C4CS00483C
http://www.ncbi.nlm.nih.gov/pubmed/26023741
http://doi.org/10.1155/2014/923030
http://doi.org/10.1186/1755-1536-4-21
http://doi.org/10.1161/ATVBAHA.108.181081
http://doi.org/10.1016/j.ceb.2016.03.014
http://doi.org/10.1089/wound.2014.0616
http://www.ncbi.nlm.nih.gov/pubmed/26244103
http://doi.org/10.1002/jbm.a.31382
http://www.ncbi.nlm.nih.gov/pubmed/17584893
http://doi.org/10.1016/j.colsurfb.2010.03.013
http://www.ncbi.nlm.nih.gov/pubmed/20392613
http://doi.org/10.1126/science.1130557
http://www.ncbi.nlm.nih.gov/pubmed/17110567
http://doi.org/10.1080/02713680601077061
http://www.ncbi.nlm.nih.gov/pubmed/17364729
http://doi.org/10.14219/jada.archive.2003.0054
http://doi.org/10.1038/nature03310
http://doi.org/10.1002/adma.200600113
http://doi.org/10.1016/j.biomaterials.2003.10.048
http://doi.org/10.1039/D0TB01100B
http://doi.org/10.1088/0957-4484/18/47/475101
http://doi.org/10.1016/j.nbt.2009.01.003
http://www.ncbi.nlm.nih.gov/pubmed/19429543


Int. J. Mol. Sci. 2021, 22, 9262 19 of 20

23. Chou, C.W.; Hsu, S.h.; Wang, P.H. Biostability and biocompatibility of poly (ether) urethane containing gold or silver nanoparticles
in a porcine model. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater.
2008, 84, 785–794.

24. Lok, C.-N.; Ho, C.-M.; Chen, R.; He, Q.-Y.; Yu, W.-Y.; Sun, H.; Tam, P.K.-H.; Chiu, J.-F.; Che, C.-M. Silver nanoparticles: Partial
oxidation and antibacterial activities. JBIC J. Biol. Inorg. Chem. 2007, 12, 527–534. [CrossRef] [PubMed]

25. Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y. Antimicrobial effects of
silver nanoparticles. Nanotechnol. Biol. Med. 2007, 3, 95–101. [CrossRef]

26. Williams, P.A.; Silva, E.A. The role of synthetic extracellular matrices in endothelial progenitor cell homing for treatment of
vascular disease. Ann. Biomed. Eng. 2015, 43, 2301–2313. [CrossRef]

27. Anzalone, R.; Iacono, M.L.; Loria, T.; Di Stefano, A.; Giannuzzi, P.; Farina, F.; La Rocca, G. Wharton’s jelly mesenchymal stem cells
as candidates for beta cells regeneration: Extending the differentiative and immunomodulatory benefits of adult mesenchymal
stem cells for the treatment of type 1 diabetes. Stem Cell Rev. Rep. 2011, 7, 342–363. [CrossRef] [PubMed]

28. Boomsma, R.A.; Geenen, D.L. Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting
effects on chemotaxis and apoptosis. PLoS ONE 2012, 7, e35685. [CrossRef] [PubMed]

29. Tang, J.-M.; Wang, J.-N.; Zhang, L.; Zheng, F.; Yang, J.-Y.; Kong, X.; Guo, L.-Y.; Chen, L.; Huang, Y.-Z.; Wan, Y. VEGF/SDF-1
promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovasc. Res. 2011, 91, 402–411. [CrossRef]

30. Zhang, Y.; Chen, M.; Venugopal, S.; Zhou, Y.; Xiang, W.; Li, Y.; Lin, Q.; Kini, R.; Chong, Y.; Ge, R. Isthmin exerts pro-survival and
death-promoting effect on endothelial cells through alphavbeta5 integrin depending on its physical state. Cell Death Dis. 2011, 2,
e153. [CrossRef]

31. Maurer, L.M.; Ma, W.; Mosher, D.F. Dynamic structure of plasma fibronectin. Crit. Rev. Biochem. Mol. Biol. 2016, 51, 213–227.
[CrossRef]

32. Kuznetsov, A.V.; Kehrer, I.; Kozlov, A.V.; Haller, M.; Redl, H.; Hermann, M.; Grimm, M.; Troppmair, J. Mitochondrial ROS
production under cellular stress: Comparison of different detection methods. Anal. Bioanal. Chem. 2011, 400, 2383–2390.
[CrossRef]

