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Background
The vital epigenetic mechanisms include DNA methylation, histone modification, 
genetic imprinting, etc. The most widely studied are PTM [1–3] and DNA methyla-
tion [4–6]. DNA methylation is an important component of epigenetic that affects 
the expression of genes without changing the gene sequence, opening up new ways 
for cancer diagnosis and treatment [7]. Bisulfite sequencing (BS-seq), which com-
bines the bisulfite treatment with the next generation sequencing (NGS), is the 
gold standard for methylation analysis [8]. It coverts unmethylated cytosine (C) to 
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thymine (T), while keeps methylated C unchanged [9]. As a result, the alignment of 
BS reads to the reference genome should be performed asymmetrically. That is, each 
T in BS reads might be aligned to T or C in the reference genome [10], but not vice 
versa. Owing to the reduced complexity of the BS reads and the asymmetric align-
ment challenge, the BS reads are more likely to be ambiguously aligned to the refer-
ence genome at multiple locations, called multireads [9]. In contrast, the reads that 
are uniquely aligned to its best position are named unique reads. If the alignments 
of multireads are used in the downstream analysis, artifacts would be introduced in 
the DNA methylation results. Therefore, these multireads are discarded in practice, 
which leads to the waste of sequencing depth and makes the methylation status of 
repetitive regions unresolvable [11].

There are several statistical Bayesian-based attempts that are designed to iden-
tify the best mapping position of each multiread [12–15]. Most of them make use of 
known information, such as the mapping quality of multiread’s aligned positions, to 
select the most likely one. These methods present high accuracy only if multireads 
are overlapped with unique reads. To further improve the accuracy, the alignment 
coverage of unique reads onto the reference genome are also used [16]. Besides, [17] 
modified the scoring matrix to classify the mismatches and the indels into different 
types using the base abundances of 3’ end.

Here we propose EM-MUL, a novel method combining all ideas above. For the 
multireads overlapped with unique reads, we use a comprehensive scoring strategy 
to jointly consider the similarity among sequences, bisulfite treatment, methylation 
region information, as well as probabilities of sequencing errors. For the remaining 
multireads without any overlaps to unique reads, our method assigns the locations 
of these multireads to achieve uniform coverage of the genome wide. This paper is 
organized as follows. In the results and discussion section, we briefly introduce the 
real and simulated data sets of bisulfite sequencing in our experiments in order to 
compare EM-MUL with existing methods. Moreover, we give the alignment results 
of EM-MUL on multiple BS-reads datasets with different read lengths, coverage 
depths and sequencing error rates. In next section, we summarize the experimental 
results. In final section, our method are given in detail.

Results and discussion
Data generation and analysis

Real data

The real data sets we use are GSM1163695, GSM4558210 and GSM4558212, which 
are mentioned in article [14, 18, 19]. The first data set is the bisulfite sequencing data 
of the human frontal cortex, which includes ten parts, each with about 100 million 
single reads. The length of reads is 101bp. Other data sets are the bisulfite sequenc-
ing data of mouse embryos and the length of reads is 100bp. Randomly select 1% 
from the unique reads and shorted the length (i.e., 25bp shorter than original reads), 
so that part of the shorted reads is aligned to multiple positions, and the positions of 
the unique reads are used as the standard to verify accuracy.



Page 3 of 17Liu and Xu ﻿BMC Bioinformatics          (2021) 22:283 	

Simulated data

We use Mason2 [20] and Sherman [21] to simulate BS-reads, which have been used 
many times in previous studies [22–24]. Sherman can better simulate the real data set. 
However, due to the structural variation, insertion and deletion in the simulated BS-
reads, it is not possible to output accurate alignment positions. Mason2 can simulate 
SNP sites, generate sequencing errors, and also output alignment positions. It is helpful 
for the verification of our results. The reference genomes we use are the human genome 
(hg38), the mouse genome (mm38) and the Arabidopsis (tair10). The default parameters 
are as follows. The length is 100bp, the SNP rate is 0.001, the methylation conversion 
rate in CG is 70% and in CH is 0.5%. The average coverage depth is 20X and the sequence 
error rate is 0.01. All our experiments are run on an Intel(R) Xeon(R) Gold 5120 GPU @ 
2.20GHz machine with 28 cores and 512GB of memory.

