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The added value of genetic information in colorectal cancer
risk prediction models: development and evaluation in the UK
Biobank prospective cohort study
Todd Smith1,2, Marc J. Gunter3, Ioanna Tzoulaki1,2,4 and David C. Muller1,2

Colorectal cancer (CRC) risk prediction models could be used to risk-stratify the population to provide individually tailored
screening provision. Using participants from the UK Biobank prospective cohort study, we evaluated whether the addition of a
genetic risk score (GRS) could improve the performance of two previously validated models. Inclusion of the GRS did not
appreciably improve discrimination of either model, and led to substantial miscalibration. Following recalibration the discrimination
did not change, but good calibration for models incorporating the GRS was recovered. Comparing predictions between models
with and without the GRS, 5% of participants or fewer changed their absolute risk by ±0.3% or more in either model. In summary,
addition of a GRS did not meaningfully improve the performance of validated CRC-risk prediction models. At present, provision of
genetic information is not useful for risk stratification for CRC.
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BACKGROUND
Colorectal cancer (CRC) is a substantial global health burden1 and
there is strong evidence that screening can reduce CRC
mortality.2–4 The efficacy of screening programmes may be
enhanced by targeting screening and screening intensity to those
at greatest risk.5 Genome-wide association studies (GWAS) have
identified over 40 independent loci unequivocally associated with
the risk of CRC,6 and there is increasing interest in developing
genetic risk scores (GRS) for a personalised risk assessment.7 To
justify their use in clinical or population health practice, GRS must
provide additional information over and above previously
validated risk models.8,9 Here, using data from the UK Biobank,
we examined the predictive value of a GRS for CRC either alone or
in combination with validated CRC-risk models.

MATERIALS AND METHODS
UK Biobank is a prospective cohort study of over 500,000
individuals10 of whom 488,377 are genotyped11 (Supplementary
methods). Two of the best performing models (highest discrimi-
nation and good calibration) for the prediction of incident
CRC,12,13 identified from a systematic review and external
validation study5 were applied using data collected at baseline
(Supplementary Table 1). Taylor et al.13 calculated predicted
absolute risk by combining age-specific rates of CRC with
estimated relative risks for different degrees of CRC family history.
Wells et al.12 used a Cox regression model including age, diabetes,

multi-vitamin usage, family history of colon cancer, years of
education, body mass index, alcohol intake, physical activity, non-
steroidal anti-inflammatory drug usage, red meat intake, smoking
and oestrogen use (women only). Details of model calibration are
presented in the supplementary methods. We constructed a
weighted GRS as a linear combination of 41 autosomal single
nucleotide polymorphisms (SNPs), with the allele dosage of each
SNP multiplied by its associated log odds ratio from previously
published GWAS studies (Supplementary Table 2).6

Model performance was evaluated in terms of calibration and
discrimination. Calibration was visually assessed by plotting
observed probability (calculated using the Kaplan–Meier estima-
tor) against mean predicted probability by tenths of the predicted
risk. We also assessed calibration of predicted relative risks by
plotting the estimated hazard ratio (estimated using flexible
parametric survival models) as a function of model-predicted
hazard ratios (HR). Discrimination was assessed using the C-
statistic (with 1 representing a perfect ability to discriminate
between those who will subsequently develop the outcome of
interest, and 0.5 representing no better ability than chance). We
assessed the performance of (i) the predicted probabilities of the
base models, (ii) the GRS alone and (iii) the two combined. As age
can itself strongly contribute to model performance, we addition-
ally assessed discrimination of both models after removing the
effect of age. To ensure comparable calibration between the
published models and the models augmented with the GRS, we
also fitted flexible parametric survival models.14 We used two
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degree-of-freedom restricted cubic splines to model the baseline
cumulative hazard of CRC, and included the overall predicted log
HRs from the published models and the GRS as separate
covariates. The fitted models were then used to predict 5-year
absolute risks of CRC.
Participants with missing data on any of the required covariates

were excluded from the analysis, which led to a different number
of available participants for each model. We conducted a
sensitivity analysis including only those participants who could
be used in both models to ensure that estimates of model
performance were directly comparable. In a second sensitivity
analysis we removed related participants by identifying pairs of

individuals who were first- or second-degree relatives (kinship
coefficient greater than 0.08),15,16 and randomly dropping one
member.

RESULTS
The number of available participants was 361,543 for the Taylor
et al.13 model and 286,877 for the combined Wells et al.12 model
(Supplementary Figure 1), comprising 1623 and 1294 CRC cases,
respectively. Comparison between those included and excluded
for each model showed broadly comparable characteristics
(Supplementary Table 3).
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Fig. 1 a Calibration plots for the Taylor et al.13 and Wells et al.12 models in the UK Biobank. The original models were initially calibrated to the
UK Biobank population and following this the genetic risk score (GRS) was combined with the model’s original coefficient(s). To ensure
comparable calibration between models with and without the GRS, we then further recalibrated by the predicted log hazard from the original
model as a covariate in a flexible parametric survival model by itself, and with the addition of the GRS. b Change in the 5-year predicted
probabilities (expressed as a percentage) of the recalibrated models after the addition of the genetic risk score. The x-axes are the predicted
probabilities from the original models, and the y-axes are the difference in predicted probabilities between the GRS-augmented models and
the original models. Histograms display the distribution of data along each axis. Note that the ranges of the axes differ between the two
panels. The crowding of points close to the horizontal line at 0 on the y-axis illustrates that the addition of the GRS did not affect the predicted
probabilities for the majority of participants
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The mean centred log GRS had a range of −2.022 to 2.411 and
standard deviation of 0.495. It was weakly associated with self-
reported family history of CRC, with a greater number of first
degree relatives diagnosed with CRC associated with a higher GRS
(Supplementary Table 4).
In the sample used for the Wells et al.12 model, the GRS alone

