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Abstract: Yarrowia lipolytica, the non-conventional yeast capable of high lipogenesis, is a microbial
chassis for producing lipid-based biofuels and chemicals from renewable resources such as lignocel-
lulosic biomass. However, the low tolerance of Y. lipolytica against furfural, a major inhibitory furan
aldehyde derived from the pretreatment processes of lignocellulosic biomass, has restricted the effi-
cient conversion of lignocellulosic hydrolysates. In this study, the furfural tolerance of Y. lipolytica has
been improved by supporting its endogenous detoxification mechanism. Specifically, the endogenous
genes encoding the aldehyde dehydrogenase family proteins were overexpressed in Y. lipolytica to
support the conversion of furfural to furoic acid. Among them, YALIOE15400p (FALDH2) has shown
the highest conversion rate of furfural to furoic acid and resulted in two-fold increased cell growth
and lipid production in the presence of 0.4 g/L of furfural. To our knowledge, this is the first report to
identify the native furfural detoxification mechanism and increase furfural resistance through rational
engineering in Y. lipolytica. Overall, these results will improve the potential of Y. lipolytica to produce
lipids and other value-added chemicals from a carbon-neutral feedstock of lignocellulosic biomass.
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1. Introduction

With the usage of fossil fuel encountering political and public opposition, the develop-
ment of renewable energy sources is vital for environmental sustainability [1]. Accordingly,
studies to find alternative manufacturing methods for renewable energy have arisen, spot-
lighting the biological route of using microorganisms as cell factories [2,3]. Lignocellulosic
biomass, such as agricultural and forestry residue, serves as a renewable feedstock for
microbial cell factories due to its low price and abundant availability [4]. However, the
recalcitrance of lignocellulosic biomass requires a pretreatment process prior to microbial
fermentation, from which fermentable sugars are generated along with various inhibitory
compounds [5]. The presence of furan derivatives, such as 5-hydroxymethyl-2-furaldehyde
(HMF) and 2-furaldehyde (furfural), hampers the microbial conversion of lignocellulosic
biomass into fuels and chemicals. Specifically, furfural leads to the diminished conversion
of lignocellulosic biomass into products by hampering the function of the enzyme involved
in glycolysis and by accumulating reactive oxygen species (ROS) in the cell [6,7]. The de-
crease in the intracellular ATP and NAD (P)H by furfural also delays cell growth showing
a prolonged lag phase [8].

Recently, various strategies for understanding and enhancing furfural tolerance have
been applied to develop microbial cell factories for lignocellulosic biorefinery. In a model
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yeast of Saccharomyces cerevisiae, rational engineering by the overexpression of alcohol dehy-
drogenases (ADHs) or transcription factors, such as HAA1 and/or TYE?7, increased furfural
tolerance during xylose fermentation, in which strain performance is severely reduced by
the presence of lignocellulosic biomass-derived inhibitors [9,10]. Adaptive laboratory evo-
lution (ALE) has also improved furfural tolerance without prior knowledge and provided
rational engineering targets [11]. S. cerevisiae with increased furfural tolerance was obtained
by subculturing in a medium containing 60% (v/v) non-detoxified hydrolysate liquor
for 100 generations [12]. The investigations of altered membrane permeability and ROS
concentration during the detoxification of furfural have provided insight for developing
engineering strategies to improve furfural tolerance [13,14]. In addition, intracellular redox
perturbation using the enzyme overexpression-related interconversion of NADPH and
NADP*, such as glucose-6-phosphate dehydrogenase (ZWF1) and glutathione oxidore-
ductase (GLR1), could increase furfural tolerance [15]. Isolated furfural tolerant strains
also serve as essential sources to understand and manipulate furfural tolerance in yeast
cell factories. S. cerevisiae strains tolerating three g/L of furfural have been identified by
investigating a collection of over 70 environmental and industrial isolates [16]. Heterozy-
gous intraspecies hybrid diploid strains of S. cerevisiae have been developed by crossing
two isolate strains of Yllc17_E5x and UWOPS87-2421«, a high ethanol producer and a
strain resistant against the inhibitors in lignocellulosic hydrolysates, respectively, providing
robust strains for lignocellulosic ethanol production [17]. In non-model organisms, similar
approaches have been applied to improve the perspectives of lignocellulosic biorefinery. In
a filamentous fungus of Neurospora crassa, the transcriptomic analysis revealed the genes
involved in furfural tolerance and the correlation between carbohydrate metabolism and
furfural tolerance [18]. Beyond improving furfural tolerance, the selective conversion of
furfural into furoic acid has been suggested as a promising bio-based upgrading strategy
to generate value-added products from lignocellulosic biomass as reported in Pseudomonas
putida [19] and Nocardia coralline [20].

