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Abstract
Background: Bladder cancer (BC) is a common tumor in the urinary system with a high recurrence rate. The individualized
treatment and follow-up after surgery is the key to a successful outcome. Currently, the surveillance strategies are mainly depending
on tumor stage and grade. Previous evidence has proved that tumor grade was a significant and independent risk factor of BC
recurrence. Exploring the grade-related genes may provide us a new approach to predict prognosis and guide the post-operative
treatment in BC patients.

Methods: In this study, the weighted gene co-expression network analysis was applied to identify the hub gene module correlated
with BC grade using GSE71576. After constructing a protein–protein interaction (PPI) network with the hub genes inside the hub
gene module, we identified some potential core genes. TCGA and another independent dataset were used for further validation.

Results: The results revealed that the expression of AURKA, CCNA2, CCNB1, KIF11, TTK, BUB1B, BUB1, and CDK1 were
significantly higher in high-grade BC, showing a strong ability to distinguish BC grade. The expression levels of the 8 genes in normal,
paracancerous, tumorous, and recurrent bladder tissues were progressively increased. By conducting survival analysis, we proved
their prognostic value in predicting the recurrence of BC. Eventually, we constructed a prognostic nomogram by combining the
8-core-gene panel with clinicopathologic features, which had shown great performance in predicting the recurrence of BC.

Conclusion:We identified 8 core genes that revealed a significant correlation with the tumor grade as well as the recurrence of BC.
Finally, we proved the value of a novel prognostic nomogram for predicting the relapse-free survival of BC patients after surgery,
which could guide their treatment and follow-up.

Abbreviations: BC = bladder cancer, BPs = biological processes, CCs = cellular components, DAVID = Database for
Annotation, Visualization and Integrate Discovery, DCA = decision curve analysis, GEO = Gene Expression Omnibus, GO = Gene
Ontology, GS= gene significance, GSEA=Gene set enrichment analysis, KEGG= Kyoto Encyclopedia of Genes and Genomes, KM
= Kaplan–Meier, MEs = Module eigengenes, MFs = molecular functions, MS = Module significance, PPI = protein-protein
interaction, RFS = relapse-free survival, ROC = receiver operating characteristic, STRING = Search Tool for the Retrieval of
Interacting Genes, TCGA = The Cancer Genome Atlas, TOM = topological overlap matrix, TPM = transcripts per million reads,
WGCNA = Weighted gene co-expression network analysis.
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1. Introduction

Bladder cancer (BC) is one of the most common malignant
tumors in the urinary system. In 2018, about 81,190 new cases
and 17,240 deaths of BC were expected in the United States.[1]

Although the 5-year survival rate of early-stage BC patients
reaches 95.7%,[2] about 70%of themwill suffer from recurrence,
and approximately 10% to 20% will undergo tumor progres-
sion,[3] even followed by metastasis. Once tumor progress, the
prognosis of patients will be poor, and limited effective treatment
will be available. The individualized treatment and follow-up
after surgery is the key to a successful outcome in BC patients.
Previous studies have proved that tumor grade was a significant
and independent risk factor of BC recurrence.[4,5] Exploring the
grade-related genes may provide us a new approach to the
prediction of prognosis and the post-operative treatment in BC
patients.
Microarray and high-throughput sequencing have served as

powerful weapons on the research of molecular mechanisms and
therapeutic targets. Many studies have applied these gene
expression profiles to identify genes related to malignant
tumors.[6,7] Since the initiation, progression, and recurrence of
BC are regulated by multiple genes, identifying crucial genes
based on gene expression analysis, which only focuses on an
individual gene, is deficient. Weighted gene co-expression
network analysis (WGCNA), a systematic biology algorithm,
have been served as a tool to describe correlation among genes,
determine modules with highly correlated gene expression in
microarray samples, and relate modules to particular clinical
phenotype.[8,9] The most central and connected genes inside the
chosen module will be regarded as core genes, which usually
function crucially. Based on this method, we attempt to create a
co-expression network of relationships between genes and
identify the genes undertaking critical roles in BC. We further
validated the core genes we selected using independent data from
TCGA and GEO database and explored their potential as
prognostic biomarkers in clinical use.
2. Material and methods

