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Abstract

Background: The use of whole-genome sequence data can lead to higher accuracy in genome-wide association
studies and genomic predictions. However, to benefit from whole-genome sequence data, a large dataset of sequenced
individuals is needed. Imputation from SNP panels, such as the Illumina BovineSNP50 BeadChip and Illumina BovineHD
BeadChip, to whole-genome sequence data is an attractive and less expensive approach to obtain whole-genome
sequence genotypes for a large number of individuals than sequencing all individuals. Our objective was to investigate
accuracy of imputation from lower density SNP panels to whole-genome sequence data in a typical dataset for cattle.

Methods: Whole-genome sequence data of chromosome 1 (1737 471 SNPs) for 114 Holstein Friesian bulls were used.
Beagle software was used for imputation from the BovineSNP50 (3132 SNPs) and BovineHD (40 492 SNPs) beadchips.
Accuracy was calculated as the correlation between observed and imputed genotypes and assessed by five-fold
cross-validation. Three scenarios S40, S60 and S80 with respectively 40%, 60%, and 80% of the individuals as
reference individuals were investigated.

Results: Mean accuracies of imputation per SNP from the BovineHD panel to sequence data and from the
BovineSNP50 panel to sequence data for scenarios S40 and S80 ranged from 0.77 to 0.83 and from 0.37 to 0.46,
respectively. Stepwise imputation from the BovineSNP50 to BovineHD panel and then to sequence data for
scenario S40 improved accuracy per SNP to 0.65 but it varied considerably between SNPs.

Conclusions: Accuracy of imputation to whole-genome sequence data was generally high for imputation from
the BovineHD beadchip, but was low from the BovineSNP50 beadchip. Stepwise imputation from the BovineSNP50 to
the BovineHD beadchip and then to sequence data substantially improved accuracy of imputation. SNPs with a low
minor allele frequency were more difficult to impute correctly and the reliability of imputation varied more. Linkage
disequilibrium between an imputed SNP and the SNP on the lower density panel, minor allele frequency of the imputed
SNP and size of the reference group affected imputation reliability.
Background
One advantage of using whole-genome sequence data
over genotypes from SNP (single nucleotide polymor-
phisms) panels for genome-wide association studies
(GWAS) and genomic prediction is that polymor-
phisms causing genetic differences can be included in
whole-genome sequence data. Because the causative
mutation is included, decay in linkage disequilibrium
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(LD) between a SNP and the causative mutation by re-
combination events is not an issue. Accordingly, test-
ing variants directly associated with a given trait is
possible and may lead to higher accuracy in GWAS
and genomic predictions. Moreover, since there is no
decay in LD when using sequence data compared to
traditional smaller-sized marker panels, genomic selec-
tion across generations and across breeds may be im-
proved e.g. [1-3].
Costs to generate whole-genome sequence data are

decreasing rapidly. It is expected that, in the next few
years, whole-genome sequence data will be widely available
for crops and livestock, as is already the case for human
studies [4]. Despite the fact that costs of sequencing are
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decreasing, it is still expensive to sequence large numbers
of individuals. A less expensive approach to produce se-
quence genotypes for a large number of individuals is to
impute from lower density marker panels to whole-genome
sequence data. In this case, a core set of individuals is
fully sequenced, and the lower density genotypes of
the remaining individuals will be imputed to whole-
genome sequence genotypes using the sequenced indi-
viduals as reference [5-8].
However, using sequence data may not lead to higher

accuracy in genomic predictions and GWAS if the ac-
curacy of imputation to sequence data is too low. Accur-
acy of imputation was studied in barley with 3200 SNPs
[9], in maize with 35 000 SNPs [10], in sheep with 50
000 SNPs [11] and in cattle with 50 000 SNPs e.g. [12]
and 777 000 SNPs e.g. [13], among others. The general
tendency in those studies was that the accuracy of im-
putation increased with an increasing number of SNPs
on the lower density marker panel, a decreasing distance
between the imputed SNP and the nearest SNP on the
lower density marker panel, an increasing minor allele
frequency (MAF) of imputed SNPs, an increasing level
of LD (linkage disequilibrium), and an increasing num-
ber of close relatives between imputed and reference in-
dividuals. In all those studies, imputation was done from
low-density panels to higher density panels but not to
whole-genome sequence data.
In contrast to crops and livestock, human sequence

data are available and accuracy of imputation to se-
quence data has been investigated e.g. [14-16], which
showed that accuracy of imputation was influenced by
reference group composition (e.g. size or populations in-
cluded), number of markers on the lower density marker
panel, and MAF of imputed SNPs. Moreover, according
to Li et al. [16], these factors influenced accuracy of im-
putation especially in the case of SNPs with a MAF
below 0.05. For imputation of SNPs with a MAF below
0.005, it was necessary that the reference group included
at least 1200 individuals and for imputation of SNPs
with a MAF between 0.005 and 0.05, only about 40% of
the SNP genotypes were imputed with 1200 individuals
in the reference group.
Crop and livestock populations differ from human