Evaluation measures

Here, our method is compared with BAM [14], random selection [16] and other meth-
ods [25–29]. The evaluation criterions are accuracy, recall and F1 value. The accuracy (p) 
refers to the correct proportion of multireads we found. The recall (r) is the proportion 
of multireads that finds the unique position. The F1 (Eq.1) value comprehensively con-
siders both the accuracy and the recall. It can be used to measure the overall quality of 
the method.

In addition, we divide multireads into several groups according to the numbers of align-
ment positions to explore the effect of different methods on each sub-dataset. The eval-
uation criterion is the PerRight(i), which means the proportion of multireads correctly 
aligned by different methods. The PerRight(i) is calculated using Eqs. 2 and 3, where i 
indicates that this part of multireads is aligned to i positions of the reference genome. 
nrandom is the number of multireads aligned to the correct position by a random selec-
tion method, and nour is the number of correctly aligned multireads processed by our 
method. PerRight(i)random and PerRight(i)our are the number of multireads correctly 
handled by the two methods, respectively.

Compared with other methods

Results on real data

As shown in Fig. 1, for real human data sets, the experiments show that the accuracies 
of BWA-meth and BISCUIT are higher, but the recalls are lower. Between them, both 
the recall and F1 value of BISCUIT are higher than BWA-meth, and the accuracy of 

(1)F1 =
2× p× r

p+ r
.

(2)PerRight(i)random =

nrandom

nrandom + nour

(3)PerRight(i)our =
nour

nrandom + nour
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BWA-meth is higher than BISCUIT. The recall of EM-MUL is about 85%, which is 
∼ 9 % higher than BAM. The accuracy between our method and BAM is less than 1%. 
Compared with other methods, EM-MUL can obtain a higher F1 value and align more 
multireads to the right position. For all tools, the alignment results which MAPQ is 0 
are excluded as in [14].

The random selection method is to randomly select one of the positions when there 
are multiple positions with the same similarity score. As shown in the first column of 
Fig. 2, the number of multireads aligned to the correct positions is not much different 
between the two methods. When the number of positions is 11, the ratio of the num-
bers of reads aligned to the correct position after using two methods is about 1:9. The 
more alignment positions of multireads, the more difficult it is for the random selec-
tion method to obtain the correct alignment positions. The advantages of the EM-
MUL method have gradually become prominent.

The results of the mouse data sets show that BWA-meth and BISCUIT can get high 
accuracy (see Fig.  3). The recalls of BAM and EM-MUL are higher than the other 
methods, and EM-MUL can obtain the highest F1 value. The results of EM-MUL on 
mouse datasets show no obvious effect on human datasets. This may be due to the 
higher frequency of T and C in the mouse reference genome, which is difficult to 
determine the unique position.

Fig. 1  Comparison between BWA-meth, BISCUIT, BAM and EM-MUL on real human data sets. We choose 
three real human data sets SRR901380, SRR901384 and SRR901388. The horizontal ordinate of each picture 
represents recall, accuracy and F1, and the ordinate represents the value. We display the results of BWA-meth, 
BISCUIT, BAM and EM-MUL in turn
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Fig. 2  Comparison with random selection method on the real human data set. The data set we choose 
is SRR901388. After using Bismark to align all BS-reads to the reference genome, all possible alignment 
positions of multireads are obtained. We divided multireads into several groups according to the numbers 
of alignment positions to explore the effect of different methods on each dataset. The horizontal ordinate is 
the number of multiread’s mapping positions. The ordinate in the figure means the proportion of multireads 
correctly aligned by different methods