2.1. Data collection

Gene expression profile and corresponding clinical data of
GSE71576[10] were acquired from Gene Expression Omnibus
(GEO) database, which was based on Affymetrix Human Gene
1.0 ST Array, containing 44 primary bladder cancer tissues.
GSE71576 was applied to create co-expression networks and
exploring core genes in the present study. As for the external
validation of the core genes, the RNA-sequencing data of 412
BC patients were downloaded from The Cancer Genome Atlas
(TCGA) database (https://www.cancergenome.nih.gov) was
obtained. And we download another GEO datasets
GSE13507[11] based on Illumina human-6 v2.0 expression
beadchip, which included 165 primary bladder cancer tissues,
58 normal looking bladder mucosae surrounding cancer, 23
recurrent bladder tumor tissues and 10 normal bladder
mucosae. All the data mentioned above are open access and
thus ethical approval is not necessary. The information of all
samples used in this study was uploaded in the supplementary
files, including samples from GSE71576, GSE13507, and
TCGA datasets (see Table, http://links.lww.com/MD/F185,
Supplemental Content, which includes all sample information
used in this study).
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2.2. Co-expression network construction

Normalized data from dataset GSE71576 were acquired from the
GEOdatabase.As those geneswith little variationmostly represent
noise, we selected the top 50% most variant genes by median
absolute deviation for subsequent analysis. Using the “WGCNA”
package in R,[12] we created a scale-free co-expression network of
the filtered genes. We used the adjacency function in the WGCNA
package to check if outlier samples exist for ensuring the reliability
of thenetwork.Then, goodSamplesGenes function in theWGCNA
package was used to eliminate samples and genes containing too
many missing values. The soft threshold power b was determined
according to the scale-free topology criterion from Zhang and
Horvath.[9] Pearsons correlations between each gene pair were
calculated to determine the concordance of gene expression to
create a matrix of adjacencies, which was later transformed into a
topological overlap matrix (TOM).[13] The hierarchical clustering
function was applied to gather genes with similar expression
profiles into modules with a minimum gene size of 30 and a
medium sensitivity of 2.
2.3. Identification of clinical significant modules

Two methods were utilized to recognize modules related to
clinical traits of BC. Firstly, the log10 transformation of the P
value (GS= lgp) in the linear regression between clinical traits and
gene expression was defined as gene significance (GS). The
average GS of all genes in one module was defined as module
significance (MS). The module with the highest MS value was
usually regarded as the one most correlated with clinical traits.
Module eigengenes (MEs) were defined as the predominant
component in the principal component analysis of each gene
module, and the expression of MEs was considered as a
representative of all genes in a given module. The correlation
between MEs and clinical traits was calculated to identify the
clinically significant module. The most correlative module was
selected for subsequent analysis.

2.4. Identification of candidate grade-related hub genes

Genes with high clinical trait relationship and module connec-
tivity were considered to be candidate grade-related genes,
selected by the absolute value of the Pearsons correlation (jcor.
GeneModuleMenbershipj>0.8 and jcor.GeneTraitSignificancej
>0.2). Later, the candidate genes were uploaded to Database for
Annotation, Visualization and Integrate Discovery (DAVID)
(http://david.abcc.ncifcrf.gov/) for functional annotation, includ-
ing gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis. We chose the top 10 terms
with the lowest P value (P< .05 as the cut-off criteria) to be listed.
Subsequently, all these candidate genes were uploaded to the
Search Tool for the Retrieval of Interacting Genes (STRING)
database[14] to build a protein–protein interaction (PPI) network.
After calculating the connectivity degree of all genes in the PPI
network by cytoHubba in Cytoscape software (version 3.7.1), we
selected 11 genes that were ranked top10 (connectivity degree
>170) as grade-related core genes for further analysis.

