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Abstract: In the field, maize flowering time and height traits are closely linked with yield, planting
density, lodging resistance, and grain fill. To explore the genetic basis of flowering time and height
traits in maize, we investigated six related traits, namely, days to anthesis (AD), days to silking (SD),
the anthesis–silking interval (ASI), plant height (PH), ear height (EH), and the EH/PH ratio (ER)
in two locations for two years based on two doubled haploid (DH) populations. Based on the two
high-density genetic linkage maps, 12 and 22 quantitative trait loci (QTL) were identified, respectively,
for flowering time and height-related traits. Of these, ten QTLs had overlapping confidence intervals
between the two populations and were integrated into three consensus QTLs (qFT_YZ1a, qHT_YZ5a,
and qHT_YZ7a). Of these, qFT_YZ1a, conferring flowering time, is located at 221.1–277.0 Mb on
chromosome 1 and explained 10.0–12.5% of the AD and SD variation, and qHT_YZ5a, conferring
height traits, is located at 147.4–217.3 Mb on chromosome 5 and explained 11.6–15.3% of the PH and
EH variation. These consensus QTLs, in addition to the other repeatedly detected QTLs, provide
useful information for further genetic studies and variety improvements in flowering time and
height-related traits.

Keywords: flowering time; height trait; genotyping-by-sequencing; doubled haploid; quantitative
trait locus

1. Introduction

Maize (Zea mays L.) is an important food and forage crop, and an industrial raw
material crop. Flowering time and height traits are important agronomical traits in maize
production, and are closely linked to the switch from vegetative growth to reproductive
growth [1]. However, the balance of this switch usually breaks down when the breeding
process is exposed to an exotic maize germplasm source, especially tropical and sub-
tropical material, which generally leads to late flowering and a greater height [2]. Therefore,
flowering time and height traits are often among the main issues that must be overcome
when using new maize germplasm.

Flowering time-related traits, including days to anthesis (AD), days to silking (SD), and
the anthesis–silking interval (ASI), are vital to harvesting date, crop rotation schemes, and
adaptation to different environments [3,4]. Previous studies have shown that these traits are
highly quantitative traits in maize [5]. Map-based cloning for dissecting quantitative traits
and using linked markers for improvement are an effective breeding strategy. To date, many
flowering time-related major QTLs detected by QTL mapping have been proposed, such as
epc [6], D8idp [7], zfl1 [8], conz1 [9], ZmPR1-4 [10], ZCN8 [11], and eIF-4A [12]. More recently,
high-resolution populations and high-density molecular markers have been widely utilized
in genetic mapping, and many novel loci for these traits have been found in maize [13,14].
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Additionally, a series of genes conferring flowering time have been cloned in maize, and
some molecular mechanisms have also been proposed. For example, most flowering time-
related genes were confirmed to encode a CCT domain-containing protein and are relative
to the photoperiod response [5,15–17]. Other molecular mechanisms were also found, for
example, the late flowering gene ID1 encodes a zinc finger transcription factor [18]; the
early flowering gene dlf1 encodes a leucine zipper protein [19]; and the early flowering
gene ZmSOC1 encodes a conserved MADS domain protein [20]. Other genes are regulatory
elements for flowering time; for instance, the cis-acting regulatory element Vgt1 influences
the transcript expression levels of the downstream gene ZmRap2.7 that is associated with
late flowering [21], and the gene ZmMADS1 is a positive transcriptional regulator for early
flowering [22]. These quantitative trait loci (QTLs)/genes and mechanisms provide useful
information for further genetic studies on flowering time.