33. Huang, C.-Y.; Lin, C.-H.; Ho, T.-T.; Chen, H.-C.; Chu, M.-Y.; Sun, W.-S.; Kao, W.-C.; Hung, H.-S.; Hsu, S.-H. Enhanced migration of
wharton’s jelly mesenchymal stem cells grown on polyurethane nanocomposites. J. Med. Biol. Eng. 2013, 33, 139–148. [CrossRef]

34. Maxson, S.; Lopez, E.A.; Yoo, D.; Danilkovitch-Miagkova, A.; LeRoux, M.A. Concise review: Role of mesenchymal stem cells in
wound repair. Stem Cells Transl. Med. 2012, 1, 142–149. [CrossRef] [PubMed]

35. Hung, H.-S.; Tang, C.-M.; Lin, C.-H.; Lin, S.-Z.; Chu, M.-Y.; Sun, W.-S.; Kao, W.-C.; Hsien-Hsu, H.; Huang, C.-Y.; Hsu, S.-H.
Biocompatibility and favorable response of mesenchymal stem cells on fibronectin-gold nanocomposites. PLoS ONE 2013, 8,
e65738. [CrossRef] [PubMed]

36. Wang, F.; Mohammed, A.; Li, C.; Ge, P.; Wang, L.; King, M.W. Degradable/non-degradable polymer composites for in-situ tissue
engineering small diameter vascular prosthesis application. Bio-Med. Mater. Eng. 2014, 24, 2127–2133. [CrossRef]

37. Saxena, A.; Rauch, U.; Berg, K.E.; Andersson, L.; Hollender, L.; Carlsson, A.-M.; Gomez, M.F.; Hultgårdh-Nilsson, A.; Nilsson,
J.; Björkbacka, H. The vascular repair process after injury of the carotid artery is regulated by IL-1RI and MyD88 signalling.
Cardiovasc. Res. 2011, 91, 350–357. [CrossRef] [PubMed]

38. Sgarioto, M.; Vigneron, P.; Patterson, J.; Malherbe, F.; Nagel, M.-D.; Egles, C. Collagen type I together with fibronectin provide a
better support for endothelialization. Comptes Rendus Biol. 2012, 335, 520–528. [CrossRef]

39. Daum, R.; Visser, D.; Wild, C.; Kutuzova, L.; Schneider, M.; Lorenz, G.; Weiss, M.; Hinderer, S.; Stock, U.A.; Seifert, M.; et al.
Fibronectin Adsorption on Electrospun Synthetic Vascular Grafts Attracts Endothelial Progenitor Cells and Promotes Endothelial-
ization in Dynamic In Vitro Culture. Cells 2020, 9, 778. [CrossRef] [PubMed]

40. Chen, Y.-W.; Hsieh, S.-C.; Yang, Y.-C.; Hsu, S.-h.; Kung, M.-L.; Lin, P.-Y.; Hsieh, H.-H.; Lin, C.-H.; Tang, C.-M.; Hung, H.-S.
Functional engineered mesenchymal stem cells with fibronectin-gold composite coated catheters for vascular tissue regeneration.
Nanomed. Nanotechnol. Biol. Med. 2018, 14, 699–711. [CrossRef]

41. Huang, H.; Lai, W.; Cui, M.; Liang, L.; Lin, Y.; Fang, Q.; Liu, Y.; Xie, L. An evaluation of blood compatibility of silver nanoparticles.
Sci. Rep. 2016, 6, 25518. [CrossRef]

42. Koteliansky, V.E.; Glukhova, M.A.; Benjamin, M.V.; Smirnov, V.N.; Filimonov, V.V.; Zalite, O.M.; Venyaminov, S.Y. A Study of the
Structure of Fibronectin. Eur. J. Biochem. 1981, 119, 619–624. [CrossRef]

43. Baujard-Lamotte, L.; Noinville, S.; Goubard, F.; Marque, P.; Pauthe, E. Kinetics of conformational changes of fibronectin adsorbed
onto model surfaces. Colloids Surf. B Biointerfaces 2008, 63, 129–137. [CrossRef]

44. Li, H.; Chang, J. Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through
paracrine effect. Acta Biomater. 2013, 9, 6981–6991. [CrossRef]

45. Couet, F.; Rajan, N.; Mantovani, D. Macromolecular biomaterials for scaffold-based vascular tissue engineering. Macromol. Biosci.
2007, 7, 701–718. [CrossRef]