2.5. Grade-related core gene validation and clinical value
evaluation

To validate the candidate grade-related hub genes, the RNA
sequencing data and corresponding clinical information of BC

https://www.cancergenome.nih.gov/
http://links.lww.com/MD/F185
http://david.abcc.ncifcrf.gov/


Peng et al. Medicine (2020) 99:47 www.md-journal.com
were downloaded from The Cancer Genome Atlas Project
database (TCGA, https://cancergenome.nih.gov/). The gene
expression level was measured as transcripts per million reads
(TPM). We compared the gene expression of subgroups classified
by our aimed clinical trait. Another dataset GSE13507 from the
GEO database was applied to confirm our results by expression
difference analysis. Those significant genes were further
confirmed by Kaplan–Meier (KM) analysis using TCGA data
and receiver operating characteristic curve (ROC) using
GSE13507 data. Additionally, we performed the validation of
immunochemistry staining onHuman Protein Atlas (http://www.
proteinatlas.org).
2.6. Construction of nomogram

The prognostic value of each core grade-related gene was
evaluated using Cox univariate regression analysis in the TCGA
cohort, and the statistically significant genes were combined into
a gene panel. We randomly divided TCGA data into 2 equal
groups, naming as training group, and validation group. Based
on the 8-core-gene panel, a risk score for each patient in the
training group was calculated using their coefficients of Cox
regression analysis and separated them into high- and low-risk
groups with the median as the cut-off. Kaplan–Meier curve and
Cox regression analysis were conducted to confirm the
prognostic value of the risk score. A nomogram comprising of
the risk score and clinicopathologic features was constructed. We
evaluated the model using Calibration plots, decision curve
analysis (DCA), time-dependent receiver operating characteristic
(ROC) curve, andHarrells concordance index (c-index). All these
processes were performed on R software (version 3.5.3).
2.7. Gene set enrichment analysis (GSEA)

To investigate the potential mechanisms of the core genes,
GSEA[15] was conducted based on the level of risk scores to detect
whether a series of prior defined biological processes were
enriched in the gene rank derived from DEGs between the high
and low-risk groups.We selected the collection of annotated gene
sets of c2.cp.kegg.v6.0.symbols.gmt in Molecular Signatures
Database (MSigDB, http://software.broadinstitute.org/gsea/
msigdb/index.jsp) as the reference gene sets. The cut-off criteria
were Nominal P< .05, jESj>0.6 and FDR<25%.
2.8. Statistical analysis

The differences between the 2 groups were estimated by the
unpaired Student t test in normally distributed variables and the
Mann–WhitneyU test in non-normally distributed variables. The
comparisons of 2 more groups were analyzed via Kruskal-Wallis
and one-way ANOVA test as non-parametric and parametric
methods, respectively. The correlation was measured using
Spearman correlation analysis. Survival rates were computed
using the Kaplan–Meier method, and the log-rank test was used
to evaluate the differences between the survival curves. Uni- and
multivariate analyses were performed utilizing Cox proportional
hazard models with the stepwise method “LR forward”. The
construction and validation of the nomogram were conducted
according to lasonos guide.[16] All statistical analyses were
processed using the R software (version 3.5.3) and SPSS software
(version 22.0). P values were two-tailed. P< .05 was set as
statistical significance.
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3. Results

3.1. Data preprocessing and construction of co-
expression network

Normalized data of GSE71576 was downloaded from GEO
database, and probes inside were mapping to a total of 18,275
genes. The top 50% most variant genes (9137 genes) measuring
by MAD values were used for the subsequent analysis. Two
samples were excluded for lacking clinical information. After
outlier detection, no outlier sample was found (Fig. 1A). To
ensure the scale-free of the network, we selected the power of b=
9 as the soft-thresholding parameter (see Fig. S1, http://links.lww.
com/MD/F182, Supplemental Content, which illustrates the
determination of soft-thresholding power in the co-expression
network.). After classifying genes into different modules by
hierarchical clustering, 9modules namedwith unique colors were
identified (Fig. 1B). Two approaches were conducted to
determine the most correlative module with clinical traits (stage
and grade). Among all the modules, the ME of the blue module
(P=2e-15; R2=0.89) revealed a strong correlation with tumor
grade (Fig. 1C). Additionally, the MS of the blue module was the
highest among all modules (Fig. 1D). The relationship between
MM and GS of the blue module is shown in Fig. 1E. Therefore,
the blue module, which included 1351 genes, was considered as
the hub module that was significantly correlated with tumor
grade. Two hundred thirty nine genes in the blue module were
filtered as hub genes by the cut-off criteria (jMMj>0.8 and
jGSj>0.2) and put into the following analysis.