populations, in extent of LD and population structure
[17-19]. In cattle, effective population size of some indi-
vidual breeds has decreased rapidly to about 100 due to
intense selection [19-21]. Consequently, LD in cattle
breeds extends on relatively long distances. This is also
true for many other domestic animal and plant popula-
tions (e.g. dogs or barley), but not for human popula-
tions [17,18]. When using whole-genome sequence data,
differences in extent of LD and population structure
may affect imputation accuracies more in crop or live-
stock analyses than in human analyses.
The objective of this study was to investigate the ac-
curacy of imputation of genotypes from SNP panels to
whole-genome sequence data in a typical dataset of do-
mestic animals and to gain insights on the factors that
affect accuracy of imputation, such as number of se-
quenced individuals, number of SNPs on the lower dens-
ity marker panel, location and MAF of the imputed
SNPs. Because in practice true genotypes are unknown,
it is important to understand the underlying factors that
influence imputation accuracy. Holstein Friesian cattle
data provided by the 1000 bull genomes project [22,23]
was used in this study.
Methods
Genotypic data
Whole-genome sequence data of 114 Holstein Friesian
bulls were provided by the 1000 bull genomes project
(Run 2.0) [22,23]. Bulls that originated from Australia,
Canada, Denmark, Finland, France, Germany, Sweden,
The Netherlands, UK, and USA, were identified as key
ancestors of the global Holstein Friesian population.
Each bull was sequenced using Illumina HiSeq Systems
(Illumina Inc., San Diego, CA). Alignment, variant call-
ing, and quality controls were done in a multi-breed
population with sequenced Holstein Friesian, Fleckvieh,
Jersey, and Angus bulls as described by Daetwyler et al.
[22]. Variants used in our study were SNPs and INDELs
(both considered as SNPs here). Two alleles (A and B)
per SNP were assumed with a value of 0, 1, or 2 for
genotype AA, AB, or BB, respectively. To save comput-
ing time and space, only SNPs on Bos taurus autosome
1 (BTA1) were used. Similar results were expected for
other chromosomes.
A set of sequence variants and genotypes that can be

used to test imputation programs is available at request
via http://www.1000bullgenomes.com [23].
Imputation
Beagle 3.3.2 software [5] with default parameter settings
was used for imputation. No SNP edits were performed
prior imputation. For each individual, the most likely
genotypes were used and they were assumed to be
unphased, for both the reference and validation sets.
Moreover, it was assumed that all individuals were unre-
lated. Accuracy of imputation (r) was calculated as the
correlation between observed and imputed genotypes.
Imputed genotypes were assessed by estimated B-allele
dosage, which had a value between 0 and 2 and was
calculated using posterior genotype probabilities as esti-
mated by Beagle: 0 * P(AA) + 1 * P(AB) + 2 * P(BB). SNPs
with fixed observed genotypes or estimated B-allele dosages
for one or more validation groups were removed. Accuracy
of imputation ranged between −1 (opposite genotype
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imputed) and +1 (correct genotype imputed). An imput-
ation accuracy with a value around 0 meant random
imputation.
To assess imputation accuracy, five-fold cross valid-

ation was performed. Individuals were randomly divided
in five groups, group 1 to 5, and each group was used as
validation set once. For validation individuals, SNP ge-
notypes for SNPs corresponding to the Illumina Bovi-
neSNP50 BeadChip (Illumina Inc., San Diego, CA; 54
609 SNPs) or Illumina BovineHD BeadChip (Illumina
Inc., San Diego, CA; 777 962 SNPs) were retained, while
the remaining SNPs on the sequence panel were masked.

Scenarios
To study the effect of number of sequenced individuals
on imputation accuracy, three scenarios were consid-
ered: S80, S60, and S40. Reference group in scenarios
S80, S60 and S40 contained 80% (all, except validation
individuals), 60% and 40% of the individuals, respectively.
In scenarios S40 and S60, the two or three following groups
were designated as reference group. For example for sce-
nario S60, if individuals in group 1 were designated as valid-
ation individuals, then individuals in group 2, 3, and 4 were
designated as reference individuals.
According to VanRaden et al. [13], accuracy of imput-

ation from 3 K and 6 K panels to the BovineHD bead-
chip was improved if the genotypes were imputed first
to the BovineSNP50 and then to the BovineHD beadchip
instead of directly to the BovineHD beadchip. To study
if this stepwise imputation approach also improved ac-
curacy of imputation from the BovineSNP50 beadchip to
whole-genome sequence data, a stepwise imputation was
studied in scenario S40. Individuals in the two following
groups were reference individuals for imputation to the
BovineHD beadchip (step 1) and individuals in the two
previous groups were reference individuals for imput-
ation to whole-genome sequence data (step 2). For ex-
ample, if individuals in group 2 were designated as
validation individuals, then individuals in group 3 and 4
were assigned to the reference group for step 1, and in-
dividuals in group 5 and 1 were assigned to the refer-
ence group for step 2.

