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Abstract

Motivation: Spatial transcriptomic techniques can profile gene expressions while retaining the spatial information,
thus offering unprecedented opportunities to explore the relationship between gene expression and spatial loca-
tions. The spatial relationship may vary across cell types, but there is a lack of statistical methods to identify
cell-type-specific spatially variable (SV) genes by simultaneously modeling excess zeros and cell-type proportions.

Results: We develop a statistical approach CTSV to detect cell-type-specific SV genes. CTSV directly models spatial
raw count data and considers zero-inflation as well as overdispersion using a zero-inflated negative binomial distri-
bution. It then incorporates cell-type proportions and spatial effect functions in the zero-inflated negative binomial
regression framework. The R package pscl is employed to fit the model. For robustness, a Cauchy combination rule
is applied to integrate P-values from multiple choices of spatial effect functions. Simulation studies show that CTSV
not only outperforms competing methods at the aggregated level but also achieves more power at the cell-type
level. By analyzing pancreatic ductal adenocarcinoma spatial transcriptomic data, SV genes identified by CTSV
reveal biological insights at the cell-type level.

Availability and implementation: The R package of CTSV is available at https://bioconductor.org/packages/devel/
bioc/html/CTSV.html.

Contact: xiangyuluo@ruc.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The development of spatial transcriptomic techniques has enabled
the measurement of gene expression with accompanied spatial con-
text information (Close et al., 2021; Larsson et al., 2021; Zhuang,
2021), providing unprecedented opportunities to investigate the
interaction between expression and spatial locations. One crucial
challenge in the spatial expression data analysis is to identify genes
whose expression levels vary with spatial coordinates in a tissue sec-
tion, which are termed as spatially variable (SV) genes. In recent
years, the task of SV gene detection draws much attention from bio-
informaticians, and several statistical methods (Edsgärd et al., 2018;
Hao et al., 2021; Li et al., 2021; Sun et al., 2020; Svensson et al.,
2018; Zhu et al., 2021) have been proposed to test the dependence
of expression on spatial locations. However, the dependence may be
confounded by some biological or technical factors. In this article,
we aim to mitigate the confounding issues in SV gene identification
by accounting for two possible confounding factors—cell-type pro-
portions and excessive zeros.

On the one hand, the commonly used spatial transcriptomics
(ST) platforms, including ST based on spatially barcoded microar-
rays (Ståhl et al., 2016), 10� Genomics Visium (Rao et al., 2020)
and Slide-seq (Rodriques et al., 2019), profile gene expression from

spots that are regularly organized in a grid in a tissue section. Each
spot usually consists of dozens of cells, so the observed expression
measurements are at the bulk level rather than at single-cell reso-
lution. Since spots in different tissue regions often have different
cell-type proportions (Cable et al., 2022; Elosua-Bayes et al., 2021),
the latent cellular compositions can induce expression variations
even though the spatial locations have no impact on the expression,
thus confounding the SV gene detection. In fact, the confounding
issue by cell-type proportions has been also observed in other types
of association studies, e.g. the epigenome-wide association studies
(Luo et al., 2019; Rahmani et al., 2019; Zheng et al., 2018). On the
other hand, unlike traditional bulk RNA-seq or microarray data, the
bulk ST expression still suffers from zero-inflation because the ex-
pression signals for a large proportion of genes within each spot are
too weak to be captured by ST technologies. Figure 1a shows a bar
plot of spot-wise zero proportions in a real bulk ST dataset
(Moncada et al., 2020), and we can observe that more than 80% of
spots have at least 70% zeros in the expression. Therefore, it is ne-
cessary to account for cell-type proportions and sparsity when mod-
eling bulk ST data.

In bulk ST data, a gene is called SV if it displays an expression
pattern that depends on the spatial locations of spots in a tissue
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section. Considering that a tissue consists of diverse cell types, it nat-
urally brings in the concept of cell-type-specific SV genes: as long as
the expressions of one gene are affected by the spatial coordinates of
cells of the same type, we then call this gene cell-type-specific SV.
However, an SV gene may not be cell-type-specific SV and vice
versa. For a simple illustration, in Figure 2a, this gene is SV across
the spots, but its expression does not vary within each cell type. On
the other hand, in Figure 2b, this gene is cell-type-specific SV in both
cell types 1 and 2, but its overall expressions on spots do not change.
In practice, it is more likely that a gene is SV at the aggregated level
and exhibits SV expressions in one or some cell types but does not in
others (e.g. Fig. 2c). In this sense, cell-type-specific SV genes may be
different from SV genes, and the direct detection of cell-type-specific
SV genes can uncover biological context information. Therefore,
there is a pressing need for new statistical methods to capture cell-
type-specific SV genes.