3.2. Functional enrichment analysis of hub genes

The 239 filtered hub genes in the blue module were uploaded to
DAVID (http://david.abcc.ncifcrf.gov/). The results of the GO
analysis revealed that these genes were enriched in various
biological processes (BPs), cellular components (CCs), and
molecular functions (MFs) (Fig. 2A-C). The top 10 GO terms
of BP included cell division, mitotic nuclear division, DNA
replication, sister chromatid cohesion, DNA repair, G1/S
transition of mitotic cell cycle, chromosome segregation, DNA
replication initiation, microtubule–based movement and mitotic
sister chromatid segregation (Fig. 2A). The results of CCs
revealed that these genes were mainly enriched in the nucleus and
nucleoplasm (Fig. 2B). The top 10 GO terms of MF included
protein binding, ATP binding, DNA binding, microtubule
binding, chromatin binding, microtubule motor activity, ATPase
activity, single–stranded DNA binding, single–stranded DNA–
dependent ATPase activity, and ATP–dependent microtubule
motor activity, plus–end–directed (Fig. 2C). As for KEGG
analysis, they were mainly enriched in cell cycle, DNA
replication, oocyte meiosis, Fanconi anemia pathway, progester-
one–mediated oocyte maturation, systemic lupus erythematosus,
pyrimidine metabolism, homologous recombination, p53 signal-
ing pathway, and mismatch repair (Fig. 2D).

3.3. Identification of grade-related core genes

The 239 filtered genes in the blue module were uploaded to the
STRING database 3[14] to build a protein–protein interaction
(PPI) network. After calculating the connectivity degree of all
genes in the PPI network, we selected 11 genes that were ranked
top10 (connectivity degree >170) as grade-related core genes,
including AURKA, CCNA2, CCNB1, KIF11, TTK, BUB1B,
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Figure 1. Weighted gene co-expression network analysis. (A) Clustering dendrogram of 42 BC samples and clinical trait heatmap. (B) Dendrogram of the top 50%
most variant genes clustered based on a dissimilarity measure (1-TOM). (C) Heatmap of the correlation values between MEs and different clinical traits of BC (tumor
stage and grade). Red for positive correlation and Blue for negative correlation with P values printed below the correlations. (D) Distribution of average gene
significance in the modules associated with tumor grades of BC. (E) Scatter plot of GS for tumor grade versus kME for blue module. BC = bladder cancer, MEs =
module eigengenes, GS = Gene Significance, kME = module membership.
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BUB1, CDK1, AURKB, CCNB2, and CDC20. The PPI network
of grade-related genes was shown in Figure 2E. The core
genes were surrounded by others in the middle of the
network.
3.4. Grade-related core gene validation in TCGA

To validate the 11 grade-related genes we found, we download
the RNA sequencing data and corresponding clinical information
of 412 BC tissue from the TCGA database. We compared the
expression level of these genes between high-grade and low-grade
BC patients. The results showed that the expression levels of all
these genes were significantly higher in the high-grade group than
the low-grade (Fig. 3).