Yarrowia lipolytica is a non-model oleaginous yeast that has recently emerged as one
of the most promising production chassis for biofuel and oleochemicals. Its native lipid-
production capacity has been increased to reach a lipid content of over 90% through
engineering the lipid metabolism [21,22]. The easy accessibility of metabolic engineering
tools, including the CRISPR-Cas9 system [23,24] and machine learning-based modeling [25],
accelerates the developments of Y. lipolytica strains to become a powerful microbial cell
factory. Recent reports on the use of lignocellulosic biomass as feedstock add more potential
to Y. lipolytica for sustainable bioproduction [26]. However, the low tolerance of Y. lipolytica
against inhibitory compounds in lignocellulosic hydrolysates limits the efficient conversion
of lignocellulosic biomass into desired products. Specifically, furfural was found to be the
most potent inhibitor on the growth of Y. lipolytica [27]. The growth inhibition was profound
even in the absence of other inhibitory compounds [28]. The inhibitory effect was observed
as the decreased lipid production during the bioreactor operation feeding pretreated
lignocellulosic biomass as a substrate [26]. Despite severe inhibition, understanding the
detoxifying mechanism and engineering efforts to enhance furfural tolerance have been
less studied in Y. lipolytica. Adapting the engineering approaches used in a model yeast
S. cerevisiae, the overexpression of alcohol dehydrogenase (ScADH6p), turned out to be
ineffective in Y. lipolytica to obtain robust cell growth in using lignocellulosic biomass [29].
Though the recent report on controlling inoculum size provides a helpful solution to reduce
the toxic effect of furfural [28], a more effective strategy to improve furfural tolerance
would be required, based on the detoxification mechanism.

In this study, furfural tolerance was improved by investigating the detoxification
mechanism in Y. lipolytica. The genes encoding aldehyde dehydrogenases (ALDHs) were
overexpressed to enhance furfural tolerance, leading to improved cell growth and lipid pro-
duction. The results contributed to the understanding of the furfural response mechanism,
implying that ALDHs play critical roles in the response to furfural in Y. lipolytica. Hence,
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this study improves the potential of Y. lipolytica as an industrial workhorse to efficiently
use lignocellulosic biomass as sustainable feedstock.

2. Results
2.1. Inhibitory Effect of Furfural on the Growth of Y. lipolytica

Previous studies have shown that 0.5 g/L furfural could be lethal to Y. lipolytica
cells [27], but furfural is often detected at concentrations below 0.5 g/L in non-detoxified
lignocellulosic hydrolysates [30,31]. To determine the effect of furfural on Y. lipolytica, cell
growth was monitored with various initial concentrations below 0.5 g/L. As shown in
Figure 1, furfural inhibited the growth of Y. lipolytica resulting in the reduced OD, especially
at the early stage of cultivation. At 24 h of cultivation, the OD of Y. lipolytica was decreased
by almost half, even with 0.2 g/L of furfural (Figure 1). With the furfural concentration
above 0.3 g/L, Y. lipolytica showed an extended lag phase, and no growth was detected
with 0.5 g/L of furfural during 100 h of incubation, consistent with the previous study [27].
Of the tested conditions, the cells exhibited the most severe inhibition with 0.4 g/L of
furfural. Thus, further experiments were conducted under the condition of 0.4 g/L furfural
to investigate the engineering approaches to improve furfural tolerance in Y. lipolytica.
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Figure 1. The inhibitory effect of furfural on the cell growth (a) and sugar consumption (b) of
Y. lipolytica. Furfural was added to the CSM media at various concentrations of furfural (0-0.5 g/L).
Error bars represent the standard deviation of biological triplicates.