For common SV gene detection, frequentist methods carry out
multiple hypothesis testings (non-SV in the null and SV in the alter-
native) and determine the P-value threshold by controlling the false
discovery rate (FDR), and Bayesian methods calculate the posterior
probability of being SV for each gene using posterior samples and
identify SV genes based on estimated Bayesian FDR. Specifically, to
our knowledge, trendsceek (Edsgärd et al., 2018) and SpatialDE
(Svensson et al., 2018) are the first two statistical methods to
achieve that. Trendsceek (Edsgärd et al., 2018) was built upon the
marked point process to test whether the joint probability of expres-
sions on two locations relies on their distance, calling it a mark seg-
regation. It then makes use of four types of mark-segregation
summary statistics to compute P-values through permutations. As
trendsceek models the probability density, it can capture spatial ex-
pression changes both from mean and covariance. In contrast,
SpatialDE (Svensson et al., 2018) only models the spatial covariance
structure using zero mean Gaussian process (Williams and
Rasmussen, 2006) and fits spatial expression data via a normal dis-
tribution, and then compares the result against a null model without
spatial effects to calculate P-values. Recently, Hao et al. (2021) pro-
poses SOMDE using self-organizing maps to enhance the computa-
tional scalability on large-scale data. However, these methods need
to first transform raw expression count data to continuous values,
and this may lose power in the downstream analysis (Sun et al.,
2017).

SPARK (Sun et al., 2020) is an elegant and powerful statistical
method that directly fits spatial raw counts via the Poisson log linear
regression model and uses the zero mean Gaussian process to model
spatial effects. Hence, it can achieve more power than trendsceek
and SpatialDE. It also maintains robustness by considering multiple
kernel choices of the Gaussian process and combining multiple P-
values through a Cauchy combination rule (Liu et al., 2019).

Nevertheless, a simple Poisson distribution cannot account for ex-
cess zeros (Fig. 1a) and overdispersion (Fig. 1b) in the ST expression
data. Recently, BOOST-GP (Li et al., 2021) explicitly models the
sparse spatial expression via a zero-inflated negative binomial distri-
bution, where the negative binomial mean is connected to covariates
through a log link. Spatial effects are further incorporated via zero
mean Gaussian process, and binary indicators are introduced for SV
genes. Subsequently, the inference is performed in the Bayesian
framework, and the posterior samples of SV gene indicators are
used to calculate the posterior inclusion probability. Finally, SV
genes are selected based on a controlled estimated Bayesian FDR.

Instead of the explicit modeling of zero-inflation in BOOST-GP,
Zhu et al. (2021) designs a nonparametric approach SPARK-X that
does not need to specify the distribution of sparse spatial expression.
SPARK-X extends the scalability of SPARK and further improves its
robustness on large-scale spatial transcriptomic data. Moreover, as
far as we know, currently SPARK-X (Zhu et al., 2021) is the unique
SV gene detection method that provides a way to identify cell-type-
specific SV genes. Specifically, when applied to Slide-seq v2 data
and HDST data, SPARK-X first uses the cell-type proportion esti-
mates from RCTD (Cable et al., 2022) to assign each spot to its
major cell type and then detects SV genes for spots of the same
labeled cell type. Nevertheless, the assignment procedure ignores the
influence of minor cell types in each spot, and thus it is more reason-
able to directly utilize the cell-type proportion estimates to identify
cell-type-specific SV genes.