3.5. Grade-related core gene clinical value assessment

We conducted survival analysis using KM analysis and Cox
univariate regression analysis of these genes using TCGA data. In
univariate regression analysis, AURKA, CCNA2, CCNB1,
KIF11, BUB1B, BUB1, TTK, and CDK1 were significantly
associated with relapse-free survival (RFS) of BC patients. The P
value of univariate regression analysis of them was 0.00635,
0.00756, 0.0255, 0.00752, 0.00301, 0.0364, 0.00679, and
4

0.0174, respectively. The KM curves revealed that CCNA2,
CCNB1, KIF11, BUB1B, TTK, and AURKA were significantly
negatively associated with the RFS of BC patients according to
quartile cut-off (Fig. 4). Although AURKA and BUB1 were not
significantly associated with RFS in KM analysis, we kept them in
our further analysis on account of the results of univariate
regression analysis.

3.6. Grade-related core gene multi-analysis with
independent GEO dataset

To find more evidence for supporting our results, we obtained
data of another dataset GSE13507 from GEO database, which
included 165 primary bladder cancer samples, 58 normal looking
bladder mucosae surrounding cancer, 23 recurrent non-muscle
invasive tumor tissues and 10 normal bladder mucosae. Similar
results in tumor grade were shown in this dataset (Fig. 5).
Interestingly, comparing the expression level of these genes in
normal, paracancerous, tumorous and recurrent groups, marked-
ly progressive increase was present (Fig. 6). Furthermore, we
constructed ROC curves of the 8 grade-related core genes to
explore their ability of differentiating high grade and low grade
patients. The results indicated that AURKA, CCNA2, CCNB1,
KIF11, TTK, BUB1B, BUB1 and CDK1 all exhibit excellent



Figure 2. Functional Enrichment Analysis and PPI network of the 239 hub genes from blue module. (A) Biological process analysis. (B) Cellular component analysis.
(C) Molecular function analysis. (D) KEGG pathway analysis. (E) PPI networks of 239 hub genes in blue module. PPI, protein–protein interaction.
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discriminatory ability (Fig. 7). The area under curve (AUC) of
them were 0.735 (CI 0.654-0.816, Sensitivity=73.3%, Specifici-
ty=72.4%), 0.757 (CI 0.681-0.833, Sensitivity=66.7%, Speci-
ficity=78.1%), 0.722 (CI 0.639-805, Sensitivity=80.0%,
Specificity=61.0%), 0.737 (CI 0.658-0.817, Sensitivity=
80.0%, Specificity=65.7%), 0.77 (CI 0.693-0.848, Sensitivity
5

=65.0%, Specificity=81.9%), 0.767 (CI 0.687-0.846, Sensitivi-
ty=75.0%, Specificity=80.0%), 0.763 (CI 0.685-0.840, Sensi-
tivity=75.0%, Specificity=72.4%), and 0.796 (CI 0.720-0.871,
Sensitivity=85.0%, Specificity=71.4%). The cut-off points were
chosen at the point with the largest Youden index (sensitivity+
specificity-1).

http://www.md-journal.com


Figure 4. Relapse-free survival (RFS) of grade-related core genes in BC patients based on TCGA data. Patients were classified into high expression and low
expression group with median cut-off. (A) AURKA (B) CCNA2 (C) CCNB1 (D) KIF11 (E) TTK (F) BUB1B (G) BUB1 (H) CDK1. BC = bladder cancer, TCGA = the
Cancer Genome Atlas Project database.

Figure 3. Expression of grade-related core genes between high- and low-grade BC based on TCGA data. (A) AURKA (B) CCNA2 (C) CCNB1 (D) KIF11 (E) TTK (F)
BUB1B (G) BUB1 (H) CDK1. BC = bladder cancer, TCGA = the Cancer Genome Atlas Project database.