46. Miller, D.C.; Haberstroh, K.M.; Webster, T.J. PLGA nanometer surface features manipulate fibronectin interactions for improved
vascular cell adhesion. J. Biomed. Mater. Res. Part A 2007, 81, 678–684. [CrossRef] [PubMed]

47. McMurray, R.J.; Gadegaard, N.; Tsimbouri, P.M.; Burgess, K.V.; McNamara, L.E.; Tare, R.; Murawski, K.; Kingham, E.; Oreffo,
R.O.; Dalby, M.J. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat.
Mater. 2011, 10, 637–644. [CrossRef] [PubMed]

http://doi.org/10.1007/s00775-007-0208-z
http://www.ncbi.nlm.nih.gov/pubmed/17353996
http://doi.org/10.1016/j.nano.2006.12.001
http://doi.org/10.1007/s10439-015-1400-x
http://doi.org/10.1007/s12015-010-9196-4
http://www.ncbi.nlm.nih.gov/pubmed/20972649
http://doi.org/10.1371/journal.pone.0035685
http://www.ncbi.nlm.nih.gov/pubmed/22558198
http://doi.org/10.1093/cvr/cvr053
http://doi.org/10.1038/cddis.2011.37
http://doi.org/10.1080/10409238.2016.1184224
http://doi.org/10.1007/s00216-011-4764-2
http://doi.org/10.5405/jmbe.1109
http://doi.org/10.5966/sctm.2011-0018
http://www.ncbi.nlm.nih.gov/pubmed/23197761
http://doi.org/10.1371/journal.pone.0065738
http://www.ncbi.nlm.nih.gov/pubmed/23826082
http://doi.org/10.3233/BME-141023
http://doi.org/10.1093/cvr/cvr075
http://www.ncbi.nlm.nih.gov/pubmed/21421554
http://doi.org/10.1016/j.crvi.2012.07.003
http://doi.org/10.3390/cells9030778
http://www.ncbi.nlm.nih.gov/pubmed/32210018
http://doi.org/10.1016/j.nano.2017.12.023
http://doi.org/10.1038/srep25518
http://doi.org/10.1111/j.1432-1033.1981.tb05652.x
http://doi.org/10.1016/j.colsurfb.2007.11.015
http://doi.org/10.1016/j.actbio.2013.02.014
http://doi.org/10.1002/mabi.200700002
http://doi.org/10.1002/jbm.a.31093
http://www.ncbi.nlm.nih.gov/pubmed/17187386
http://doi.org/10.1038/nmat3058
http://www.ncbi.nlm.nih.gov/pubmed/21765399


Int. J. Mol. Sci. 2021, 22, 9262 20 of 20

48. Grellner, W.; Georg, T.; Wilske, J. Quantitative analysis of proinflammatory cytokines (IL-1β, IL-6, TNF-α) in human skin wounds.
Forensic Sci. Int. 2000, 113, 251–264. [CrossRef]

49. Gliga, A.R.; De Loma, J.; Di Bucchianico, S.; Skoglund, S.; Keshavan, S.; Wallinder, I.O.; Karlsson, H.L.; Fadeel, B. Silver nanoparti-
cles modulate lipopolysaccharide-triggered Toll-like receptor signaling in immune-competent human cell lines. Nanoscale Adv.
2020, 2, 648–658. [CrossRef]

50. Esumi, K.; Takei, N.; Yoshimura, T. Antioxidant-potentiality of gold–chitosan nanocomposites. Colloids Surf. B Biointerfaces 2003,
32, 117–123. [CrossRef]

51. Christenson, E.M.; Anderson, J.M.; Hiltner, A. Antioxidant inhibition of poly (carbonate urethane) in vivo biodegradation. J.
Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2006, 76, 480–490.
[CrossRef]

52. Crisan, M.; Yap, S.; Casteilla, L.; Chen, C.-W.; Corselli, M.; Park, T.S.; Andriolo, G.; Sun, B.; Zheng, B.; Zhang, L. A perivascular
origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008, 3, 301–313. [CrossRef] [PubMed]

53. Caplan, A.I.; Dennis, J.E. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 2006, 98, 1076–1084. [CrossRef] [PubMed]
54. Van Hinsbergh, V.W.; Engelse, M.A.; Quax, P.H. Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler. Thromb.