Factors that affect imputation accuracy
Factors that can influence imputation accuracy per SNP
are number of sequenced individuals, distance (in base
pairs) and MAF difference between an imputed SNP and
its nearest SNP on the lower density marker panel, and
MAF of imputed SNPs. MAF was calculated for each
SNP based on all 114 individuals. For graphical repre-
sentation and to illustrate the average behavior of SNPs,
SNPs were binned in groups of 1000 based on distance
or MAF (difference), and these binned SNPs were used
to study imputation reliability (r2).
To investigate the relationship between imputation re-
liability for a SNP and the factors that may influence its
value, a few simple functions were used. Although hap-
lotypes (and not single SNPs) are used for imputation of
missing SNPs, our first assumption was that imputation
reliability is based on LD between known and unknown
SNPs, and our second assumption was that MAF to-
gether with number of sequenced individuals will affect
imputation reliability.
Two functions were used to model LD between two

SNPs: one was based on distance [24] and one was based
on difference in MAF [25]. The first function describes
LD decay (rdist

2 ) based on effective population size (Ne)
and distance of an imputed SNP to its nearest SNP on
the lower density marker panel (c; in Morgan):

r2dist ¼
1

4 � Ne � cþ 1
:

Ne was assumed to be equal to 100 or 1000 and for
distances, it was assumed that 106 base-pairs (1 Mb) are
equal to 1 centiMorgan (cM) [26,27]. The second func-
tion describes the general upper limit for LD r2dMAF

� �

based on difference in MAF between an imputed SNP
and its nearest SNP on the lower density marker panel
(dMAF) [25]:

r2dMAF ¼ 1− 4dMAF
2dMAF þ 1

:

If two SNPs differ in MAF, LD between those SNPs is
expected to be low [28,29].
These two functions do not account for the MAF of

imputed SNPs or number of reference individuals. With
a low number of reference individuals, the probability
that individuals carry the rare allele of a SNP with a low
MAF is lower, thus increasing the number of reference
individuals may increase imputation reliability of this
SNP. To our knowledge, there is no theoretical function
that describes the relationship between imputation reli-
ability or LD and MAF of imputed SNPs or number of
reference individuals. Therefore, an empirical function
was derived by fitting a Michaelis-Menten function [30]
on the data:

r2MAF ¼ Vmax �MAF
Km þMAF

;

where r2MAF is the imputation reliability,Vmax is the esti-
mate of the upper limit of r2MAF and Km is the deflection
point, i.e. the estimated MAF when r2MAF = 1/2Vmax.
The Michaelis-Menten function is often used in studies
on enzyme kinetics that describe the rate of enzymatic
reactions based on substrate concentration [30]. This
function was chosen because of its simplicity (two mean-
ingful parameters) and its agreement with the observed
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data (starting from 0, it increases rapidly at the begin-
ning and asymptotically approaches its maximum).
The three functions mentioned each explain a part of

the imputation reliability. For overall imputation reliabil-
ity r2total

� �
the functions were multiplied:

r2total ¼ r2dist � r2dMAF � r2MAF :

In the functions for r2dist and r2dMAF , the nearest SNP
on the lower density marker panel was used although it
may not be the SNP that has the highest LD with the
imputed SNP. To take this into account, for each SNP,
r2dist � r2dMAF was estimated for the five nearest SNPs on
the lower density marker panel and, for each imputed
SNP, SNPs on the lower density marker panel that had
the highest value for r2dist � r2dMAF were selected. Next,
the parameters Vmax and Km were estimated by fitting
r2MAF . Finally, r2total was calculated and imputed SNPs
were grouped with 1000 SNPs into bins with similar
values of r2total and plotted against the observed r2 from
the sequence data.

Results
Whole-genome sequence data
BTA1 is the largest bovine chromosome and contains
approximately 160.106 bp. In the current 1000 bull ge-
nomes dataset, 1737 471 SNPs (of which 5.5% were
INDELs) were called on BTA1 based on a multi-breed
population. Of these SNPs, 76.8% showed variation
within the 114 Holstein Friesians. The BovineSNP50 and
BovineHD panels contained respectively 3514 and 46
499 SNPs on BTA1, however, not all these SNPs were
30

3

2,

267

1,69

Sequence
(1,737,471)

BovineSNP50
(3,514)

Figure 1 Number of SNPs on BTA 1. Venn diagram showing number of SNP
BovineHD) and in whole-genome sequence data and overlapping numbers.
found in the sequence data. For the BovineSNP50 panel,
3132 SNPs (0.18% of the SNPs in the sequence data) and
the BovineHD panel, 40 492 SNPs (2.33% of the SNPs in
the sequence data) were found in the sequence data.
Figure 1 presents a Venn diagram of the numbers of
SNPs on BTA1 in the two lower density marker panels
and in the whole-genome sequence data and numbers of
overlapping SNPs.

Accuracy of imputation
Mean accuracy of imputation per SNP was assessed by
cross-validation. For imputation from the BovineSNP50
beadchip to sequence data, it ranged between 0.37 for
scenario S40 and 0.46 for S80, and for imputation from
the BovineHD beadchip to sequence data, it ranged be-
tween 0.77 for scenario S40 to 0.83 for S80 (Table 1).
Standard deviations ranged from 0.36 to 0.37 for imput-
ation from the BovineSNP50 beadchip, and from 0.27 to
0.29 for imputation from the BovineHD beadchip. In
comparison to direct imputation from the BovineSNP50
beadchip to sequence data, stepwise imputation from
the BovineSNP50 to the BovineHD beadchip and then
to sequence data improved accuracy per SNP from 0.28
to 0.65 for scenario S40. However, it was still lower than
the accuracy of imputation from the BovineHD panel to
sequence data (0.77). Accuracy per SNP for stepwise
imputation was found to be similar to the product of im-
putation accuracies for the two steps.
Mean accuracy of imputation per individual was higher

than mean accuracy per SNP. For imputation from the
BovineSNP50 panel and from the BovineHD panel to se-
quence data, mean accuracies ranged from 0.78 for scenario
52