2.2. Elucidating a Furfural Detoxification Mechanism in Y. lipolytica

Next, we tested a detoxification strategy from a model yeast of S. cerevisiae to determine
whether the furfural tolerance is enhanced in Y. lipolytica. In S. cerevisiae, overexpressing
the enzymes converting a reactive aldehyde of furfural to a less-toxic furfuryl alcohol, an
alcohol dehydrogenase (ADH, EC 1.1.1.1) ScCADH7p, and an aldehyde reductase (AHR,
EC 1.1.1.2) 5cOSIp (YKLO71wp), showed a positive result on relieving furfural inhibi-
tion [32-34]. To this end, we overexpressed SCADH7p and ScOSI1p under the control of
TEF promoter with UAS1B enhancer [35] and evaluated the inhibitory effect of furfural
on the cell growth and sugar consumption of Y. lipolytica. However, the overexpression
did not successfully restore cell growth and glucose consumption. The strains overexpress-
ing SCADH7p and ScOSI1p even showed reduced cell growth and glucose consumption
compared to the control strain harboring an empty plasmid (Figure S1b,c). Unexpectedly,
furoic acid was detected during the HPLC analysis of the culture product. After 120 h of
cultivation, a furoic acid peak appeared as a furfural peak vanished (Figure 2b). A furfuryl
alcohol peak was not detected throughout the cultivation for 170 h.
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Figure 2. The hypothesized mechanism (a) of furfural detoxification in Y. lipolytica by either ADH
or the ALDH converting furfural into furfuryl alcohol or furoic acid, respectively. The HPLC
chromatograms (b) of the sample from the control strain expressing empty plasmid at the initial (0 h)
and 120 h of incubation under a furfural stress condition.

Based on the detection of furoic acid, we hypothesized that endogenous aldehyde
dehydrogenase (ALDH, EC 1.2.1.3) plays a role in converting furfural to furoic acid, a lesser
inhibitory compound in Y. lipolytica (Figure 2a). Hence, we conducted an overexpression of
endogenous ALDH to improve furfural tolerance in Y. lipolytica. To this end, we selected
five ALDH candidates, YALIOD07942p, YALIOE00264p, YALIOF04444p, YALIOE15400p, and
YALIOB01298p, from Genbank using BLASTP search against an ALDH from Escherichia
coli (EcAldH) (Table 1). The overexpression of EcAldH has been previously confirmed to
relieve oxidative stress effectively in Y. lipolytica [36]. With a broad substrate range [36],
we expected EcAldH to convert furfural to furoic acid effectively. EcAldH overexpression
resulted in 1.6-fold increased cell growth measured by OD at 72 h and shortened a lag
phase from 72 h to 24 h (data not shown), supporting our hypothesis that the overexpres-
sion of ALDH accelerates furfural conversion (Figure 3). Interestingly, YALIOE15400p,
which showed the least similarity to EcAldH, was shown to be the most effective in re-
ducing the inhibitory effect of furfural in Y. lipolytica followed by YALIOB01298p. The
overexpression of ALDHs with high similarity to EcAldH, YALIOD07942p, YALIOE00264p,
YALIOF04444p, were not effective in converting furfural into furoic acid, possibly due to
improper conformation or poor expression of the enzymes.

Table 1. Description of the aldehyde dehydrogenases used in this study.

Enzyme Annotation Cofactor Similarity to EcAldH Growth Improvement *
EcAldH Aldehyde dehydrogenase NAD* - Yes
YALIOF04444p YER073w-like aldehyde NADP* 40% No

dehydrogenase
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Table 1. Cont.