Height traits are closely linked with planting density, lodging resistance, and biomass
yield [23], and dwarf mutants are considered a decisive factor for the “green revolu-
tion” [24]. Height traits including plant height (PH), ear height (EH), and EH/PH ratio (ER)
are complex traits that are controlled by multiple genes and environmental factors [25]. Due
to easy measurement of height and its high heritability, a large number of these maize QTLs
have been identified, most of which are clustered in at least four main regions on the genetic
linkage maps: bin 1.02–1.03 [26–28], bin 1.04–1.06 [26,29–31], bin 3.05–3.07 [27–29,31], and
bin 5.04–5.06 [30–33]. In addition, many height-related maize genes have been confirmed,
and some of their molecular mechanisms have been also illustrated. Most of these genes
are involved in hormone synthesis, for example, dwarf3, dwarf8, and ZmGA3ox2 influencing
gibberellin synthesis [24,34,35], and nana plant1 impacting brassinosteroid synthesis [36].
Others are involved in hormone transport, for example, brachytic2 influencing polar auxin
transports [37]. Moreover, some are involved in signaling related to hormone synthesis,
for example, dwarf9 regulates DELLA proteins of the gibberellin signal transduction path-
ways [38]. There are also other types of genes that regulate plant height, such as ZmRPH1
encoding a QWRF homolog protein in maize [39]. This useful information will be an
important basis for genetic studies and variety improvements in height traits.

The half-tropical inbred line Q1 is an important germplasm source for breeding in
the mountains of Southwest China. However, this line leads to late flowering and greater
height in an improving variety. The objectives of this study were to exploit early flowering
and dwarf alleles that are derived from temperate elite inbred lines Ye478 and Zheng58,
and to identify significant QTLs for further genetic study and molecular marker-assisted
(MAS) breeding. To achieve these objectives, three flowering time traits (AD, SD, and ASI)
and three height traits (PH, EH, and ER) were measured or calculated in two locations for
two years based on two double haploid (DH) populations. QTL analysis of these six traits
was used to explore the genetic basis and to identify significant QTLs closely linked with
these traits. The results will be used to understand the genetic basis of flowering time and
height traits, and further provide useful alleles for MAS breeding.

2. Materials and Methods
2.1. Genetic Materials

Two maize DH populations sharing a common parent were constructed as previously
described [40]. The common parent Q1 is a half-tropical inbred line that is important for
hybrid corn production in the mountains of Southwest China, but shows late flowering and
greater height. The other two parents, Ye478 and Zheng58, are elite inbred lines for hybrid
corn production, which have been widely planted over the past two decades on the plains
of China, and show early flowering and dwarfing. These three parents had no obvious
diseases or pests around tasseling and silking (Figure S1). In brief, the common parent
Q1 was crossed with two different parents (Ye478 and Zheng58), separately. Then, the F1
hybrids of Q1 × Ye478 (QY) and Q1 × Zheng58 (QZ) were subjected to haploid induction by
crossing with the haploid inducer. In the following planting season, the haploid seedlings
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were doubled by application of 0.06% colchicine. The two DH populations were named
QY and QZ and comprised 123 and 163 DH lines, respectively.

2.2. Phenotypic Evaluation and Statistical Analysis

The three parents and DH lines were evaluated as described previously [40] in two
locations: the towns of Huangliang (31.30◦ N, 110.89◦ E, altitude: 890 m) and Zhenzi (31.45◦

N, 110.99◦ E, altitude: 1321 m), located in the city of Yichang, Hubei Province, which are
typical maize-growing regions in the southwest mountains of China. The novel aspect of
the current work was the new phenotype value of six flowering time and height related
traits, as described below. These locations have a milder temperature and higher humidity
condition during the corn growing season, and usually have no obvious diseases and
pests around the tasseling period (Figure S1). In the town of Huangliang, we evaluated
flowering time and height-related traits in the years of 2016 and 2017, and in the town of
Zhenzi, we evaluated these traits only in 2017. In the subsequent analysis, we combined
the location and year as one variable factor, namely, environment. In each environment,
the parents and DH lines were planted in the field in two replicates with a completely
randomized block design. Each plot consisted of one row with 10 plants per row. All field
management of fertilization, irrigation, pest control, and weed management was the same
as that of local fields. In practice, 75 g/m2 of compound fertilizer (including N, P, and K)
was applied before sowing, and 20 g/m2 urea was replenished in the elongation period and
before tasselling. We sprayed herbicide (acetochlor) once after sowing to prevent weeds
and sprayed pesticides once before tasselling for pest control. Tasseling days (AD, days
to 50% plants tasseling in each plot) and silking days (SD, days to 50% plants silking in
each plot) were investigated, and the anthesis–silking interval (ASI) was also calculated for
each plot. Five representative plants in each plot were used for collecting plant height (PH;
in cm) and ear height (EH; in cm) data [31] at two weeks after tasseling, when most lines
have no obvious diseases and pests. The EH/PH ratio (ER) was calculated for each plot
and was transformed using the arcsine method for subsequent analysis.