865

6,712

37,627

5,655

BovineHD
(46,499)

s on BTA1 in the two lower density marker panels (BovineSNP50 and



Table 1 Mean accuracy of imputation per SNP

Mean SD Minimum Maximum Nb SNPs

S80 BovineHD 0.83 0.27 −0.43 1.00 744 896

BovineSNP50 0.46 0.37 −0.54 1.00 768 907

S60 BovineHD 0.81 0.27 −0.37 1.00 736 216

BovineSNP50 0.43 0.36 −0.58 1.00 780 388

S40 BovineHD 0.77 0.29 −0.33 1.00 739 859

BovineSNP50 0.37 0.36 −0.40 1.00 764 439

2-step Step 1 0.83 0.15 −0.17 1.00 32 880

Step 2 0.77 0.29 −0.33 1.00 739 859

Overall 0.65 0.30 −0.41 1.00 764 912

Mean, standard deviation (SD), minimum and maximum accuracy of
imputation per SNP on BTA1 for different combinations of scenarios and lower
density marker panels; for scenario S40, accuracy of stepwise imputation is
also shown for step 1 (BovineSNP50 to BovineHD), step 2 (BovineHD to
sequence), and overall; number of SNPs used for analyses are presented in the
last column.
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S40 to 0.95 for S80, and from 0.93 for scenario S40 to 0.95
for S80, respectively (Table 2). Reasons for this difference
are discussed below. For imputation from either of the
lower density marker panels, standard deviation was 0.04
for all scenarios. As for accuracy per SNP, imputation ac-
curacy per individual was improved with stepwise imput-
ation from the BovineSNP50 beadchip to sequence data for
scenario S40 and reached a value similar to the product of
imputation accuracies of each step.
Factors that influence imputation accuracy
The range of variation for imputation accuracies per
SNP was large (Table 1). In Figures 2 and 3, this vari-
ation is illustrated for all SNPs on BTA1 for scenario
S80. More SNPs had an accuracy above 0.5 for imput-
ation from the BovineHD than from the BovineSNP50
Table 2 Mean accuracy of imputation per individual

Mean SD Min Max Nb SNPs

S80 BovineHD 0.95 0.04 0.70 0.97 744 896

BovineSNP50 0.80 0.04 0.61 0.85 768 907

S60 BovineHD 0.94 0.04 0.70 0.97 736 216

BovineSNP50 0.79 0.04 0.61 0.85 780 388

S40 BovineHD 0.93 0.04 0.69 0.96 739 859

BovineSNP50 0.78 0.04 0.60 0.85 764 439

2-step Step 1 0.92 0.07 0.53 0.99 32 880

Step 2 0.93 0.04 0.69 0.96 739 859

Overall 0.86 0.07 0.53 0.95 764 912

Mean, standard deviation (SD), minimum and maximum accuracy of
imputation per individual on BTA1 for different combinations of scenarios and
lower density marker panels; for scenario S40, accuracy of stepwise imputation
is also shown for step 1 (BovineSNP50 to BovineHD), step 2 (BovineHD to
sequence), and overall; number of SNPs used for analyses are presented in
the last column.
beadchip. However, even with imputation from the
BovineHD panel, SNPs from some regions of the gen-
ome were still imputed with low accuracy. For example,
around the position 75.103 Mb there is a region in which
the distance between imputed SNPs and SNPs on the
BovineHD panel is large and for which imputation was
difficult (Figure 3B). This region contained SNPs that
are on the BovineHD panel, but since they did not seg-
regate in the sequence data, no genotypes were available.
Figure 4 shows the mean imputation reliability versus

distance to the nearest SNP on the BovineHD beadchip
for the three scenarios. Imputation reliability (imput-
ation accuracy squared) decreased with increasing dis-
tance between imputed SNP and nearest SNP on the
BovineHD panel. This decrease in imputation reliability
follows the decay in LD, described as r2dist , for Ne = 1000.
Even at very small distances, the observed imputation
reliability is lower than r2dist . In addition to this distance
effect, reference group size has an effect. Since imputa-
tions from the BovineHD and BovineSNP50 panels
showed similar patterns for distance and all other factors,
only the results for the imputation from the BovineHD
panel are shown.
The difference in MAF between imputed SNPs and

their nearest SNPs on the BovineHD beadchip deter-
mines the maximum LD between two SNPs. Figure 5
shows this MAF difference versus r2dMAF and versus
mean imputation reliability for imputation from the
BovineHD beadchip for all three scenarios. For differ-
ences in MAF below 0.05, imputation reliability was
below r2dMAF , which was in agreement with expectation
based on maximum LD. For larger differences in MAF,
observed imputation reliabilities were above estima-
tions from r2dMAF . This pattern implies that other SNPs
than only the nearest SNP on the BovineHD panel in-
fluenced imputation reliability.
The effect of MAF of imputed SNPs on imputation reli-