Fig. 3  Comparison between BWA-meth, BISCUIT, BAM and EM-MUL on real mouse data sets. We choose 
three real mouse data sets SRR11806587, SRR11806588 and SRR11806589. The horizontal ordinate represents 
recall, accuracy and F1, and the ordinate represents the value
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Results on simulated data

As shown in Fig. 4, for human data set, our method could assign 84% of multireads to the 
best locations with an accuracy rate of 82.3%. The BAM method could assign ∼ 64 % of 
multireads to unique locations with the accuracy of 88%. Our method align more ∼ 20 % 
multireads to a unique position, which only slightly affected the accuracy. BWA-meth 
and BISCUIT can align ∼ 30 % of the multireads to unique positions with the accuracy 
of ∼ 99 %. For mouse data set, multireads of 80% are aligned to unique locations. The 
accuracy is higher than 90%. For Arabidopsis data set, our method aligns ∼ 75 % of mul-
tireads to unique locations with higher accuracy. The F1 value of our method is higher 
than other methods in all three data sets, which is the best for mouse data set, next to 
human data set and last to Arabidopsis data set. It is because that the multiple alignment 
positions of multireads in the Arabidopsis data set are too similar. Our method can per-
form better on the simulated data sets. The reason is that our method can be more accu-
rate when the sequence length is longer and the number of overlapping unique reads is 
larger.

Figure 5 compares the EM-MUL method with the random selection method, based on 
the correct number of multireads. It can be seen that in the data set with the alignment 
position i = 2 , we correctly find 13% of multireads more than the randomly selected 
method. When i = 15 , the number of correctly found multireads is 85.6% of multireads 
more than randomly selected. As the alignment position i grows, the proportion of mul-
tireads our method finds correctly increases.

Fig. 4  Comparison between BWA-meth, BISCUIT, BAM and EM-MUL on simulated data sets. The human, 
mouse and Arabidopsis simulated data sets are used separately, which are generated using the default 
parameters described above. The evaluation index is recall, accuracy and the F1 value
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We also compare our method with other aligners, such as BWA-meth [25], Bat-
Meth2 [26], GEM3 [27], BISCUIT [28] and GSNAP [29]. The parameters used are 
listed in Table 1. As shown in Table 2, our method have the highest recall and F1 value 
compared with other methods. In Table  2, the bold fonts represent the best results 
in each evaluation criterion.  The experiment here considers all BS-reads, which is 
different from the previous experiments for the multireads. At the same time, the 

Fig. 5  Comparison with random selection method on simulated human data sets. The data set we use is 
simulated human data sets with a length of 100bp. The horizontal ordinate is the number of multiread’s 
mapping positions. The ordinate is the proportion of multireads correctly aligned by different methods

Table 1  Different parameters of methods compared

Software Version Arguments

BWA-meth 0.2.2 -Threads 16

BatMeth2 1.0 -p 6 -n 2

GEM3 3.6.0 default

BISCUIT 0.3.16 -t 6

GSNAP 2015-09-21 -A sam -t 6

EM-MUL – Default

Table 2  Effect of different read lengths on EM-MUL method using human, mouse and Arabidopsis 
simulated data sets

Tools Human 76bp Human 100bp

Recall (%) Accuracy (%) F1 (%) Recall (%) Accuracy (%) F1 (%)

BWA-meth 87.42 99.70 93.15 93.11 99.73 96.31

BatMeth2 87.32 98.57 92.61 92.79 98.89 95.74

GEM3 89.01 98.26 93.40 94.31 98.87 96.54

BISCUIT 88.81 99.57 93.88 94.10 99.67 96.8

GSNAP 90.45 97.53 93.86 94.35 98.22 96.25

EM-MUL 95.16 97.26 96.20 97.74 97.88 97.81
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determination of the unique position is very beneficial to the analysis of methylation 
information, which will be confirmed in the following experiments.