Analysis of descriptive statistics (e.g., mean, range, skewness, and kurtosis) was
conducted in Excel 2010. The variance of phenotypic data was estimated using variance
analysis by the aov procedure in R software [41]. The model for variance analysis was
Y = µ + βG + γL + (γβ)LG + εLGR, where βG represents the effect of the Gth DH line, γL is the
effect of the Lth environment, (γβ)LG is the corresponding interaction effect, and εLGR is the
residual effect. All effects were considered to be random. The broad-sense heritability was
calculated by H2 = ∂2

G/(∂2
G + ∂2

GL/l + ∂2
e /lr), where ∂2

G is genetic variance, ∂2
GL is genotype

× environmental variance, ∂2
e is error variance, l is the number of environments, and r is

the number of replicates in each environment [42]. The best linear unbiased prediction
(BLUP) was calculated for each phenotype by the lme4 package [43] in R software across
different environments and used for subsequent analysis.

2.3. Linkage Map and QTL Analysis

Two ultra-high density linkage maps of the two DH populations were developed
as previously described [40]. In brief, the two DH populations were genotyped using
genotyping by sequencing (GBS) technology on an Illumina 4000 platform. A total of
64,553 and 42,792 high-quality SNP and INDEL markers were obtained, respectively.
Subsequently, linkage maps were constructed based on the linkage and crossover among
these markers. Finally, these two linkage maps included 1101 and 1294 bins, respectively.
The total map length was 1479.4 and 1872.1 cM, and the average distances between adjacent
bins were 1.36 and 1.44 cM for the QY and QZ genetic linkage maps, respectively.

QTL analysis was performed using the composite interval mapping method (CIM)
in Windows QTL Cartographer v2.5 [44]. The BLUP values of phenotype for each trait
across the three environments were used for QTL analysis. A significant LOD threshold
of a putative QTL was determined by 1000 permutation tests (α = 0.05) with a step size
of 1.0 cM. The LOD thresholds ranged from 2.9 to 3.2, and we used a mean value of 3
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to investigate significant QTLs. The confidence interval (CI) of QTLs was defined as the
2 LOD interval flanking the QTL peak. QTLs with overlapping CIs and identical effect
directions were assumed to be the same. QTL nomenclature followed the description
of [45] with minor modifications: the first letter was “q” for QTL, followed by the trait
abbreviation, a letter representing the population from which the QTL was identified (“Y”
for the QY population, “Z” for the QZ population), a number indicating the chromosome,
and a final letter differentiating QTLs on the same chromosome.

3. Results
3.1. Phenotypic Variation

The descriptive statistics for the six flowering time and height-related traits of the three
parents and the DH lines are represented in Table 1. The parent Q1 had a later flowering
time and taller height compared with the parents Ye478 and Zheng58. In addition, wide
flowering time variations were observed among the DH lines in the two populations.
For example, the ranges of AD and SD in the QY population were 74.0–100.0 days and
77.0–105.0 days, respectively, whereas in the QZ population, the ranges were 72.0–99.0 days
and 75.0–105.0 days, respectively. Similarly, wide variations in height-related traits were
also observed among the DH lines; for example, the PH ranged from 123.0 to 310.0 cm
in the QY population and from 140.0 to 305.0 cm in QZ population. The EH ranged from
37.0 to 143.7 cm in the QY population and from 34.3 to 157.0 cm in the QZ population.
Additionally, the frequency of phenotypic value in the two DH populations for the six traits
followed an approximately normal distribution (Figure 1), indicating that these traits were
controlled by QTLs. The phenotype values between PH and EH (p < 0.0001, 0.75–0.80),
between EH and ER (p < 0.0001, 0.82–0.86), and between AD and SD (p < 0.0001, 0.90–0.91)
were positively correlated in the two populations, whereas there was weaker correlativity
between the flowering time and the height-related traits (Figure 1).