In this article, we develop a simple statistical approach ‘CTSV’
to identify cell-type-specific SV genes accounting for excess zeros.
CTSV directly fits the sparse expression raw counts using a zero-
inflated negative binomial distribution, models the mean as a
weighted average of cell-type-specific spatial expression profiles
with weights being the cell-type proportions, and for each cell type
connects the spatial expression profile to a function of spatial coor-
dinates. By combining these equations in CTSV, the identification of
cell-type-specific SV genes is equivalent to testing whether the func-
tion of spatial coordinates is zero for each cell type in a zero-inflated
negative binomial regression model. Specifically, since there have
been several mature bulk ST deconvolution methods (Cable et al.,
2022; Dong and Yuan, 2021; Elosua-Bayes et al., 2021), we treat
the estimated cell-type proportions as fixed covariates in CTSV. We
further model unknown functions to be linear, focal and periodic,
respectively, and combine the P-values from the multiple choices to
achieve the robustness to unavailable spatial patterns like in SPARK
(Sun et al., 2020). Through simulation studies, CTSV can achieve
more power than SPARK-X in detecting cell-type-specific SV genes
and also outperforms other methods at the aggregated level. The
real-data analysis to pancreatic ductal adenocarcinoma (PDAC) ST
data also shows the practical utility of CTSV.

Fig. 1. Zero-inflation and overdispersion in the pancreatic ductal adenocarcinoma (PDAC) ST data. (a) Bar plot of spot-wise zero proportions. (b) Scatter plot of genes’ expres-

sion variance at logarithmic scale versus expression mean in PDAC data. Each point corresponds to one gene, and the smooth curve corresponds to the points where the mean

equals variance
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The novelty of this work can be reflected in the following two
main aspects. First, from the perspective of biology, our article first
introduces the concept of cell-type-specific SV genes and highlights
its importance and difference from SV genes. Second, the statistical
construction procedure of CTSV is novel. CTSV explicitly incorpo-
rates the cell-type proportions of spots into a zero-inflated negative
binomial distribution and models the spatial effects through the
mean vector, whereas existing SV gene detection approaches either
do not directly utilize cellular compositions or do not account for
excess zeros. It is the subtle construction of CTSV that makes it pos-
sible to correctly detect cell-type-specific SV genes from bulk ST
data, which will be detailed in the next section.

2 Materials and methods

2.1 The proposed approach CTSV
Suppose there are G genes, n spots and K cell types in the tissue sec-
tion. Assume that Y ¼ fYgi : 1 � g � G; 1 � i � ng is the bulk

ST data matrix, where Ygi is the observed raw count of gene g in
spot i. Let S ¼ fðsi1; si2Þ : 1 � i � ng represent the set of

coordinates of spots’ centers, and si ¼ ðsi1; si2Þ is the two-
dimensional coordinate of spot i’s center. To account for the count
nature and overdispersion of ST data, we consider the negative bino-
mial distribution NBðcikgi;wgÞ with mean cikgi and shape parameter

wg for gene g in spot i, and its probability mass function is

f ðxjcikgi;wgÞ ¼
CðxþwgÞ
x!�CðwgÞ

ðcikgiÞx �w
wg
g

ðcikgiþwgÞ
xþwg

for any non-negative integer x. In

this way, the variance equals cikgi þ ðcikgiÞ2=wg and thus is larger

than the mean cikgi. The scalar ci is a size factor to account for dif-

ferent library sizes of spots, and it is computed to be the ratio of
spot i’s library size to the median library size across spots, i.e.

ci ¼
PG

g¼1
Ygi

median1� j�n

PG

g¼1
Ygj

.

In addition to overdispersion, bulk ST data may suffer from
zero-inflation—the observed zero proportion is much larger than
the expected zero proportion of a negative binomial distribution.
Typically there are two kinds of zeros in the data. One is called ‘bio-
logical zeros’ resulting from genes that do not express, and the other
one is ‘technical zeros’ or ‘dropout zeros’, which means that some
genes have relatively low expressions but are not captured. Taking

Fig. 2. A simple illustration of SV genes and cell-type-specific SV genes. A big circle represents a spot, a solid/empty triangle means a cell of cell type 1 with expression 1/0 and

a solid/empty square is a cell of cell type 2 with expression 1/0. The left panels show the gene expression distribution for each cell type, while the right panels display the aggre-

gated expression pattern, where the number at the lower left of each spot is the aggregated expression value. (a) This gene is SV at the aggregated level (right panel), but its ex-

pression keeps unchanged within each cell type (left panel). (b) This gene is not SV at the aggregated level (right panel), but its expression is associated with cell locations for

each cell type (left panel). (c) This gene is SV at the aggregated level and is cell-type-1-specific SV, but it is not SV in cell type 2
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both overdispersion and zero-inflation into consideration, we model
the count data Ygi by a zero-inflated negative binomial distribution,

Ygi � pgd0 þ ð1� pgÞNBðcikgi;wgÞ; (1)

where pg denotes the probability of being a technical/dropout zero
for gene g in the spots and d0 is a Dirac measure with point mass at
zero.