Enzyme Annotation Cofactor Similarity to EcAldH Growth Improvement *
YALIOE00264p YORS74w-like aldehyde NAD* 40% No
dehydrogenase
YALIOD07942p YMR170c-like aldehyde NAD* 40% No
dehydrogenase
YALIOB01298p Fatty aldehyde dehydrogenase 3 NAD* 28.5% Yes
YALIOE15400p Fatty aldehyde dehydrogenase 2 NAD* 28.5% Yes

* Data adopted from Figure 3; the cell growth of Y. lipolytica in the presence of 0.4 g/L furfural.
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Figure 3. Comparison of the sequence similarities of the endogenous ALDHs, and the effect on
the furfural tolerance in Y. lipolytica. (a) Phylogenetic tree of aldehyde dehydrogenases used in this
experiment. Cell growth (b) and glucose consumption (c) of Y. lipolytica overexpressing various
aldehyde dehydrogenases in the presence of 0.4 g/L furfural.

2.3. Structural Analysis of the Effective ALDHs by a Homology Modeling and Docking Simulation

To discover a mismatch between the sequence similarity and the detoxification perfor-
mance of ALDHs, we employed a computational homology modeling approach and molec-
ular docking simulation on two endogenous ALDHs, YALIOE15400p and YALIOE00264p,
with low and high similarities to EcAIDH, respectively (Figure 4). The homology modeling
analysis revealed that three model structures have canonical ALDH conformation and
EcAldH and YALIOE00264p have almost identical structures. A molecular docking simula-
tion of furfural into ALDH structures showed that eight residues were mainly involved in
forming a furfural-binding pocket in the EcAldH and YALIOE15400p with high affinity of
furfural (—4.8 and —4.0 kcal/mol, respectively). In EcAldH, six residues, Phel69, Leul72,
Leul73, Trp176, Val301, and 11e303, contributed to hydrophobic cavity formation for fur-
fural binding. In particular, EcAIdH""¢'%% and EcAIdHA"1%8 residues were mainly involved
in stabilizing the furfural located near the catalytic residue of EcAIdHY$3%2, YALIOE15400p
has a similar substrate-binding cavity for furfural, in which polar Asn residue forming a
hydrogen bond with aldehyde group and catalytic Cys residue are completely conserved
as YALIOE15400p”s"130 and YALIOE15400p©Ys20, respectively. YALIOE15400pY™13! residue
is located at the corresponding site of EcAIdH™1%, and contributes to stabilizing the
furan ring of furfural by hydrophobic pi-pi stacking interaction. These observations in-
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dicated that various residues in each enzyme formed a suitable hydrophobic cavity for
furfural stabilization. YALIOE00264p with higher sequence similarity also has conserved
Asn and Cys residues as YALIOE00264p»s"186 and YALIOE00264p©Ys318, respectively, and
various hydrophobic residues for the furfural binding cavity formation. However, the
YALIOE00264pMet!91 residue appears to interfere with furfural stabilization, and a polar
YALIOE00264p<Y$31? residue appears to have a negative effect on hydrophobic pocket
formation and, thus, stabilizes furfural to a lesser degree.

YALIDEQO264p

EcAldH YALIOE15400p

(a) (R |
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- 4 &
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Figure 4. Monomeric structure (a) and docking simulation (b) of EcAldH and endogenous ALDHs.
Model structure and docking simulation of EcAldH (left), YALIOE15400p (middle), and YALIOE00264p
(right). The core residues forming a substrate-binding pocket are shown as a line model and labeled
appropriately. The furfural and NAD ligands are shown as stick models with grey and yellow
colors, respectively.