The genotypic variance of the AD, ASI, PH, EH, and ER traits was significant in the
two populations, demonstrating real genetic differences for these six traits among DH lines
in the two populations (Table S1). The difference between environments was not significant
except for EH in the QY population, indicating that most of these traits were stable in each
environment. The environment and genotype by environment variance were significant
in the two DH populations, which could be caused by including differences of humidity,
temperature, and rainfall across the environments (Table S1). Heritability for AD, AD, ASI,
PH, EH, and ER ranged from 70.7 to 87.2% in the QY population, and ranged from 71.4 to
83.6% in the QZ population (Table S1). The high repeatability and heritability indicates
that much of the phenotypic variance was genetically controlled in the populations and
suitable for QTL mapping.

3.2. Identification of QTLs for Six Traits

We conducted a QTL analysis of individual DH populations using the corresponding
BLUP value across the three environments for each trait. A total of 34 QTLs associated
with the six traits were identified (Table 2, Figure 2).
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Table 1. Phenotypic summary of the two DH populations and their parents combined with the three environments.

Traits
Q1 Ye478 Zheng58 Population QY Population QZ

Mean ± SD a Range b Mean ± SD Skew. c Kurt. d Range Mean ± SD Skew. Kurt.

AD (days) 89.1 ± 3.2 80.0 ± 2.1 81.9 ± 2.1 74.0–100.0 87.8 ± 4.6 −0.07 −0.17 72.0–99.0 84.3 ± 4.7 0.13 −0.47
SD (days) 94.0 ± 1.8 83.5 ± 1.8 85.2 ± 1.6 77.0–105.0 91.3 ± 4.7 −0.09 0.02 75.0–105.0 88.5 ± 5.3 0.05 −0.19
ASI (days) 4.9 ± 1.9 3.5 ± 0.4 3.4 ± 1.4 0–12.0 3.5 ± 1.9 0.78 0.66 −2.0–16.0 4.3 ± 2.3 0.84 1.60
PH (cm) 270.1 ± 8.9 174.5 ± 10.7 158.6 ± 9.7 123.0–310.0 206.7 ± 28.2 0.11 0.43 140.0–305.0 208.1 ± 28.4 0.16 −0.10
EH (cm) 120.3 ± 3.2 60.5 ± 3.8 50.6 ± 4.3 37.0–143.7 75.3 ± 18.1 0.32 0.12 34.3–157.0 71.0 ± 19.3 0.32 0.16
ER (%) 44.6 ± 2.6 34.2 ± 4.1 31.7 ± 3.2 19.8–57.9 36.3 ± 5.3 0.02 0.29 18.6–54.9 35.8 ± 6.3 −0.13 −0.17
a standard deviation; b minimum value to maximum value; c skewness; d kurtosis. The traits of AD, SD, ASI, PH, EH, and ER represent days to anthesis, days to silking, anthesis–silking interval, plant height, ear
height, and EH/PH ratio, respectively. The population QY represents the DH population constructed by Q1 and Ye478, and the population QY represents the DH population constructed by Q1 and Zheng58.



Plants 2021, 10, 1585 6 of 13
Plants 2021, 10, x FOR PEER REVIEW 6 of 13 
 

 

 

Figure 1. Distribution plot of phenotypic value and the Pearson correlation coefficient among different traits in the DH 

lines of the two DH populations: (A) panel represents QY population; (B) panel represents QZ population. On the diag-

onal are the bar plots of phenotypic distributions for the six traits; below the diagonal is the regression graph, and each 

sub-graph represents a regression of two corresponding traits on the diagonal; above the diagonal is the Pearson corre-

lation coefficient, and each sub-graph represents a correlation coefficient of two corresponding traits on the diagonal. The 

“*” and “***” above the correlation coefficient represent significant p-value < 0.05 and 0.001, respectively. 