ability is shown in Figure 6, with a Michaelis-Menten curve
fitted for each scenario separately. Imputation reliability in-
creased with increasing MAF. This increase in imputation
reliability was more pronounced at a MAF below 0.2. The
estimated value for the upper limit of r2MAF (Vmax) was 1.01
(SE = 0.007) for scenario S40, 0.98 for S60 (SE = 0.005), and
0.95 (SE = 0.004) for S80. The maximum value of r2MAF at
the maximum MAF value (MAF = 0.5) was 0.881 for sce-
nario S40, 0.893 for S60, and 0.886 for S80. The estimated
MAF when r2MAF = 1/2Vmax, or at the deflection point Km

was equal to 0.073 (SE = 0.002) for scenario S40, 0.049
(SE = 0.001) for S60 and 0.036 (SE = 0.001) for S80.
Figure 7 shows the overall estimation of imputation re-

liability ( r2total , Ne = 1000) against observed imputation
reliability for the three scenarios (S40, S60, S80). The es-
timated r2total followed the observed reliabilities closely,



Figure 2 Accuracy of imputation from the BovineSNP50 beadchip on BTA1. Location on BTA1 versus accuracy of imputation from the
BovineSNP50 beadchip to whole-genome sequence data for scenario S80; each green dot represents a SNP; orange dots at −1 are locations of
SNPs of the BovineSNP50 beadchip.
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although the estimated r2total were higher than the ob-
served reliabilities. At low r2total , the observed imput-
ation reliability deviated more from estimated r2total . In
particular, scenarios with a higher number of individuals
showed larger observed imputation reliabilities com-
pared to the estimated r2total.
Figure 3 Accuracy of imputation from the BovineHD beadchip on BTA
85 Mb on BTA1. Location on BTA1 versus accuracy of imputation from the
each green dot represents a SNP; orange dots at −1 are locations of SNPs
Discussion
Imputation from the lower density panel
Our objective was to investigate accuracy of imputation
from the lower density SNP panels to whole-genome
sequence data in Holstein Friesian cattle. Accuracy of
imputation was defined as the correlation between
1. (A) for the complete BTA1. (B) for the region between 70 and
BovineHD beadchip to whole-genome sequence data for scenario S80;
of the BovineHD beadchip.



Figure 4 Distance to the nearest SNP on the BovineHD beadchip versus mean imputation reliability. Distance to the nearest SNP on the
BovineHD beadchip versus mean imputation reliability for imputation from the BovineHD panel to whole-genome sequence data on BTA1 for
the three scenarios (S40, S60, and S80); SNPs were grouped in bins of 1000 SNPs with similar distance; the predicted LD r2dist

� �
was calculated with

assumed effective population sizes (Ne) of 100 (dashed line) and 1000 (solid line).
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observed genotypes and the imputed B-allele dosages.
Mean accuracy of imputation per SNP to whole-genome
sequence data was equal to 0.46 with 0.18% of SNPs
known (BovineSNP50), and 0.83 with 2.33% of SNPs
known (BovineHD). We chose to use the correlation
between observed and imputed genotypes to measure
accuracy of imputation, whereas most studies used percent-
age of correctly imputed SNPs. Compared to correlation
between observed and imputed genotypes, percentage of
correctly imputed SNPs does not account for the (low)
MAF of imputed SNPs. A necessary condition for correl-
ation between two random variables is that both variables
show variation. Therefore, SNPs with fixed observed geno-
types or estimated B-allele dosages for one or more valid-
ation groups were removed. This might have caused a
positive bias in the results, because of removal of mono-
morphic loci with poor imputation. In other studies e.g.
[11,13,31], criteria such as MAF greater than 0.01 were
used in data editing procedures. If this type of criteria had
been applied to the sequence data in our study, a large
Figure 5 Differences in MAF with the nearest SNP on the BovineHD b
between imputed SNP and the nearest SNP on the BovineHD beadchip ve
imputation from the BovineHD panel to whole-genome sequence data on
in bins of 1000 SNPs with similar MAF differences.
number of SNPs (987 514) would have been removed,
which is similar to what occurred with the criterion chosen
here.
Previous studies showed that increasing the number of

close relatives between imputed and reference individuals
increased imputation accuracy [9-11,32]. The sequenced
bulls in this study were key ancestors of the global Holstein
Friesian population and in general, were not very closely re-
lated. In fact, in some cases, they were chosen to be as little
related as possible, in order to maximize sequencing effort
of unique chromosome segments. A genomic relationship
matrix [33] was constructed based on SNPs found on
BTA1. About 90% of the off-diagonals were below 0.125
and 0.5% were above 0.5 (results not shown). In practice,
these sequenced bulls will be used as reference individuals
to impute genotypes of other individuals in the current
population, which might be their progeny or otherwise
closely related individuals. Therefore, it is expected that, in
practice, imputation accuracies will be higher than those es-
timated in this study.
eadchip versus mean imputation reliability. Differences in MAF
rsus predicted LD r2dMAF