2.4. Improving Furfural Tolerance by the Overexpression of Fatty Aldehyde Dehydrogenases in
Y. lipolytica

The ALDHs with functional furfural aldehyde dehydrogenase activity, YALIOE15400p
and YALIOB01298p, were reported to be FALDH2 and FALDH3 [37,38]. In Y. lipolytica, four
genes encoding FALDHs are present, which are often involved in n-alkane metabolism [38]
(Table S5), opening up the possibility of identifying other enzymes effective in the con-
version of furfural to furoic acid. Therefore, we overexpressed two additional FALDHs
in Y. lipolytica along with the previously conformed FALDH2 and FALDH3. The over-
expression of FALDHs showed an improved conversion of furfural to furoic acid and
cell growth compared to the control strain harboring empty plasmids under the furfural
stress condition (Figure 5a). FALDH?2 was found to be the most effective in converting
furfural to furoic acid, resulting in an over two-fold increased growth rate compared to the
control (0.09 vs. 0.22 h~1). Some 93% of furfural was utilized within 24 h of incubation,
and the complete conversion of furfural into furoic acid was observed at 48 h in the strain
expressing FALDH2 (Figure 5d). Finally, we confirmed the effect of increased furfural
tolerance on the lipid production of Y. lipolytica. The strain expressing FALDH2 produced
2.6-fold higher lipid measured by Nile-red staining than the control strain expressing empty
plasmids (Figure 5e), indicating that lipid synthesis was accelerated under furfural stress
conditions. The improvement was more profoundly observed in the strain with higher
lipid production capacity (Figure 5e). When FALDH2 was co-expressed with diacylglycerol
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acyltransferase (DGA1), a common overexpression target for high lipid production in Y.
lipolytica [39], nine-fold higher fluorescence was measured compared to the control strain.
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Figure 5. Effect of FALDH overexpression on the cell growth and lipid production of Y. lipolytica
in the presence of 0.4 g/L furfural. Cell growth (a), glucose consumption (b), and the conversion
of furfural (c) into furoic acid (d) of Y. lipolytica expressing various fatty aldehyde dehydroge-
nases. Lipid production (e) was measured by using a (Nile-red assay in the Y. lipolytica expressing
FALDH2 and FALDH2/DGAT1 at 96 h of incubation. Error bars represent the standard deviation of
biological triplicates.

3. Discussion

Inhibitory compounds derived from lignocellulosic biomass constrain the cellular
growth and production performance of microbial cell factories. Furfural is a primary
inhibitor that severely affects the cell performance of Y. lipolytica. Previously, engineering
approaches to improve furfural tolerance were adapted from a model yeast of S. cerevisiae
by overexpressing alcohol or acetaldehyde reductases to convert furfural to less toxic
furfuryl alcohol [40,41]. However, the expression of SCADH7p [32] and ScOSI1p [33] was
not effective in improving the furfural tolerance of Y. lipolytica, implying there would be a
difference in the furfural detoxification mechanism between S. cerevisiae and Y. lipolytica.
S. cerevisiae, often growing in an anaerobic condition, exclusively converts furfural to
furfuryl alcohol [42]. As proposed in this study, an obligate aerobic yeast of Y. lipolytica [43]
seems to evolve to overcome furfural inhibition using an alternative route, the conversion
of furfural to furoic acid. This detoxification mechanism is found in some aerobic bacteria
such as Pseudomonas putida and E. coli [44]. Oleaginous yeasts of Trichosporon cutaneum and
Trichosporon fermentans also convert furfural into furoic acids [45,46]. However, furfuryl
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alcohol is often detected as an intermediate at a particular time point when culturing
these yeasts. In T. cutaneum, furfuryl alcohol was detected only at the beginning of the
cultivation, leaving furoic acid as a single product of furfural degradation for the rest of
the time [45]. On the other hand, the presence of furfuryl alcohol lasted over 200 h during
the cultivation of T. fermentans [46]. This opens up the possibility of the conversion of
furfural into furfuryl alcohol followed by fast conversion into furoic acid, which could have
led to no furfuryl alcohol detection during the culture of Y. lipolytica. Nevertheless, the
conversion of furfural into furoic acid seems to be the dominant detoxification mechanism
in Y. lipolytica since the overexpression of alcohol dehydrogenases from S. cerevisiae did
not improve furfural tolerance. Interestingly, the amount of furoic acid produced was
almost the same as the amount of furfural added in the medium. No further conversion
of furoic acid was observed during 120 h of cultivation. These suggest that no catabolic
pathway for furoic acid utilization exists in other oleaginous yeasts, such as Trichosporon
cutaneum [45]. Given that the selective biosynthesis of furoic acid is gaining interest as an
upgrading lignocellulosic biomass [19,20], co-production of lipids and furoic acid would
further improve the potential of Y. lipolytica as a workhorse for lignocellulosic biorefinery.