As one spot may consist of dozens of heterogeneous cells, we
model the log scale of kgi as a mix of cell-type-specific relative ex-
pression levels of gene g in spot i,

log kgi ¼
XK

k¼1

lgkiwik: (2)

wik is the cell-type k proportion in spot i, and lgki represents the
relative mean expression level of gene g for cell type k in spot i. lgki

depends on the spot i through its location si, and the relationship is
modeled as follows using a similar formulation from Luo et al.
(2019).

lgki ¼ ggk þ bgk1h1ðsi1Þ þ bgk2h2ðsi2Þ; (3)

where ggk is the cell-type-k baseline expression level of gene g, the
two functions h1ð�Þ and h2ð�Þ describe the spatial effects on the mean
ggk, and the coefficients bgk1 and bgk2 are of our interest that can re-
flect whether the location si affects the expression of gene g in cell
type k. Subsequently, by combining Equations (1)–(3), we arrive at
the proposed approach CTSV (Cell-Type-specific SV gene
detection),

Ygi � pgd0 þ ð1� pgÞNBðcikgi;wgÞ;

log kgi ¼
XK

k¼1

lgkiwik;

lgki ¼ ggk þ bgk1h1ðsi1Þ þ bgk2h2ðsi2Þ:

If we integrate the last two equations, CTSV is equivalent to

Ygi � pgd0 þ ð1� pgÞNBðcikgi;wgÞ;

log kgi ¼
XK

k¼1

ggk �wik þ
XK

k¼1

bgk1 � h1ðsi1Þwik

þ
XK

k¼1

bgk2 � h2ðsi2Þwik:

(4)

Our next goal is to conduct statistical inference for the coeffi-
cients bgk1 and bgk2 to test whether they are zero or not for each
gene. Specifically, if at least one of the two null hypotheses H0 :
bgk1 ¼ 0 and H0 : bgk2 ¼ 0 is rejected, then we believe that gene g is
SV in cell type k.

2.2 Statistical inference
2.2.1 When functions h1 and h2 are known

In Equation (4), if we know the cellular compositions fwik : k ¼
1; . . . ;Kg for each spot i as well as the functions h1 and h2, then we
can treat them as covariates and thus the inference for CTSV reduces
to the inference for a zero-inflated negative binomial regression
model (Preisser et al., 2016), which can be easily conducted by the R
package pscl (Zeileis et al., 2008). However, the cellular composi-
tions of each spot are often unavailable. Fortunately, there have
been several deconvolution methods designed for bulk ST data re-
cently, such as RCTD (Cable et al., 2022), SPOTlight (Elosua-Bayes
et al., 2021) and SpatialDWLS (Dong and Yuan, 2021).
Subsequently, we treat the estimates for fwik : k ¼ 1; . . . ;Kg as fixed
covariates and plug them in Equation (4).

The parameter estimation in the zero-inflated negative binomial
distribution is not trivial. For example, Miao et al. (2018) used EM
algorithm (Dempster et al., 1977) to estimate the dropout zero prob-
ability pg. For each gene, CTSV is essentially a zero-inflated negative
binomial regression model, and the likelihood function can be writ-
ten as follows (gene index g is suppressed for simplicity).

LðHjYÞ ¼
Yn
i¼1

"
pd0ðYiÞ þ ð1� p ÞCðYi þ wÞ

Yi! � CðwÞ

�

�
cie
PK

k¼1
wik ½gkþbk1h1ðsi1Þþbk2h2ðsi2Þ�

�Yi

ww

�
cie
PK

k¼1
wik ½gkþbk1h1ðsi1Þþbk2h2ðsi2Þ� þ w

�Yiþw

#
;

where the parameter set H is fp;w; ðgk;bk1; bk2ÞKk¼1g. We follow the
estimation strategy from Zeileis et al. (2008) to obtain approxi-
mated maximum likelihood estimates for H. Specifically, we utilize
the conjugate gradient (CG) algorithm (Gilbert and Nocedal, 1992)
to minimize the negative logarithmic likelihood (�log LðHjYÞ) with
warm starting values being the iteratively reweighted least squares
estimates (Green, 1984).