We use MethylDackel to infer the methylation level after using BWA-meth, BISCUIT, 
Bismark, EM-MUL and BAM. And the result is shown in Fig.  6. The data set we use 
is the human data with the length of 100bp, and the methylation rate at CpGs is 80%, 
which represents the level of methylated cytosines in CG-context. In other word, it 
means that 20% of CG-cytosines will be converted into thymines. It can be seen from 
Fig. 6a that the result of BISCUIT is closest to the true methylation level at CpGs, fol-
lowed by EM-MUL, Bismark and BWA-meth. But the fluctuation range of EM-MUL is 
smaller than BISCUIT. It can be seen from Fig. 6b that when the threshold of minimum 
MAPQ increases, the error between the methylation level and the true value is also 
smaller. When filtering with different MAPQ thresholds, the methylation level of BAM 
is between 74.1% and 79.6%. Since the methylation levels of different tools are close, the 
results of BAM are not shown in Fig. 6 for better discrimination. Compared with Bis-
mark, our method is closer to the true methylation level.

Effect of different parameters for our method on simulated data

Read length

Table 3 shows the effect of read length on the results. The BS-reads is simulated with 
lengths of 76bp, 100bp and 150bp, respectively. As we can see, our method can achieve 
better results at different read lengths. For human data sets, different read lengths have 
little effect on the results, with recall ranging from 85 to 87% and accuracy rate ranging 
from 76 to 80%. For the mouse data set and the Arabidopsis data, as the length of the 
simulated data sequence increases, the accuracy increases slightly. For the Arabidopsis 
data set, there is also a small increase in recall rate.

Methylation rate at CpGs

We generate BS-reads with the methylation rate at CpGs of 70%, 80%, 90% respectively 
and other parameters remain unchanged. It means the value of methylated cytosines in 

Fig. 6  The influence on the methylation level at CpGs for different methods and different MAPQ thresholds. 
a represents the changes in the methylation level at CpGs after treatment with different tools and b lists the 
specific values. The horizontal ordinate is the different minimum MAPQ threshold selected during processing, 
and the ordinate is different methylation levels at CpGs
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CG-context. When the value is 80%, it means 20% of CG-cytosines will be converted into 
thymines. We can see that the methylation rate at CpGs has little effect on our method 
(see Table 4). For the human data sets, the recall rate is about 85%, and the accuracy is 
about 79%. For the mouse data sets, the recall reaches 80% , the accuracy is about 90% 
and different methylation values at CpGs have a slightly negative effect on the results. 
For the Arabidopsis genome, the recall is from 74 to 75%, and the accuracy is about 88%. 
Different methylation rates at CpGs have little effect on the human and the Arabidopsis 
data sets.

The average coverage depth

The average depth of coverage of the simulated data sets is from 5X to 30X. With the 
increase of the coverage depth, the recalls and accuracies on both human and mouse 
data sets have increased slightly, and the accuracy has increased on the Arabidopsis data 
set, but have little effect on the recall as shown in Fig. 7.

Sequencing error rate

The data sets we use have different sequencing error rates, with values ranging from 0.5 
to 2%. Figure 8 shows the impact of sequencing error rate on the experimental results. It 
can be seen that as the sequencing error rate increases, the accuracy on all three simula-
tion data sets decreases.