 

Figure 1. Distribution plot of phenotypic value and the Pearson correlation coefficient among different traits in the DH lines
of the two DH populations: (A) panel represents QY population; (B) panel represents QZ population. On the diagonal are
the bar plots of phenotypic distributions for the six traits; below the diagonal is the regression graph, and each sub-graph
represents a regression of two corresponding traits on the diagonal; above the diagonal is the Pearson correlation coefficient,
and each sub-graph represents a correlation coefficient of two corresponding traits on the diagonal. The “*” and “***” above
the correlation coefficient represent significant p-value < 0.05 and 0.001, respectively.
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Table 2. QTLs for the six flowering time and height-related traits in the two DH populations.

Pop. QTL
Name Chr. Peak

(cM) LOD Add. R2 (%)
2-LOD

Interval
(cM)

Range
(Mb) Trait

QY qPH_Y1a 1 40.2 4.2 −6.7 8.8 36.6–50.4 15.6–33.4 PH
qEH_Y1a 1 44.3 3.2 −3.4 7.0 41.3–49.6 22.6–33.0 EH
qAD_Y1a 1 173.9 6.5 −1.0 12.5 165.7–185.4 234.3–277.0 AD
qSD_Y1a 1 173.9 5.3 −1.0 10.7 162.4–184.3 232.2–272.1 SD
qSD_Y3a 3 35.3 3.5 −0.8 6.8 28.7–36.1 4.9–6.5 SD
qSD_Y5a 5 62.3 8.0 −2.0 16.7 54.1–71.3 20.3–165.9 SD
qAD_Y5a 5 66.5 4.3 −0.8 8.3 54.1–71.1 20.3–165.9 AD
qPH_Y5a 5 91.9 7.2 −9.0 15.3 74.6–96.0 165.9–203.8 PH
qEH_Y5a 5 102.5 5.6 −4.8 13.3 91.4–112.9 195.8–214.0 EH
qER_Y5a 5 117.3 3.0 −1.0 7.8 106.6–121.4 207.7–217.3 ER
qASI_Y5a 5 130.4 4.1 1.2 11.7 128.8–140.3 218.9–221.1 ASI
qPH_Y7a 7 44.3 3.1 −5.8 6.5 42.6–50.0 24.7–45.7 PH
qEH_Y7a 7 70.7 3.3 −3.5 7.7 63.2–80.6 119.5–134.7 EH
qEH_Y9a 9 37.7 5.1 −4.5 12.0 26.5–48.4 9.4–21.6 EH
qPH_Y9a 9 52.0 6.0 −8.4 14.0 43.7–65.6 16.8–108.9 PH

qAD_Y10a 10 34.5 4.3 −0.8 8.2 31.7–44.9 14.4–129.5 AD
qSD_Y10a 10 56.0 6.3 −1.1 13.5 45.1–59.9 129.5–142.3 SD

QZ qER_Z1a 1 90.0 7.9 −1.7 13.8 73.8–96.0 35.5–71.2 ER
qEH_Z1a 1 94.2 6.6 −4.6 11.2 83.4–107.2 51.4–85.1 EH
qPH_Z1a 1 109.0 5.0 −5.9 7.7 99.7–125.5 72.9–172.2 PH
qSD_Z1a 1 189.6 5.0 −0.9 10.0 176–197.0 221.1–240.4 SD
qER_Z1a 1 239.6 3.0 −1.0 4.8 235.3–250.5 279.6–285.5 ER
qEH_Z3a 3 60.6 4.1 −3.5 6.6 49.6–65.5 6.7–11.9 EH
qER_Z3a 3 60.6 12.0 −2.1 22.0 55.6–63.7 8.5–10.5 ER
qAD_Z4a 4 99.8 6.4 −0.8 11.3 83.4–104.9 158.2–181.5 AD
qPH_Z5a 5 111.7 7.5 −7.4 12.4 99.3–123.7 147.4–175.0 PH
qEH_Z5a 5 128.0 6.8 −4.7 11.6 116.7–138.5 168.6–199.3 EH
qEH_Z6a 6 153.7 3.0 2.9 4.4 146.5–160.7 166.8–169.7 EH
qEH_Z7a 7 68.0 3.2 3.1 5.1 56.8–78.7 87.4–126.7 EH
qSD_Z8a 8 85.5 3.8 −0.7 7.3 79.4–96.5 110.5–156.3 SD
qAD_Z8a 8 97.8 3.2 −0.6 5.6 80.9–99.3 112.4–163.8 AD
qPH_Z9a 9 97.9 8.9 −9.2 14.7 90.0–108.8 147.7–155.6 PH
qEH_Z9a 9 97.9 4.2 −4.0 6.8 89.7–105.9 147.7–155.2 EH
qPH_Z10a 10 29.0 3.1 −4.8 4.8 23.5–30.3 17.4–69.0 PH