Next, based on the R package pscl (Zeileis et al., 2008), we can ob-
tain the P-value pgk‘ for the hypothesis H0 : bgk‘ ¼ 0 vs H1 : bgk‘ 6¼ 0
for gene g in cell type k along the ‘-th coordinate ð‘ ¼ 1; 2Þ via Wald
tests. Notice that as the inference is carried out for each gene independ-
ently, the procedure is highly parallelable. We also remark that the
usage of pscl is just a computational tool to realize the statistical infer-
ence for regression coefficients b in CTSV, which does not damage the
novelty of CTSV. All the P-values can be organized into a P-value ma-
trix fpgk‘g with dimension G� 2K, where the k-th ð1 � k � KÞ col-
umn corresponds to the P-value vector in cell type k for the s1

coordinate and the ðKþ kÞ-th ð1 � k � KÞ column to the P-value
vector in cell type k for the s2 coordinate. To control the FDR in the
multiple hypothesis testings, we convert the P-value matrix to the q-
value matrix fqgk‘gG�2K using the R package qvalue (Storey et al.,
2020; Storey and Tibshirani, 2003). In this way, a q-value threshold a
controls the FDR to be not larger than a.

Specifically, for each g-th row in the q-value matrix, if there is at
least one q-value in this row ðqgk‘ : 1 � k � K; ‘ ¼ 1; 2Þ less than
a, we call the corresponding gene g SV at the aggregated level. For
each cell type k, if there is at least one q-value in ðqgk‘ : ‘ ¼ 1; 2Þ less
than a, we then identify the gene g to be cell-type-k-specific SV.

2.2.2 When functions h1 and h2 are unknown

In practice, we often do not know what the type of underlying spa-
tial patterns is in the tissue section for each gene. To deal with pos-
sible model misspecification and make the CTSV method more
robust, we follow the idea from Sun et al. (2020) to choose three
types of functions for h1 and h2, which can reflect the linear, focal
and periodic spatial expression patterns. Specifically, suppose that
s1 and s2 are first transformed to have mean 0 and standard devi-
ation 1. We choose linear functions as h1ðsi1Þ ¼ si1 and h2ðsi2Þ ¼ si2,

squared exponential functions h1 si1ð Þ ¼ exp � s2
i1

2r2
1

� �
and

h2 si2ð Þ ¼ exp � s2
i2

2r2
2

� �
, and periodic functions h1ðsi1Þ ¼ cos 2psi1

/1

� �
and h2ðsi2Þ ¼ cos 2psi2

/2

� �
. Moreover, for the squared exponential

functions, we choose two sets of scale length parameters by (i) let-
ting r1 and r2 be the 40% quantile of the absolute values of the
transformed si1 and si2, respectively, denoted by
r1 ¼ Q40%ðjs1jÞ; r2 ¼ Q40%ðjs2jÞ; and (ii) letting
r1 ¼ Q60%ðjs1jÞ; r2 ¼ Q60%ðjs2jÞ. Similarly, for periodic functions,
we set (i) /1 ¼ Q40%ðjs1jÞ; /2 ¼ Q40%ðjs2jÞ and (ii)
/1 ¼ Q60%ðjs1jÞ; /2 ¼ Q60%ðjs2jÞ. Hence, for each gene g in cell
type k along ‘-th coordinate, we obtain five P-values.