� �
and versus mean imputation reliability for

BTA1 for the three scenarios (S40, S60, and S80); SNPs were grouped



Figure 6 Effect of MAF of imputed SNP and number of reference individuals on reliability of imputation. Combined effect of MAF of
imputed SNPs and scenario (S40, S60, and S80) on reliability of imputation from the BovineHD beadchip to whole-genome sequence data on
BTA1; SNPs per scenario were grouped in bins of 1000 SNPs with similar MAF; for each scenario a Michaelis-Menten function was fitted.
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SNPs used in this study were called in a larger multi-
breed population than the 114 Holstein individuals
included here. Ideally, to better mimic the reality and
answer the question on how many individuals need to
be sequenced, the number of reference individuals used
Figure 7 Overall prediction of imputation reliability versus observe
(r2total , Ne = 1000) plotted against observed imputation reliability for impu
on BTA1 for three scenarios (S40, S60, and S80); SNPs were grouped in b
in the three scenarios should also be used for variant
calling. This is important since the set of individuals
used for variant calling influences the called genotypes
and therefore a bias might be introduced in this study.
However, we expect that the effect on the results is
d imputation reliability. Overall prediction of imputation reliability
tation from the BovineHD panel to whole-genome sequence data
ins of 1000 SNPs with similar r2total .
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small, because we disregarded SNPs that did not show
variation in either the reference or validation set. These
are also SNPs that will not be called if only the Holstein
individuals are used for variant calling. Another devi-
ation from a real situation is that, for imputation, we as-
sumed that the called genotypes from the sequence data
were true genotypes, while it would have been more
correct to use the probabilities of inferred genotypes
from the sequence data as starting point for imputation.
Therefore, imputation accuracies estimated in this study
may differ slightly from accuracies obtained from “true
genotypes”.
Mean imputation accuracy per SNP from the

BovineSNP50 panel to whole-genome sequence data was
below 0.46. Our results showed that an alternative ap-
proach, i.e. using stepwise imputation from the Bovi-
neSNP50 to the BovineHD panel and then to sequence
data, also yielded high accuracies of imputation. For ex-
ample, in scenario S40, accuracy of the stepwise imputation
was higher (0.65) than that of direct imputation from the
BovineSNP50 beadchip to sequence data (0.37) or even
than that of direct imputation from the BovineSNP50 bead-
chip in scenario S80 (0.46). Such a high accuracy with the
stepwise approach was unexpected, because less informa-
tion was available in the reference set. In the two-step ap-
proach, 20% of the individuals had genotypes similar to
those of the BovineSNP50 panel (validation individuals),
40% had genotypes similar to those of the BovineHD panel
(reference individuals step 1), and 40% had sequenced ge-
notypes (reference individuals step 2). Whereas, in scenario
S80, with direct imputation from the BovineSNP50 panel
to sequence data, all reference individuals (80% of all indi-
viduals) had sequenced genotypes. VanRaden et al. [13]
found an increase in imputation accuracy of about 2%
when imputation was done from 3000 SNPs to 50 000
SNPs and then to 777 000 SNPs compared to direct imput-
ation from 3000 SNPs to 777 000 SNPs. Although less in-
formation is used, the reason why there is this increase in
imputation accuracy is not clear. However, one reason
could be that the imputation algorithm has problems with
selecting the correct haplotypes since there are multiple
possible matches between sequence haplotypes and a Bovi-
neSNP50 haplotype, whereas there are less possible
matches when BovineHD genotypes are added in between.
In this case, there is a higher probability of selecting the
long range haplotypes in the first step, and the short range
haplotypes in the second step, which increases accuracy of
imputation.
In cattle, many individuals with BovineHD genotypes are

available. Using those individuals to impute BovineSNP50
genotypes to BovineHD genotypes may increase the accur-
acy gained in the first step, which would result in even
higher accuracies when using the two-step approach than
those obtained here. In some species, this is not a realistic
scenario because no high-density marker panel is available
yet, i.e. for pig. Developing these high-density panels
and re-genotyping individuals can be expensive, espe-
cially if the end goal is to impute to sequence geno-
types. In a scenario in which no high-density panel is
available, it might be more cost effective to sequence
additional animals and use the two-step approach by
masking part of the SNPs of the individuals used for
the first imputation step. This will mimic a high-
density marker panel, and according to the results re-
ported here, the overall imputation accuracy would be
higher than that obtained by direct imputation from the
lower density SNP chip. An improvement of this step-wise
approach could be to use information of all individuals in
the reference population in both steps instead of using dis-
joint reference sets as was done in this study, to mimic
dairy cattle breeding practice. In the former case, the ex-
pected advantage is that all the genotype information will
be available in the last step, while with disjoint datasets, the
masked genotype information of individuals in the first step
is not used in the second step. Moreover, it would be inter-
esting to investigate the use of more than two steps because
there may be an optimum number of steps to reach the
highest accuracy.
In genomic selection, it is important to know the im-

putation accuracy per individual, because there is a
direct relation with the accuracy of genomic prediction
[34] and therefore the response of selection. In the
present study, mean imputation accuracy per individual
was higher compared to mean imputation accuracy per
SNP, which was also reported by Mulder et al. [34]. They
argued that allele frequencies bias imputation accuracy
per individual and suggested to subtract mean genotype
per SNP from observed and imputed genotypes. We
tested this hypothesis and showed it had a small effect
i.e. the mean accuracy of imputation from the BovineHD
panel per individual in scenario S80 decreased only by
0.04 to reach 0.90. After standardization for the geno-
type variance per SNP, mean accuracy of imputation per
individual in scenario S80 decreased furthermore to
0.87. This standardized mean accuracy per individual is
still higher compared to the mean accuracy per SNP,
however, the remaining bias is small and might be ex-
plained by a correlation between imputations of markers
within a haplotype within an individual [34].