Conclusions
In conclusion, due to the influence of bisulfite treatment, a large part of BS-reads are 
mapped to multiple locations. We proposed the EM-MUL method to find the optimal 
alignment position of multireads. First, our method can obtain a higher F1 value on both 
real and simulation data sets, which means it can align more multireads to the unique 
position correctly. Then, the effect of different parameters on the EM-MUL method 

Table 3  Effect of different read lengths on EM-MUL method using human, mouse and Arabidopsis 
simulated data sets

Read length Human Mouse Arabidopsis

Recall (%) Accuracy (%) Recall (%) Accuracy (%) Recall (%) Accuracy (%)

70bp 86.00 76.90 80.63 88.80 73.92 86.10

100bp 85.42 79.62 79.89 89.81 75.05 87.68

150bp 86.39 77.80 77.28 90.36 75.05 88.80

Table 4  Effect of different methylation rates at CpGs on EM-MUL method using human, mouse and 
Arabidopsis simulated data sets

CpG rate (%) Human Mouse Arabidopsis

Recall (%) Accuracy (%) Recall (%) Accuracy (%) Recall (%) Accuracy (%)

70 85.24 79.41 79.91 89.83 74.31 88.02

80 85.42 79.62 79.89 89.81 75.05 87.68

90 85.22 79.34 79.86 89.79 74.31 87.97
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was verified. The results suggest that the read length and methylation rate at CpGs 
had almost no effect on the performance of our method. The average depth of cover-
age has a positive effect on our method, and the sequence error has a negative effect on 
our method. Therefore, our method is robust and performs well in different read lengths 
and methylation rates at CpGs. The EM-MUL method can align partial BS-reads to 
the repeated regions, which is beneficial to the further analysis of the repeated regions. 
Then, we can use the information of multireads to obtain more accurate methylation 
analysis results.

Methods
Figure 9 presents the overall workflow of EM-MUL. It employs Bismark [30] to obtain 
the unique reads and the multireads, and then processes the alignment results of mul-
tireads. After that, it allocates each multiread to the most likely alignment position. For 

Fig. 7  The effect of average depth of coverage. a represents the influence of average depth of coverage 
depth on recall and b represents the influence of average depth of coverage on accuracy

Fig. 8  The effect of the sequence error rate. a represents the influence of the sequence error rate on recall 
and b represents the influence of the sequence error rate on accuracy
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multireads, we classified them into two groups according to whether they are overlapped 
with unique reads.

Definitions and notations

Given a multiread M of length K, there are Q mapping locations on the reference 
genome G and one of them is the location j (see Fig. 10). The probability Sj of M align 
to each position of the reference genome consists of two parts: the similarity SMkGs of M 
and reference genome, and the similarity SMkUt of M and unique reads. For the conveni-
ence of reading, all the list of symbols and notations used are provided in Table 5.

Multireads overlapped with unique reads

To deal with this type of multireads, here is divided into three steps. First, collect all 
mapping locations on the reference genome of a multiread. Second, for each position of 
multireads, find the unique reads that are overlapped with it. Third, give scores of the 
genome and unique reads on each base for any position of the multiread, add the total 

Fig. 9  The overall process of handling multireads. First, use Bismark to align BS-reads to the reference 
genome to get multireads and unique reads. Then use EM-MUL to assign the most likely alignment positions 
of multireads
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scores to select the best position. We will present how to score different positions in 
detail.

Calculate scores of multiple locations between multireads and reference

We choose a better scoring matrix in [17], and use more information and generate a new 
evaluation method. The elements in the scoring matrix are divided into insert, delete, 
match and mismatch, and their values are assigned according to the base abundances. 
Meanwhile, we also incorporate more known information, including the probability of 
sequencing individual mutations and the influence of bisulfite treatment. Our method 
calculates the probability of multiread M aligned to each position of the reference 
genome base by base. First, we adopt a scoring matrix donated as Score to assign dif-
ferent values according to the correspondence between Mk and Gs . The matrix Score is 

Fig. 10  An example of the relationship between multiread M, overlapping unique reads and reference G.The 
multiread M has two alignment positions and one of them is j. In the left location of multiread M, there are n 
overlapping unique reads