Accordingly, for gene g in cell type k along ‘-th coordinate, we

combine the five P-values ðpðiÞgk‘ : 1 � i � 5Þ following the Cauchy

combination rule ACAT (Liu et al., 2019). We first convert each of

the five P-values into a Cauchy statistic T
ðiÞ
gk‘ ¼ tan½pð0:5� p

ðiÞ
gk‘Þ�,

then take an average of them Tgk‘ ¼ 1
5

P5
i¼1 T

ðiÞ
gk‘, and transform the

average into a single P-value pgk‘ ¼ PðC � Tgk‘Þ, where C follows

the standard Cauchy distribution (Liu et al., 2019; Pillai and Meng,
2016). In this way, we convert five P-value matrices to one P-value
matrix ðpgk‘ÞG�2K, and then the inference is based on the FDR con-

trol as discussed before.
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3 Simulation

In this section, we compared the performance of our method with sev-
eral state-of-the-art SV gene detection methods. We generated the spa-
tial transcriptomic raw count data following Equation (4), where
related parameters are set as follows. Suppose there are G¼10 000
genes, n¼600 spots and K¼6 cell types. The cell-type-k baseline ex-
pression profile gk was generated from normal distributions.
Specifically, we first independently simulated gg1 from Nð2; 0:22Þ for
g ¼ 1; . . . ;G in cell type 1 and then randomly sampled 300 differen-
tially expressed (DE) genes for each cell type k ð2 � k � KÞ. Next,
on the cell-type-k DE genes ð2 � k � KÞ, we sampled ggk from
Nðhk; n

2
kÞ independently, where ðh2; n2Þ ¼ ð3; 0:2Þ; ðh3; n3Þ ¼

ð2;0:2Þ; ðh4; n4Þ ¼ ð4;0:2Þ; ðh5; n5Þ ¼ ð3; 0:2Þ;ðh6; n6Þ ¼ ð4;0:2Þ. For
expressions on the remaining genes, we set ggk ¼ gg1. The explanations
for the parameter choices are given in Supplementary Section S1.
Moreover, we partitioned the spot region into four regions as displayed
in Figure 3a and then sampled cell-type proportions wi of spot i from
Dirichlet distributions. Cell-type proportions of spots in regions from 1
to 4 were independently sampled from Dirð1; 1;1;1; 1; 1Þ; Dirð1;3;
5; 7;9; 11Þ; Dirð16; 14; 12; 10; 8;6Þ and Dirð1; 4; 4; 4;4; 1Þ, respect-
ively. For coefficients bgk, we set 200 SV genes in each cell type, and
there were 700 SV genes at the aggregated level. Figure 3b shows the
SV gene distribution patterns in each cell type. We further consider the
following three simulation settings to specify the spatial effects h1 and
h2.

1. For the linear spatial pattern as shown in Figure 4a, we chose

h1ðsi1Þ ¼ si1 and h2ðsi2Þ ¼ si2. For SV genes, we set bgk1 ¼ 1:8

and bgk2 ¼ 0:8 for each cell type. For non-SV genes, bgk‘ was set

to be zero.

2. For the focal spatial pattern as shown in Figure 4b, we set

h1 si1ð Þ ¼ exp � s2
i1

2

� �
and h2 si2ð Þ ¼ exp � s2

i2

2

� �
. For SV genes in

each cell type, we set bgk1 ¼ 3 and bgk2 ¼ 1. For non-SV genes,

bgk‘ was set to be zero.

3. For the periodic spatial pattern as shown in Figure 4c, we have

h1ðsi1Þ ¼ cos ð2psi1Þ; h2ðsi2Þ ¼ cos ð2psi2Þ. For SV genes in each

cell type, we set bgk1 ¼ 2:5 and bgk2 ¼ 1. For non-SV genes, bgk‘

was set to be zero.

After obtaining gk; wi; h1ðsi1Þ; h2ðsi2Þ, and bgk‘, we can calculate
log kgi and then sample Ygi from NBðcikgi;wgÞ, where the shape par-
ameter is wg ¼ 100 and ci ¼ 1. Considering ST data have a large
proportion of zeros, we set pg (g ¼ 1; . . . ;G) to be 0.6 in each spatial

pattern. Therefore, for each gene, the count data were set to be
dropout zero with a probability 0.6. Subsequently, we applied the
proposed method CTSV to the three types of simulated ST data and
compared the performance with trendsceek (Edsgärd et al., 2018),
SpatialDE (Svensson et al., 2018), SPARK (Sun et al., 2020),
SPARK-X (Zhu et al., 2021), BOOST-GP (Li et al., 2021) and
SOMDE (Hao et al., 2021). Their implementation details are given
in Supplementary Section S2.