Peng et al. Medicine (2020) 99:47 Medicine
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Figure 5. Expression of grade-related core genes between high and low grade BC based on GEO datasets GSE13507. (A) AURKA (B) CCNA2 (C) CCNB1 (D)
KIF11 (E) TTK (F) BUB1B (G) BUB1 (H) CDK1. BC = bladder cancer; GEO = Gene Expression Omnibus (GEO) database.
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3.7. Immunohistochemistry validation of the grade-related
core genes

The protein levels of AURKA, CCNA2, CCNB1, KIF11, TTK,
and CDK1 were markedly higher in tumor tissues than normal
tissues according to the results of the Human Protein Atlas
database, except that no data of BUB1 and BUB1Bwas found (see
Fig. S2, http://links.lww.com/MD/F183, Supplemental Content,
which demonstrates the immunohistochemistry of the grade-
related core genes from the Human Protein Atlas database).
3.8. Nomogram construction and assessment

After calculating the risk score of the 8-core-gene panel for each
BC patients in the training group from TCGA, we divided them
into high- and low-risk groups. The result of the Kaplan-Meier
Figure 6. Expression of grade-related genes in different kind of tissues including
tissue. (A) AURKA (B) CCNA2 (C) CCNB1 (D) KIF11 (E) TTK (F) BUB1B (G) BUB
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curve showed that patients in the high-risk group had a
conspicuously higher probability of recurrence than the low-
risk group (Fig. 8A). Using Cox univariate and multivariate
analysis, we found that risk score (P< .001) and tumor stage
(P< .001) were probably independent predictive factors for BC
patients while gender (P= .42) and age (P= .511) were highly
irrelevant (Table 1). Considering that smoking (P= .285) and
tumor grade (P= .134) were of some value (Table 1), we
combined them with risk score and tumor stage to construct a
prognostic nomogram (Fig. 8B). The calibration plots of the
training group and validation group both performed well when
compared with the ideal model (Fig. 8C-D). The nomogram also
exhibited a better predictive accuracy than only using the
clinicopathologic features (stage, grade, smoking), in the results
of time-dependent ROC (Fig. 8E-F), decision curve (Fig. 8G-L)
and C-index (Table 2).
normal bladder, paracancerous tissue, tumorous tissue and recurrent tumor
1 (H) CDK1.
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Figure 7. Receiver operating characteristic curve (ROC) of grade-related core genes for differentiating tumor grade of BC. (A) AURKA (B) CCNA2 (C) CCNB1 (D)
KIF11 (E) TTK (F) BUB1B (G) BUB1 (H) CDK1. BC, bladder cancer.
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3.9. Gene set enrichment analysis (GSEA)

To explore the potential mechanisms that the 8-core-gene panel
was relevant within BC, GSEA was performed to search the
enriched KEGG pathways based on the level of the risk score in
the whole TGCA cohort with the cut-off of the median. The
results revealed that genes highly expressed in the high-risk group
were significantly enriched in multiple pathways. The most
significantly correlative pathways were basal transcriptional
factors, cell cycle, DNA replication, base excision repair, and
nucleotide excision repair (Fig. 9).

4. Discussion

Due to the high recurrence rate of both non-muscle-invasive and
muscle-invasive BC and the short time to progression and death
in patients with metastasis, surveillance is the key to a better
outcome. The management and follow-up of BC are both
complicated and high-cost, which is causing a dilemma in clinical
work. Currently, the surveillance strategies are mainly deter-
mined by tumor grade and stage, which is not dissatisfactory
enough.[17] Actually, unlike many other tumors, the survival rate
of BC has not increased over the past 3 decades.[18] In recent
years, some researchers have developed models for predicting BC
recurrence and progression. Among them, EORTC risk table, a
predictive tool based on clinical and pathological factors, is one
of the best tools by far.[19] However, the predictive accuracy of
EORTC risk table is still not good enough to meet the current
demand in clinical work.[20]

In this study, we performed integrated bioinformatics analyses
based on microarray and high-throughput sequencing data, and
finally identified 8 core genes that were closely related to tumor
grade and recurrence of BC. The nomogram comprising of the 8-
core-gene panel and clinicopathologic features exhibit a great
performance in the prediction of RFS in BC patients, revealing its
8

potential to guide our clinical decision. The 8-core-gene panel as a
supplement of EORTC risk table will be our important research
direction in future.
To gain a deeper understanding of the function of the 8 grade-