Table 5  Notation table

Symbol Definition

M One of the multireads

G The reference genome

Mk The k-th base of the multiread M

Gs The s-th base of the reference genome G

Ult The t-th base on the l-th overlapped unique reads

Sj Probability of M aligned to the j-th position of G

εk Probability of sequencing errors in Mk

εlt Probability of sequencing errors in Ult
loss A global loss function

WinLen The certain length we defined

a[i] Actual coverage of every locus in WinLen

x The average depth of coverage from 0 to WinLen− 1

SMkGs Probability of aligning Mk to Gs , related to the base Mk and Gs
P(Mk ,Gs) Part of SMkGs . The probability of observing Mk for a given base Gs
Score(Mk ,Gs) Part of SMkGs . A similar score between Mk and Gs
S[Gs] Total similar score when the base of the reference genome is Gs
SMkUt Probability of aligning Mk to the l-th overlapping unique reads Ut
SMkUlt Probability of aligning Mk to all overlapping unique reads Ult
P(Mk → Ult) Probability of no sequencing errors occurring in both Mk and Ult
Score(Mk ,Ult) Part of P(Mk → Ult) . A similar score between Mk and Ult
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shown in Table 6. The rows represent the reference genome, and the columns represent 
the multireads. When Mk is the same as Gs , a positive score can be obtained as shown by 
the main diagonal in Table 6. In other cases, they are all negative values, except for the 
alignment of C on the multiread to T on the reference genome.

Next, incorporate information such as mutation and bisulfite treatment. Let P(Mk ,Gs) 
be the probability of observing multiread base Mk for given the reference genome base 
Gs . It can be calculated by sequencing individual gene mutations and the probability of 
methylation in different regions. For example, when the base of the reference genome is 
C, Table 7 lists four different cases of the corresponding position between the multiread 
base Mk and the reference genome base Gs . P(CA) means the probability of a C to A 
mutation, and nonSNP means the factor that is the probability of not SNP site.

Then, shown as Formula 4, SMkGs is a weighted score of aligning multiread base Mk to 
reference genome base Gs . P(Mk ,Gs) is the probability of observing multiread base Mk 
given the reference genome base Gs . Score(Mk ,Gs) is the similar score between Mk and 
Gs . S[Gs] is the total similar score when the base of the reference genome is Gs . SMkGs can 
be computed by Formula 1, which reflects the similarity of Mk and Gs.

Calculate alignment scores between multireads and overlapping unique reads

For the reads located at the same location, these reads are largely similar [13]. There-
fore, we use the similarity between multireads and overlapping unique reads, and the 
locations with the highest similarity are the optimal locations. Similar to the Bayesian 
method, we also use the sequencing error information of unique reads overlapped with 
multireads to calculate the probability of multireads aligning to each position.

(4)
SMkGs =P(Mk ,Gs)× Score(Mk ,Gs)+

(1− P(Mk ,Gs))× (S[Gs] − Score(Mk ,Gs)).

Table 6  The scoring matrix [17] for the positive strand and overlapping unique reads. Different 
types of match and mismatch scores are different

A C G T N

A 6 − 18 − 18 − 18 − 25

C − 18 6 − 18 3 − 25

G − 18 − 18 6 − 18 − 25

T − 18 − 18 − 18 3 − 25

N − 25 − 25 − 25 − 25 25

Table 7  Four cases of the bases between the forward reference genome and multiread when the 
base on the reference is C

Reference base Multiread base Phenomenon Calculation formula

C A C to A P(CA)

C T Unmethylated C or C to T P(CT)+nonSNP*P(CC)

C C No mutation and methylated C NonSNP*P(CC)

C G C to G P(CG)
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First, calculate the similarity between the multiread and each overlapping unique read. 
Using scoring matrix Score(Mk ,Ult) and P(Mk → Ult) to calculate likelihood SMkUt of 
aligning multiread M to the reference genome G[j, j + K ] . P(Mk → Ult) can be computed 
by Formula 5.

where εk is the probability of sequencing errors in the base Mk and εlt is the probabil-
ity of sequencing errors in the base Ulk . When Mk and Ult are the same, P(Mk → Ult) 
means the probability of no sequencing errors occurring in both. When Mk and Ult are 
different, it means that at least one of the two has a sequence error. As shown in For-
mula 6, we define SMkUlt

 as follows. It is the probability of the k-th base of multiread M 
mapped to the corresponding position of l-th overlapping unique read.