“Pop.” represents the population from which the QTL was detected; “Chr.” is the chromosome; “LOD” is logarithm of odds; “Add.”
represents additive effect of QTL; “R2” is phenotypic variation explained by each QTL; “2 LOD interval” represents confidence interval
that defines the 2 LOD interval of the QTL; “Range” represents the physical interval of the QTL distributed in the chromosome according to
B73 RefGen_v4.

In the QY population, 17 QTLs were detected, with LOD scores ranging from 3.0 to
8.0. These QTLs were distributed on six chromosomes and explained 6.5 to 16.7% of the
phenotypic variation. Of these QTLs, there were three, four, and one QTLs conferring the
AD, SD, and ASI traits, respectively. Most of these flowering time-related QTLs decreased
phenotype value when they were from Ye478, except for qASI_Y5a, and five of them could
explain up to 10% of the phenotypic variation. In addition, four, four, and one QTLs
were detected as conferring the PH, EH, and ER traits, respectively. All of these height
trait-related QTLs also decreased phenotype value when they were derived from the parent
Ye478, and four of them could explain up to 10% of the phenotypic variation.
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Figure 2. Distribution of QTLs for the six flowering time and height-related traits on the maize chromosomes. Colored
lines depict QTL regions for different traits; the solid lines and hollow lines represent QTLs detected in the QY and QZ
population, respectively, and the black spots represent centromeres. The red and blue colors represent flowering time and
height traits, respectively, and the colors’ shading is used to distinguish the traits. The horizontal axes indicate the physical
location in different chromosomes.

In the QZ population, there also were 17 QTLs detected, with LOD scores ranging from
3.0 to 12.0. These QTLs were distributed on nine chromosomes, except for chromosome 2,
and explained 4.4 to 22.0% of the phenotypic variation. Of these QTLs, there were two and
two QTLs associated with the AD and SD traits, respectively, and no QTL was detected
for ASI. All of these flowering time-related QTLs decreased phenotype value when they
were from Zheng58, and two of them could explain up to 10% of the phenotypic variation.
In addition, four, six, and three QTLs were identified associated with the PH, EH, and ER
traits, respectively. Most of these QTLs decreased the phenotype value when they were
from Zheng58, except for qEH_Z6a and qEH_Z7a, and six of them could explain up to 10%
of the phenotypic variation.

3.3. Co-Localization of QTLs for Different Traits between the Two DH Populations

To determine the relationship of the six trait-related QTLs detected in different DH pop-
ulations sharing a common parent Q1, we compared the physical interval corresponding
to the two LOD interval for each QTL. Eleven chromosome regions contained overlapped
QTLs for more than one trait, which were distributed on chromosome 1, 3, 5, 7, 8, 9,
and 10 (Table 2, Figure 2). On chromosome 1, the region of 15.6–33.0 Mb includes two
overlapped QTLs (qPH_Y1a and qEH_Y1a); the region of 35.5–172.2 Mb includes three
overlapped QTLs (qPH_Z1a, qEH_Z1a, and qER_Z1a); and the region of 221.1–277.0 Mb
also includes three overlapped QTLs (qAD_Y1a, qSD_Y1a, and qSD_Z1a). On chromosome
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3, the region of 6.7–11.9 Mb includes two QTLs (qEH_Z3a and qER_Z3a). On chromo-
some 5, the region of 20.3–165.9 Mb includes two QTLs (qAD_Y5a and qSD_Y5a); and
the region of 147.4–217.3 Mb includes five QTLs (qPH_Y5a, qEH_Y5a, qER_Y5a, qPH_Z5a,
and qEH_Z5a). On the chromosome 7, the region of 87.4–134.7 Mb includes two QTLs
(qEH_Y7a and qEH_Z7a). On chromosome 8, the region of 110.5–163.8 Mb includes two
QTLs (qAD_Z8a and qSD_Z8a). On chromosome 9, the region of 9.4–108.9 Mb includes
two QTLs (qPH_Y9a and qEH_Y9a); and the region of 147.7–155.6 Mb includes two QTLs
(qPH_Z9a and qEH_Z9a). On chromosome 10, the region of 14.4–129.5 Mb includes two
QTLs (qAD_Y10a and qPH_Z10a). These overlapped chromosome regions could result from
pleiotropy or linked genes. Among these genetic hotspots, the regions of 221.1–277.0 Mb
on chromosome 1 (for flowering time traits), 147.4–217.3 Mb on chromosome 5 (for height
traits), and 87.4–134.7 Mb on chromosome 7 (for height traits) were co-localized QTLs
between the two DH populations, indicating that these regions could contribute to effects
in different genetic backgrounds. We named these three co-localized genomic regions
qFT_YZ1a, qHT_YZ5a, and qHT_YZ7a, respectively, and they will be the focus for fur-
ther study.