Vasc. Biol. 2006, 26, 716–728. [CrossRef]
55. Ghajar, C.M.; George, S.C.; Putnam, A. Matrix metalloproteinase control of capillary morphogenesis. Crit. Rev. Eukaryot. Gene

Expr. 2008, 18, 251–278. [CrossRef] [PubMed]
56. Fortini, C.; Toffoletto, B.; Fucili, A.; Puppato, E.; Olivares, A.; Beltrami, A.P.; Fiorelli, V.; Bergamin, N.; Cesselli, D.; Morelli, C.J.

Circulating stem cell vary with NYHA stage in heart failure patients. J. Cell. Mol. Med. 2011, 15, 1726–1736. [CrossRef]
57. Hung, H.S.; Chu, M.Y.; Lin, C.H.; Wu, C.C.; Hsu, S.H. Mediation of the migration of endothelial cells and fibroblasts on

polyurethane nanocomposites by the activation of integrin-Focal adhesion kinase signaling. J. Biomed. Mater. Res. Part A 2012,
100, 26–37. [CrossRef]

58. Sasaki, T.; Harada, S.; Yamamoto, S.; Ohkushi, D.; Hayama, B.; Takeda, K.; Hoashi, K.; Shiotani, J.; Takehana, K.; Doi, Y. Clinical
characteristics of peripheral venous catheter-associated gram-negative bloodstream infection among patients with malignancy.
PLoS ONE 2020, 15, e0228396. [CrossRef]

59. Boonpavanitchakul, K.; Pimpha, N.; Kangwansupamonkon, W.; Magaraphan, R. Processing and antibacterial application of
biodegradable sponge nano-composite materials of silver nanoparticles and silk sericin. Eur. Polym. J. 2020, 130, 109649.
[CrossRef]

60. Yen, H.J.; Hsu, S.h.; Tsai, C.L. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small
2009, 5, 1553–1561. [CrossRef]

61. Ding, D.-C.; Shyu, W.-C.; Chiang, M.-F.; Lin, S.-Z.; Chang, Y.-C.; Wang, H.-J.; Su, C.-Y.; Li, H. Enhancement of neuroplasticity
through upregulation of β1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiol. Dis. 2007,
27, 339–353. [CrossRef] [PubMed]

http://doi.org/10.1016/S0379-0738(00)00218-8
http://doi.org/10.1039/C9NA00721K
http://doi.org/10.1016/S0927-7765(03)00151-6
http://doi.org/10.1002/jbm.a.30506
http://doi.org/10.1016/j.stem.2008.07.003
http://www.ncbi.nlm.nih.gov/pubmed/18786417
http://doi.org/10.1002/jcb.20886
http://www.ncbi.nlm.nih.gov/pubmed/16619257
http://doi.org/10.1161/01.ATV.0000209518.58252.17
http://doi.org/10.1615/CritRevEukarGeneExpr.v18.i3.30
http://www.ncbi.nlm.nih.gov/pubmed/18540825
http://doi.org/10.1111/j.1582-4934.2010.01195.x
http://doi.org/10.1002/jbm.a.33224
http://doi.org/10.1371/journal.pone.0228396
http://doi.org/10.1016/j.eurpolymj.2020.109649
http://doi.org/10.1002/smll.200900126
http://doi.org/10.1016/j.nbd.2007.06.010
http://www.ncbi.nlm.nih.gov/pubmed/17651977

	Introduction 
	Results 
	Characterization of FN and FN-AgNP 
	Cytoskeletal Change and Migration Ability of HSF and MSC on FN-AgNP Nanocomposites 
	Cell Proliferation and ROS Production 
	Biocompatibility Assay 
	Effect of FN-AgNP Nanocomposites on SDF-1 Expression and MMPs Activation in MSCs 
	Endothelialization of MSCs Induced by FN-AgNP Nanocomposites 
	Biocompatibility and Endothelialization Ability in the Rat Subcutaneous Model 

	Discussion 
	Materials and Methods 
	Material Preparation of Fibronectin-Silver (FN-AgNP) Nanocomposite 
	Material Characterization of FN and FN-AgNP Nanocomposites 
	Cell Proliferation Test 
	Assessment of Reactive Oxygen Species (ROS) Generation 
	Monocyte Activation 
	Cytoskeleton of MSC 
	Assessment of MSCs Migration 
	Immunofluorescence Analysis of vWF, CD31 and CD68 Expression 
	Enzyme-Linked Immunosorbent Assay 
	Gelatin Zymography Assay 
	Rat Subcutaneous Implantation 
	Statistical Analysis 

	Conclusions 
	References