The enzymes in the FALDH superfamily tend to convert furfural to furoic acid more
efficiently than endogenous ALDHs. Of the FALDHs, FALDH2 was the most effective in
converting furfural to furoic acid, followed by FALDH4 and FALDH1 (Figure 5a). FALDHs
overexpression shortened the lag phase of the cell under the furfural stress condition,
implying the rate of furfural conversion defines the initial growth and thus final lipid
production in Y. lipolytica during aerobic fermentation.

The efficiency of FADHs in converting furfural to furoic acid seems to be determined
by the structure of the enzymes, in which the residues forming a hydrophobic cavity
play an important role. Through homology modeling, we predicted the structure of
the FADHs and EcAldH to understand the discrepancy between the sequence similarity
and the detoxification efficiency. In four FALDHSs with furfural dehydrogenase activity,
canonical ALDH conformation was confirmed, in which Cys residues for catalysis and
Asn residues for hydrogen bond formations are completely conserved. In addition, a
Tyr residue-stabilizing furan ring by pi-pi interaction was also conserved in all FALDHs.
Among the five hydrophobic residues in FALDH2, three (Tyr131, Leul35, and Val261) are
completely conserved in all FALDHs. These conserved residues seem to confer furfural
aldehyde dehydrogenase activity while unconserved hydrophobic residues determine the
furfural utilization capacity differences (Figure S2).

4. Materials and Methods
4.1. Strains and Culture Conditions

Yarrowia lipolytica PO1f strains (ATCC MYA-2613) were used in this study. The yeast
strain was grown in a yeast synthetic complete (YSC) medium with 50 mM potassium
phosphate buffer at pH 6.8, which contained 6.7 g/L yeast nitrogen base (YNB), 20 g/L
glucose, and a complete supplement mixture (CSM) or CSM-Leu or CSM-Leu-Ura (MP
Biomedicals, Solon, OH, USA). To evaluate furfural resistance, Y. lipolytica was inoculated
into 100 mL flasks containing 20 mL of the corresponding medium with furfural 0-0.5 g/L at
an initial OD600 of 0.2 and cultured at 28 °C with constant shaking at 200 rpm. E. coli DH103
(New England BioLabs, Ipswich, MA, USA) was used for cloning and plasmid propagation.
E. coli DH10f cells were grown at 37 °C in Luria-Bertani medium supplemented with
100 ug/mL of ampicillin (Sigma Aldrich, St. Louis, MO, USA) with constant shaking at
200 rpm.

4.2. Plasmid and Strain Construction

All plasmids and strains used in this study are summarized in supplementary Tables
51 and S2. To construct a plasmid expressing aldehyde dehydrogenase and other genes
(ScADH7p and ScOSI1p), genomic DNA was extracted from E. coli DH10p, Y. lipolytica
POL1f, and S. cerevisine BY4741 using Wizard Genomic DNA Purification Kit (Promega,
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Madison, WI, USA). Gene fragments were amplified from appropriate genomic DNA
through polymerase chain reaction (PCR) with primers including Ascl/Pacl enzyme sites
as an overhang. After purification, all DNA fragments were ligated into pMCS plasmid
with UAS1B enhancer and TEF promoter [35] using Ascl and Pacl restriction enzyme. The
constructed plasmids were confirmed by enzyme digestion and Sanger sequencing and
transformed into Y. lipolytica using a Frozen EZ Yeast Transformation II Kit (Zymo Research,
Irvine, CA, USA).

4.3. Phylogenetic Analysis

An amino acid sequence of aldehyde dehydrogenase (ALDH) from E. coli (RefSeq
No. WP_001009090.1) was queried to investigate orthologs in the genome of Y. lipolytica by
using BlastP from the BLAST package [47]. A total of 13 ALDHs were predicted, followed
by extracting the specific sequences of aldehyde dehydrogenase domain (IPR015590) based
on the Interpro database [48]. The trimmed sequences were aligned using MUSCLE [49] in
the MEGA 11 platform [50]. The resulting alignments were used for a phylogenetic tree
construction by the maximum-likelihood inference with the JTT model in the MEGA 11.
For the estimation of confidence for the tree topology, 1000 bootstrap replications were
applied. The tree was visualized by the iTOL environment [51].