4. Discussion
4.1. Relationship between Flowering Time and Height-Related Traits

Flowering time and height traits are two of the most studied traits in maize. Most
studies indicate that these traits are closely correlated [36]. In this study, many correlations
between flowering time and height traits were found to be significant, indicating that there
could be pleiotropy or linked genes associated with these traits. In many crops, a series of
genes have been validated to regulate both flowering time and plant height, for example,
the rice genes Ghd7, DTH8, and Hd1 [46–48], and the maize gene Dwarf8 [49]. Additionally,
some co-localized QTLs for these traits have also been identified, such as in maize [25],
barley [50], and rice [51,52]. In our results, we found one significant co-localized genetic
locus between flowering time and height traits, located at 14.4–129.5 Mb on chromosome
10 and contributing to AD and PH. These results provide genetic confirmation of the
correlations between flowering time and height traits.

4.2. Potential Utilization of the Present QTLs

For any target trait, the QTL/gene that can be repeatedly identified across traits,
populations, and environments is desirable for successful implementation of MAS breed-
ing [31]. In the present study, we detected three consensus QTLs. Of these, the flowering
time-related QTL qFT_YZ1a could explain 10.0–12.5% of AD and SD variation in both of
the populations (Table 2), suggesting it may be a major QTL. The height trait-related QTL
qHT_YZ5a contributed to 11.6–15.3% of PH and EH variation in both DH populations,
which could also be a major QTL. Furthermore, we also found that these two consensus
QTLs could contribute to effects in the three environments of the two populations (Table S2),
indicating that they function stably. These consensus and stable and major QTLs may be
considered priority candidates for MAS breeding. Another consensus QTL qHT_YZ7a
could not be identified in all environments in the QZ population (Table S2), suggesting that
environmental conditions and genetic background have a strong effect on its reliability. In
addition to these consensus QTLs, other QTLs were detected only in individual popula-
tions, but some of them also contribute to a large effect. For example, qAD_Y5a/qSD_Y5a
and qAD_Y10a/qSD_Y10a could explain up to 16.7% and 13.5% of AD and SD variation,
respectively. qPH_Y9a/qEH_Y9a, qPH_Z9a/qEH_Z9a, qPH_Z1a/qEH_Z1a/qER_Z1a, and
qEH_Z3a/qER_Z3a could contribute to more than 10% of PH and EH variation. At all of
these loci, the early flowering or dwarf alleles were from the low-value parents Zheng58 or
Ye478, indicating that they could improve the late flowering and higher height issues of Q1.

Decreasing height is usually a common target when applying exotic germplasm,
especially tropical and sub-tropical germplasm, in breeding programs. However, plant
height was positively correlated with grain yield [53], suggesting that we should decrease
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EH without affecting PH. Additionally, current high-density breeding targets need to
similarly reduce ER traits [54]. This means ER may be more important than the PH and EH
traits. In our results, the consensus QTL qHT_YZ5a was associated with the ER trait, further
indicating its importance in improving height traits. Additionally, the population-specific
QTLs qEH_Z3a/qER_Z3a and qER_Z1a could also explain up to 22.0% and 13.8% of ER
variation, also suggesting their importance for improving height traits.