related core genes in BC, GSEA analysis was performed.
According to the results of GSEA, BC samples with higher
expression of the core genes were mostly enriched in genes sets
that were linked with pathways of basal transcriptional factors,
cell cycle, DNA replication, base excision repair, and nucleotide
excision repair, which were the key pathways for tumorigenesis
and development. For a deeper insight into the 8 core genes, we
carried out a literature review of them.
AURKA encodes a cell cycle-regulated kinase that associates

with the centrosome and the spindle microtubules during mitosis
and plays a vital role in various mitotic events. The alteration of
this protein may result in aberrant mitotic spindles, leading to
tumorigenesis. Previous studies on TTK had verified its role in
several cancers, such as hepatocellular carcinoma,[21] pancreatic
cancer,[22] breast cancer,[23] and leukemia.[24] As for bladder
cancer, several studies had demonstrated the roles of AURKA in
tumor cell function and its correlation with prognosis, which
were powerful support of our study results.[25–27]

CCNA2 gene encodes cyclin A2 (CCNA2), which regulates cell
cycle progression by interacting with CDK kinase and may
participate in tumorigenesis. CCNA has been proved to be highly
expressed in multiple kinds of tumors such as liver cancer,[28]

cervical cancer,[29] and breast cancer.[30] By targeting cyclin A2,
miR-27b can suppress the proliferation of leukemia.[31] Similarly,
miR-449a and miR-424 can suppress osteosarcoma by targeting
cyclin A2.[32] As for bladder cancer, Li J demonstrated that
CCNA2 played a regulatory role in modulating CDK6 andMET-
mediated cell-cycle pathway and EMT progression.[33]

G2/Mitotic-Specific Cyclin-B1, a regulatory protein encoded
by CCNB1 in humans and involved in mitosis, is essential for the
control of G2/M transition phase in cell cycle. By targeting the



Table 1

The association between the 8-core-gene panel and clinicopatho-
logic features with RFS of BC patients.

Univariate analysis Multivariate analysis

Variable HR (95% CI) P value HR (95% CI) P value

Gender (male vs
female)

1.164 (0.805–1.681) .42

Age 1.005 (0.989–1.022) .511
Smoking (yes vs no) 1.202 (0.858–1.682) .285 1.230 (0.878–1.723) .229
Tumor grade

(high vs low)
2.917 (0.72–11.82) .134 1.304 (0.3122–5.444) .716

Tumor stage 1.704 (1.374–2.113) <.001 1.671 (1.343–2.080) <.001
Gene panel risk score 2.735 (1.703–4.165) <.001 2.537 (1.587–4.056) <.001

BC= bladder cancer, HR= hazard ratio, 95% CI= 95% confidence interval, RFS= Relapse-free survival.

Figure 8. Construction and assessment of Nomogram. (A) RFS of the risk score based on the 8 core-gene panel with median cut-off. (B) Nomogram combining the
8-core-gene panel with CPFs. (C-D) Calibration plots of the training group and validation group in observed time of 2 year, 3 year and 5 year. (E-F) Time-dependent
ROC of the training group and validation group for the predictive ability of recurrence using the nomogram or CPFs. (G-I) DCA of the training group for 2-year, 3-year
and 5-year risk. (J-L) DCA of the validation group for 2-year, 3-year and 5-year risk. ROC = receiver operating characteristic curve, DCA = decision curve analysis.
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CCNB1-related pathway, Ngan AWL found that the prolifera-
tion of cervical cancer cells could be regulated, revealing a
potential therapeutic target.[34] In addition, the study of Yan X
had demonstrated that CCNB1 was a key gene and associated
with the prognosis of BC.[35]
Table 2

Harrell concordance indexes of the 8-core-gene panel, clinico-
pathologic features

∗
, and nomogram in different cohorts.