Next, calculate the similarity between M with anyone of the overlapping unique reads. 
Formula 7 can calculate the probability of the k-th base of multiread M aligned to the 
corresponding position related to all overlapping unique reads. n is the number of over-
lapping unique reads corresponding to the k-th base of multiread M. To reduce the 
impact of each unique read on the calculation result, the result of all unique reads are 
averaged to obtain SMkUt , where is computed by Formula 7.

Calculate final score

In this step, the scores of the first two steps are weighted to get the final alignment scores 
of multireads and get the determined alignment locations. First, introduce the method to 
obtain the final alignment score. For multiread M, the score of each position can get from 
formula 8. Through the introduction in the previous two sections, we can calculate the 
probability S of multiread M aligned to each position according to the reference genome 
and the overlapping unique reads. The reference genome and overlapping unique reads 
have the same weight on the final scores, both are 0.5. If there are no overlapping unique 
reads, then SMkUt is assigned to SMkGs , and the result is calculated.

(5)P(Mk → Ult) =

{

εlt + εk − εlt × εk , if Ult = Mk

1− (εlt + εk − εlt × εk), if Ult �= Mk
,

(6)

SMkUlt
=

n
∑

l=1

P(Mk → Ult)× Score(Mk ,Ult)+

n
∑

l=1

(1− P(Mk → Ult))× (S[Ult ] − Score(Mk ,Ult)).

(7)SMkUt =

n
∑

l=1

SMkUlt
/n.

(8)Sj =

K
∑

k=1

SMkGs + SMkUt

2
.
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Then, get the determined alignment location of each multiread M. Suppose multiread 
M has Q mapping positions, we select the maximum value Smax and the second largest 
value Snextmax from these Q positions. We think that the position with the highest score 
is the best alignment position, only if the condition Smax − Snextmax > σ is satisfied, 
which is a modifiable threshold to adjust the resulting error. However, due to the exist-
ence of repeated regions on the reference genome, there are still parts of multireads that 
cannot be allocated. Subsequent steps need to be considered in conjunction with local 
coverage, and the optimal alignment location of the remaining multireads is determined.

Multireads without overlapping unique reads

This part of the processing is based on the following assumptions. After all reads are 
aligned to the reference genome, the overall distribution should be uniform, also known 
as smoothness [16]. Based on this assumption, we consider evaluating the local smooth-
ness of different mapping positions of each multiread and choose one position of the 
multiread that can maintain the overall smoothness.

First, evaluate the local smoothness of different mapping positions. For each possible 
alignment position of the multiread, a global loss function loss is calculated to represent 
the global non-smoothness, and the alignment position that makes the overall smooth-
est is selected. As Fig.  11 shows, multiread M has two mapping positions and unique 
reads about each position can be obtained to calculate local coverage. We use Formula 9 
to calculate the local smoothness loss about a certain length of positions. WinLen is the 
certain length we defined. a[i] is the actual coverage of every locus in WinLen, and x is 
the average depth of coverage from 0 to WinLen− 1.

Then, choose one position of each multiread. If multiread M has multiple alignment 
positions, we will calculate between every two alignment positions and the position with 
a minimum value of loss will be selected. This step is finished when every two positions 
are calculated.
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(9)loss =
1

WinLen

WinLen−1
∑

i=0

(a[i] − x)2.

Fig. 11  An example of getting the determined alignment location using coverage. The multiread M has 
two alignment positions. If M is in the left position, the average depth of coverage about it and the right will 
respectively more smooth than M in the right
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