4.4. Protein Homology Modeling and Molecular Docking Simulation

The protein model structures of EcAlIdH (Uniprot P23883), FALDH?2 (YALIOE15400p),
YALIOE00264p were built using a protein structure homology modeling server, SWISS-
MODEL [52,53]. PDB codes of template structures, amino acid sequence identity between
query and template sequences, and QMEANDIsCo global scores are shown in Table S3.
TM-scores were calculated with pairwise structure alignment in protein data bank (PDB)
web service [54,55]. The model structures of EcAldH, FALDH2, and YALIOE00264p were
compared using jJFATCAT (rigid) parameters [56,57].

Molecular docking simulation of furfural to three aldehyde dehydrogenase (ALDH)
structures was performed by using AutoDock Vina [58]. Three ALDH model structures,
EcAldH, FALDH2, YALIOE00264p, were superimposed to chain A of EcAldH model struc-
ture, and then docking simulation was performed. Marvin was used for drawing the
furfural chemical structure to molecular docking simulation [59]. The pdbqt files were
generated by AutoDock Tools, and all steps were performed by the AutoDock Vina man-
ual [60]. The grid center and size information are shown in Table S4. Out of 90 docking
poses generated from the docking simulation of furfural to EcAldH and FALDH?2, the one
with the most appropriate direction and distance between the aldehyde group of furfural
and the catalytic residue was selected. For YALIOE00264p, no suitable docking pose was ob-
tained even with the simulation of 180 docking poses, of which furfural chemical structures
were not properly located at the substrate-binding pocket.

4.5. Lipid Analysis

To estimate lipids produced by Y. lipolytica, the Nile-red assay was performed ac-
cording to the previous study [61] with modifications: In brief, 100 pL of culture samples
grown for 96 h were harvested by centrifugation for 3 min at 10,000 x g and resuspended
in 500 uL PBS buffer (pH 6.8). The samples were stained by adding 10 uL of 1 mM
Nile-red (Sigma Aldrich, St. Louis, MO, USA) solution in DMSO and dark-incubated for
15 min at 30 °C. After centrifuging and washing with ice-cold water, the stained samples’
fluorescence signals were measured using TECAN Infinite Pro 200 (Tecan Group Ltd.,
Mainnedorf, Switzerland) equipped with excitation and emission filters for 535 nm and
580 nm wavelength, respectively.

4.6. Analytical Method

To estimate yeast cell growth, optical density (OD) of the culture broth was measured
using a spectrophotometer UV-1240 (Shimadzu, Kyoto, Japan). The glucose, furfural, and
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furoic acid concentrations were quantified using a high-performance liquid chromatog-
raphy system (HPLC, Agilent Technology 1100 series) equipped with refractive index
detectors with an Aminex HPX-87H column (Bio-Rad Inc., Hercules, CA, USA). The mobile
phase was 5 mM H,SO, with a flow rate of 0.6 mL/min, and the column temperature
was kept at 50 °C. Before analysis, each sample was filtered by a 0.22-um syringe filter
(Whatman, Kent, UK).

5. Conclusions

Enhancing furfural tolerance is a practical engineering strategy to improve the poten-
tial of Y. lipolytica as a production host for lignocellulosic biorefinery. Here, we investigated
the furfural detoxification mechanism in Y. lipolytica and applied the knowledge to improve
furfural tolerance through rational engineering. The overexpression of FALDH effectively
alleviated cellular toxicity and accelerated the conversion of sugars into lipids. Thus, this
study provides new insight into the effective bioconversion of lignocellulosic biomass
containing furfural as an inhibitory compound and offers an effective engineering strategy
to improve the potential of Y. lipolytica as a production host for lignocellulosic biorefinery.
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