4.3. Comparison with QTLs Identified in Previous Studies

In the present study, we identified one flowering time-related consensus QTL qFT_YZ1a,
located at 221.1–277.0 Mb on chromosome 1. Within the CI of qFT_YZ1a, the gene id1
has been reported previously, and encodes a zinc finger protein and functions in late
flowering [18]. This region also harbors the gene Dwarf8, which is implicated in both
flowering time and plant height [49]. Interestingly, the orthologs gene of Dwarf8 in wheat
have contributed to the “green revolution” [24]. In addition, we also identified two other
repeatedly identified QTLs for flowering time. Of these, qAD_Z8a/qSD_Z8a was located in
the genomic region 110.5–163.8 Mb of chromosome 8, where Vgt1 has been identified for
late flowering [21], and Zcn8 has been found to be a key photoperiod regulatory gene in
maize [11]. The QTL qAD_Y5a/ qSD_Y5a was located in the genomic region 20.3–165.9 Mb
of chromosome 5, where, to the best of our knowledge, no gene has been validated as being
associated with flowering time.

For height traits, we identified two consensus QTLs between the two populations.
Of these, qHT_YZ5a is located at bin 5.04–5.06 and is co-localized with four previously
identified QTLs [30–33]. Additionally, within the CI of qHT_YZ5a, the gene d9 has been
validated as conferring dwarf characteristics and late flowering [38], and a major QTL
qPH5–1 also has been identified for the PH and EH of testcross performance and RILs
per se [33]. In addition, another researcher also detected a dwarf allele in this region [55].
Interestingly, a lodging resistance-related QTL was found in this region, suggesting that
lodging could be linked with height traits [56]. Another consensus QTL qHT_YZ7a located
in the genomic region 87.4–134.7 Mb on chromosome 7 was significantly associated with
only EH in the two DH populations. Within the CI of qHT_YZ7a, a major QTL for PH
in normal and stress environments was detected [25]. In addition to these consensus
QTLs, there were also four other repeatedly identified QTLs for height traits. Of these,
qPH_Y1a/qEH_Y1a spanned the genomic region of 15.6–33.4 Mb on chromosome 1, where
the gene ZmRPH1 has been validated to be linked with PH and EH [39], and another similar
QTL was also reported previously in this region [29]. The qPH_Z1a/qEH_Z1a/qER_Z1a
overlapped with a QTL cluster conferring the PH, EH, and AD traits [57]. Another two
repeatedly identified QTLs qPH_Z3a/qEH_Z3a and qPH_Z9a/ qEH_Z9a have not been found
to have any major QTLs or genes associated with height traits to the best of our knowledge.

5. Conclusions

Flowering time and height are important agronomic traits in maize breeding. These
traits are highly quantitative traits and are influenced by the environment. Thus, it is
a challenge to improve them for phenotypic selection. In this study, we detected 34
QTLs conferring flowering time and height-related traits based on two DH populations,
and 21 of these overlapped with at least one other QTL. Furthermore, ten QTLs had
overlapping confidence intervals between the two DH populations and were integrated
into three consensus QTLs. The flowering time-related consensus QTL qFT_YZ1a could
explain 10–12.5% of the phenotypic variation for different traits in the two populations.
This QTL is also located at a significant region of the previously detected flowering time
QTL, which would be a major candidate region for future gene cloning and marker-
assisted selection (MAS) breeding for flowering time. In addition, another consensus QTL
qHT_YZ5a for height traits could explain 11.6–15.3% of phenotypic variation in different
traits and populations. A number of QTLs were found in this region, suggesting that
qHT_YZ5a could harbor novel major alleles. These two major consensus QTLs, in addition
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to other repeatedly detected QTLs, provide new insights for genetic improvement of
flowering time and height-related traits.

Supplementary Materials: The following materials are available online at https://www.mdpi.com/
article/10.3390/plants10081585/s1, Table S1: Analysis of variance for the six flowering time and
height traits of two DH populations over three environments. Table S2: QTLs for the six flowering
time and height related traits in the two DH populations and three environments. Figure S1: The
performance of three parents around tasseling period.
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