Imputing SNPs with a low MAF
Using whole-genome sequence data for genomic predic-
tion and GWAS is interesting because the actual poly-
morphisms that cause genetic differences are potentially
included in the data e.g. [1-3]. The distribution of allele
frequencies of causal mutations is not known, but it is
hypothesized that those mutations may have a low MAF
[1]. To calculate imputation accuracy, all SNPs with
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fixed observed genotypes or estimated B-allele dosages
for one or more validation groups were removed. The
remaining numbers of SNPs per scenario and per SNP
chip are in Table 1. In the case of imputation from
the BovineHD panel in scenario S80, 744 896 SNPs
remained and 992 575 SNPs were removed from the
dataset. It is possible that removing these SNPs without
changing the allele dosage affected the results. Of the re-
moved SNPs, 40.6% had a MAF of 0, which could have
been easily imputed with a 100% accuracy, 56.1% had a
MAF between 0 and 0.1 and their imputation accuracy
could have been affected by their low MAF only, and the
remaining 3.3% had a MAF above 0.1, which could have
been difficult to impute for other reasons than their low
MAF. However, it is unlikely that these 3.3% SNPs could
affect the average imputation accuracy of common
markers because of their small number. Although many
loci with a low MAF in the observed genotypes were re-
moved, among the remaining SNPs those with a lower
MAF were more difficult to impute correctly and the re-
liability of imputation varied more than for the SNPs
with a higher MAF. These findings may potentially limit
the benefit of using imputed sequence data for genomic
prediction and GWAS. However, decay in imputation
reliability for SNPs with a lower MAF was smaller in the
scenarios with more reference individuals than those
with less reference individuals, which confirms results
with human data [5]. In large-sized reference popula-
tions, there is more chance to have multiple allele copies
to construct the haplotypes [16]. Moreover, Howie et al.
[35] showed that a multi-population reference panel can
improve imputation accuracy for SNPs with a low MAF,
because a low-frequency allele in one population can be
more frequent in another population. Since it is ex-
pected that, in the near future, more individuals from
more different breeds will be sequenced in cattle, it is
assumed that imputation accuracy of SNPs with a low
MAF will improve.
Still, in species with a small number of sequenced in-

dividuals, imputation of SNPs with a low MAF may
remain an issue. In such a situation, it might be benefi-
cial to use another algorithm for imputation, such as
IMPUTE [8] or MaCH [7]. It is claimed that these
methods perform better compared to Beagle when the
number of reference individuals is low [36,37] and for
SNPs with a low MAF [38]. All three methods use
Hidden Markov models, but IMPUTE and MaCH
model genotypes on a set of haplotypes without clus-
tering, whereas Beagle uses haplotype clustering strat-
egies and therefore may miss SNPs with a low MAF
[36,38]. Clustering strategies as in Beagle reduce com-
puter time and memory use compared to IMPUTE and
MaCH, which is an advantage when handling large
datasets [37].
Imputation reliability per SNP
Although the assumption that the polymorphisms re-
sponsible for genetic differences are included in the
dataset may be true for sequence data, for imputed se-
quence data it is important to know if polymorphisms
are imputed correctly. Beagle calculates an allelic R2

measure, which predicts accuracy of imputation per
SNP. Allelic R2 is the squared correlation between allele
dosage of the most likely imputed genotype and allele
dosage of the true imputed genotype [5] and the closer
these are, the more accurate the imputation is for the
SNP. The correlation between the allelic R2 measure
from Beagle and true imputation reliability that we
calculated was equal to 0.79 for imputation from the
BovineHD beadchip to sequence data in scenario S80
(results not shown). Of the 622 862 SNPs with estimates
for both measures, 67,2% showed a difference between
the allelic R2 measure from Beagle and true imputation
reliability of less than 0.1, although the maximum differ-
ence between both measures was 0.78. This indicates
that the allelic R2 measure provided by Beagle gives a
good indication of imputation reliability in general, al-
though in specific cases it may severely underestimate
imputation reliability.
In human studies, imputed genotypes did not result in

a high increase in power in GWAS compared to lower
density marker panels [31,39,40]. Therefore, it is import-
ant to understand the underlying factors that affect im-
putation reliability and to take those factors into account
when imputing genotypes. An important factor that
influences imputation reliability is the LD between the
imputed SNP and the SNP on the lower density marker
panel. This may reduce the advantage of using imputed
sequence data for genomic predictions or GWAS, com-
pared to true sequence data. The advantage with true se-
quence data is the lack of dependency on LD between
an SNP and the causal mutation in the sequence data,
assuming that the true causal variant was accurately
identified in the data. Our results showed that successful
imputation of the causal mutation depended on the LD
between the SNP on the lower density marker panel and
the causal mutation. Hence, causal mutations that are
poorly tagged by the low-density SNP panel will also be
difficult to detect for reliable imputation.
In the current Holstein Friesian population, the effect-