provided modest discrimination for incident CRC (C-statistic 0.57,
95% CI: [0.55–0.58]), as it did for the sample used in the Taylor
et al.13 model (0.56 [0.55–0.58]). This is greater than the
discrimination afforded by the Taylor et al.13 model when
excluding the effect of age (0.52 [0.51–0.53]), and comparable
to that of the Wells et al.12 model after the age coefficient
had been removed (0.58 [0.57–0.60]). The subsequent combina-
tion of the GRS with the original models did not improve
discrimination (Wells et al.12 changed from 0.68 [0.67–0.69] to
0.69 [0.67–0.70], while for Taylor et al.13 it changed from
0.67 [0.65–0.68] to 0.67 [0.66–0.68], Supplementary Table 5),
and resulted in poor calibration with substantial over-estimation
of risk for those in the upper tenth of predicted risk (Fig. 1a
and Supplementary Figure 2). This miscalibration was evident
even when considering only relative risks, with the GRS both
alone and in combination with the published models
implying relative risks far more extreme than those observed in
these data (Supplementary Figures 3 and 4). On recalibration
by fitting the predicted log-hazard ratios and GRS as covariates
in the models, calibration of the models including the GRS
was vastly improved, and comparable with that of the models
excluding the GRS (Fig. 1a). There was little difference in
discrimination performance of models in participants with and
without a family history of CRC (Supplementary Table 5).
The inclusion of the GRS in the recalibrated models did

not result in a substantive change in the predicted probability
for the majority of participants (Fig. 1b). For example, only
5% or fewer of participants had a change in predicted risk of
0.3% points or greater (Supplementary Table 6). Sensitivity
analyses restricted to participants available for inclusion
in both models, as well as further restricting to unrelated
individuals, did not substantially affect the discrimination or
calibration (Supplementary Tables 7 and 8, Supplementary
Figures 5 and 6).

DISCUSSION
We examined the potential clinical utility of genetic information
for CRC-risk prediction. In a large prospective cohort study, we
showed that a GRS composed of 41 published, genome-wide
significant SNPs for CRC, has poor discriminatory ability on its own
and does not meaningfully improve model discrimination of
established models, nor does it strongly influence the predicted
probabilities for the vast majority of participants.
To our knowledge this is the first investigation of GRS-

enhanced risk prediction models for CRC that has assessed both
calibration and discrimination. Jeon et al.7 reported that a risk
model including both genetic and environmental risk scores
had slightly better discrimination than a model including an
environmental risk score alone, but they could not assess
model calibration. They also estimated individual recommended
“starting ages” for screening, which differed by up to 12 years
for men and 14 years for women. These estimates depend
critically on the calibration of the model: any over- or under-
estimation of risk will lead to more extreme variation in
recommended starting ages, purely as an artefact of the
miscalibration. We found that calibration of model-predicted
probabilities deteriorated substantially with the inclusion of
the GRS. This could have been due to inclusion of both the
GRS and family history in the models, but we found that family
history was only weakly associated with the GRS. Further, the GRS

itself was miscalibrated, and implied relative risks that vastly
overestimated the magnitude of the relative risks observed in our
study. This is due to a phenomenon sometimes labelled as the
“winner’s curse” or “statistical significance filter”, whereby
estimates that surpass some threshold for significance tend to
be overestimates of the underlying parameter. Our finding
underlines the importance of careful recalibration of those GRSs
based on SNPs selected as highly statistically significant in GWAS,
and the potential for this to affect the performance of models,
which do not assess or correct for it. This is particularly pertinent
given that calibration is poorly reported in validation studies of
risk prediction models and not commonly reported in GRS
investigations, impairing the ability to assess the clinical useful-
ness of these models.
Although the inclusion of the GRS did not meaningfully improve

model discrimination overall, and did not substantially change the
predicted probabilities for the vast majority of participants (for
example, 95% of participants had a change in probability of less
than 0.3% points), provision of genetic information may have
some utility in a two-step risk assessment. We found that the
proportion of participants whose predicted risk increased or
decreased by 0.3% points or more after inclusion of the GRS was
much higher among those who had an initial risk of 1% or greater.
While these numbers are only for illustration, they demonstrate
that the added value of a GRS for risk prediction will be greater if it
is applied to those at higher initial risk, rather than an entire
population.
As larger studies are conducted more risk loci will likely be

discovered, and more complete genetic information can poten-
tially be incorporated into risk models. It is possible that the
discrimination will improve beyond that already afforded by
established risk models. On the other hand, as study sizes increase
they will predominantly identify rare variants or variants that are
more weakly associated with risk, so the potential for improve-
ment in genetic prediction with the inclusion of these variants
may be limited.
In summary, inclusion of a GRS did not improve the

performance of two previously validated CRC-risk prediction
models. Any practical benefit of using the GRS for CRC prediction
is likely to only affect people already predicted to be at high risk
based on existing models.
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