Cohort 8-core-gene panel Clinicopathologic features Nomogram

Training 0.651 0.661 0.708
Validation 0.610 0.603 0.659
Entire 0.59 0.635 0.667
∗
including tumor stage, tumor grade, and smoking.
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Figure 9. Gene set enrichment analysis based on the level of risk score
calculating by the 8-core-gene panel with median cut-off.
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Kinesin family member 11 (KIF11) takes essential roles in the
formation of bipolar spindle and maintenance in the early
prometaphase during mitosis.[36,37] KIF11 had been proved to be
correlated with various malignancies, including prostate can-
cer,[38] breast cancer,[39] malignant pleural mesothelioma,[40]

pancreatic cancer,[41] laryngeal squamous cell carcinoma,[42] and
gastric cancer .[43] Currently, there is no clear evidence in the
relationship between KIF11 and BC.
TTK encodes a protein that acts a basic role in alignment at the

centromere during mitosis and is necessary for centrosome
duplication. It plays critical roles in aneuploidy and genomic
integrity in various kinds of tumors. In breast cancer, TTK had
already been proved to be available therapeutic target in several
studies.[44,45] The association of TTK with BC are remained to be
investigated.
BUB1 Mitotic Checkpoint Serine/Threonine Kinase B

(BUB1B), a pivotal component of the spindle assembly
checkpoint requiring for accurate segregation of chromosomes,
is functional in the mitotic checkpoint and the establishment of
proper microtubule–kinetochore attachments.[46] Aberrant ex-
pression or mutations of BUB1B is one of the important causes of
aneuploidy. In fact, the role of BUB1B in different cancers is still
controversial. Previous studies have proved the high expression
of BUB1B was related to the progression and recurrence of
several tumors, including gastric cancer,[47] hepatocellular
carcinoma,[48] prostate cancer,[49] esophageal squamous can-
cer[50] and breast cancer,[51] while some tumors were proved to be
related with low expression of BUB1B.[52,53] So far, little definite
evidence is known about the correlation between BUB1B and BC.
BUB1 gene encodes a serine/threonine-protein kinase that

plays a vital role in mitosis. Mutations in this gene are relevant to
aneuploidy and several forms of cancer.[54,55] In breast cancer,
it has been reported that BUB1 was associated with cancer
progression[56] and cancer stem cell potential.[57] The correlation
between BUB1 and bladder cancer is still unclear yet.
The protein encoded by CDK1 is essential for G1/S and G2/M

phase transitions of the eukaryotic cell cycle. The formation of
complex CDK1/cyclin B1 is essential for the G2/M phase
transition of cell cycle. One of the latest research reported that
upregulation of CDK1was essential for nasal natural killer/T-cell
lymphoma progression and targeting CDK1 might benefit the
treatment of NNKTL.[58] Similar results were reported in cervical
10
cancer by Li.[59] In bladder cancer, it is demonstrated that
Glaucocalyxin A regulated the expression of CDK1 to induces
G2/M cell cycle arrest and apoptosis.[60]

Taken all current results together, we believed that AURKA,
CCNA2, CCNB1, KIF11, TTK, BUB1B, BUB1, and CDK1 were
correlated with tumor grade of BC and were probably important
participants in the initiation and recurrence of BC, by
participating in pathways of basal transcriptional factors, cell
cycle, DNA replication, base excision repair and nucleotide
excision repair. Meanwhile, they have the potential to be
practicable biomarkers for identifying BC patients at high risk,
guiding the post-operative treatment and follow-up. Actually, the
critical role of AURKA, CCNA2, CCNB1, and CDK1 in BC had
already been reported before. The present study not only
providing new evidence for them, but also identify 4 more new
genes with great significance.
However, the limitations of the present study should be

acknowledged. Firstly, our results were based on microarray and
RNA-sequencing data, lacking in support of in vitro and in vivo
experiments. Moreover, although we had combined several
datasets to make our results more convincing, a larger sample size
of external validation is required, which is the main direction of
our future research.

5. Conclusions

In conclusion, the present study had conducted integrated
bioinformatics analyses, eventually identifying 8 grade-related
core genes that probably act crucially in the recurrence of BC.
Furthermore, we proved their potential to be available prognostic
biomarkers by constructing a nomogram for predicting recur-
rence of BC patients. Hopefully, further research could push these
genes into clinical use.
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