ive population size is estimated to be around 100
[20,21]. However, Figure 4 shows that the decay in im-
putation accuracy based on a Ne of 1000 seemed more
appropriate for our data than a Ne of 100. Hayes et al.
[41] reported that LD at very short distances is related
to effective population sizes in the past, while LD at lon-
ger distances is related to current effective population
sizes. In our study, LD was calculated on very short dis-
tances, which suggests that a historical value should be
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used for Ne, rather than the current value of 100. An-
other reason for imputation reliability to decay more
quickly than that expected from the decay in LD based
on a Ne of 100 is that other factors also affected imput-
ation reliability, or that the factors interacted with re-
spect to their effect on accuracy. For example, when the
SNP selected on the high-density panel and the SNP in
the sequence are close, their MAF may be comparable,
while as the distance between them increases the differ-
ence in MAF may also increase. Since these factors, dis-
tance and MAF, have a multiplicative effect, the decay in
imputation reliability is larger than that expected from
the decay in LD based on a Ne of 100. This expectation
is confirmed by the resemblance between the combined
functions for Ne of 100 (results not shown) and the
combined functions for Ne of 1000 (Figure 7).
Another factor that affected LD was the difference in

MAF, which at first sight may be an unexpected indica-
tor for imputation accuracy, especially since haplotypes
are used for imputation. However, as shown in other
studies [25,28,29] the difference in MAF determines the
mathematical upper limit of the LD between two SNPs.
At extreme differences in MAF, alleles at the different
SNPs cannot match, even if the distance between SNPs
is small. For example, the maximum possible correlation
obtained for two random binary variables with a MAF of
0.45 and 0.05, respectively, is 0.06. Thus, for two SNPs
at the same distance, LD may differ and they may be in
different haplotypes used for imputation. This could be
particularly important since the SNPs included in the
SNP panels are not randomly selected and generally
have a high MAF.
Imputation reliability was also affected by the MAF of

the imputed SNPs and by the number of sequenced indi-
viduals. Our results indicate that, if causal mutations
have a low MAF, a large-sized reference group is re-
quired to impute those mutations correctly and to bene-
fit from using sequence data, which confirms previous
reports [1,42]. Extrapolation of Km using a power func-
tion (R2 = 0.999) showed that, with more than 500 refer-
ence individuals, the increase in imputation reliability
was expected to be small (results not shown). This
agrees with other cattle studies that used lower density
marker data and showed that, with more than 1000 ref-
erence individuals, the increase in imputation accuracy
is expected to be small [12,32].
The goal of imputation is to assemble a large group of

individuals with phenotypic information and sequence
genotypes for genomic prediction or GWAS. For power
calculations in GWAS, imputation reliability (not only
overall imputation reliability but also imputation reliabil-
ity per SNP because of the variation between SNPs)
should be taken into account when imputed genotypes
are used [8]. Our results show that functions that
estimate LD based on distance only or on the difference
in MAF between the imputed SNP and the closest SNP
on the lower density marker panel did not provide a
good indication of imputation reliability. When these
functions were combined with an empirical derived
function that corrects for MAF of the imputed SNPs
and size of the reference group, a much better indication
of imputation reliability was obtained but it was still not
perfect (Figure 7). The same functions also held for
BTA29, even when using estimates for Vmax and Km

based on BTA1 (results not shown). Hence within this
population and dataset, the predictions hold across chro-
mosomes, at least on average since bins of 1000 SNPs
were used. However, these functions could be further
improved. For example, currently the functions are
based on the use of an individual SNP (the closest SNP
or the SNP in highest LD of the five closest SNPs) to es-
timate imputation reliability, whereas a program like
Beagle uses haplotypes for imputation. Moreover, instead
of choosing the closest SNP, a more distant SNP might
be in higher LD with the imputed SNP. Therefore, using
all SNPs or haplotypes is likely to estimate imputation
reliability better than the functions used here. However,
taking all SNPs into account or using haplotypes will
make estimation more time-consuming and less generic
applicable. Further research using simulation is neces-
sary to investigate the generality of the estimations and
the obtained imputation reliability. However, our study
shows that the functions described above provide a good
indication of the factors that affect imputation reliability
per SNP.
Obviously, imputation reliability does not rely only on

LD, MAF, and reference group size. Other factors, such
as genotyping errors [36], or degree of relationship be-
tween validation and reference groups [9,10,32], are also
important. It has been reported that increasing the num-
ber of close relatives in the reference group increased ac-
curacy of imputation and that this increase was more
pronounced when the differences between number of
SNPs genotyped in the validation and reference populations
were large (such as the differences between BovineSNP50
or BovineHD and sequence data) [10].

Conclusions
Accuracy of imputation to whole-genome sequence data
was generally high for imputation from the BovineHD
beadchip, but was low for imputation from the
BovineSNP50 beadchip. Stepwise imputation from the
BovineSNP50 to the BovineHD beadchip and to se-
quence data substantially improved accuracy of imput-
ation. SNPs with a lower MAF were more difficult to
impute correctly and led to more variation in reliability
of imputation. Functions that estimate LD based on
distance only or on the difference in MAF between the
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imputed SNP and the closest SNP on the lower density
marker panel did not provide a good indication of im-
putation reliability. However, when these functions
were combined with an empirical derived function that
corrects for MAF of the imputed SNPs and size of the
reference group, estimation of imputation reliability
was greatly improved.
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