When implementing CTSV, we considered the estimate error for
the cell-type proportions and sampled ŵ i from Dirða0wiÞ with
a0 ¼ 100. In addition, if not available (NA) is returned by the func-
tion zeroinfl in R package pscl (Zeileis et al., 2008), the correspond-
ing P-value is recorded as one. In the argument of function zeroinfl,
some commonly used optimization methods can be used, such as
BFGS, CG or Nelder-Mead, and we applied CG algorithm for its
stability during the optimization procedure. We displayed the histo-
gram for the absolute estimation error jp̂g � pgj in Supplementary
Figure S1, showing that the estimation errors concentrate on very
small values. Hence, the estimation for the dropout zero probability
has slight effects on the detection of cell-type-specific SV genes.

The receiver operating characteristic (ROC) curves for identify-
ing SV genes at the aggregated level in the three simulation settings
were reported in Figure 4d–f, respectively, where the false positive
rate is controlled to be <0.05 for a good visualization of the per-
formance comparison. The partial ROC curves indicate that CTSV
uniformly outperformed other methods in SV gene detection at the
aggregated level. In each setting, the performance of CTSV was fol-
lowed by SPARK-X, which also performs well due to its nonpara-
metric nature. SPARK ranked the third for the linear and periodic
settings, while SOMDE ranked the third in the focal spatial pattern.
SpatialDE, trendsceek and BOOST-GP fail to achieve enough power
in all the three simulation settings. Note that trendsceek has four
types of statistics, and we only showed the best one. When control-
ling the FDR <0.01 for each method (i.e. the q-value threshold is
0.01), Table 1 demonstrates the true positive rates (TPRs) and the
number of false positives (FP) in the three spatial expression patterns
for all the methods. CTSV and SPARK-X gave much higher TPR
than other methods, while the FP of CTSV was slightly larger than
SPARK-X. We also observed that trendsceek, SpatialDE and
SOMDE cannot identify any SV gene with FDR <0.01. Therefore,
at the aggregated level, CTSV can provide a high power with con-
trolled FP and FDR owing to its ability to handle excess zeros and
account for cell-type proportions.

Regarding the detection of cell-type-specific SV genes, as
SPARK-X is currently the only method that can achieve the

Fig. 3. Spot regions and the heatmap of cell-type-specific SV gene pattern. (a) Four spot regions with different colors. (b) Heatmap of the SV gene pattern. If one gene in a cell

type is SV, then it is colored by black. Only the first 1000 genes are shown for a good visualization because all the remaining genes are not SV
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function, we compared CTSV and SPARK-X. In SPARK-X (Zhu
et al., 2021), if one spot was dominated by a cell type, which has the
maximal proportion in that spot, SPARK-X assigned the spot to the
cell type. Subsequently, SPARK-X performed the detection task on
spots with the same cell type. Figure 5 displays the heatmaps of
� log 10ðPgkÞ (g ¼ 1; . . . ;1000) of CTSV and SPARK-X, where Pgk is
the P-value of gene g in cell-type k for SPARK-X, and Pgk ¼
minðPgk1;Pgk2Þ for CTSV. The darker the color, the more significant
that the corresponding gene is SV in that cell type. Compared with
the underlying truth (Fig. 3b), CTSV obtained more accurate results
in identifying cell-type-specific SV genes than SPARK-X. Table 2
indicates that when FDR is controlled to be <0.01, CTSV yielded
higher power than SPARK-X for all the cell types in the three simu-
lation settings, but CTSV did not perform very well in the focal spa-
tial expression pattern. The results showed that CTSV is good at
identifying cell-type-specific SV genes by directly modeling cell-type
proportions rather than transforming them to one-hot code like in
SPARK-X, which may lose some information.

Imperfect deconvolution. To explore the effects of imperfect cell-
type proportion estimations on the SV gene discovery, we performed
additional experiments under the three spatial patterns. When
implementing CTSV, we sampled the cell-type proportion estimates
for each spot i, ŵ i, from Dirða0wiÞ (wi is the underlying truth)
with the concentration parameter a0 ¼ 100; 80; 60; 40; 20; 10; 5; 1,
respectively. The lower the a0, the less accurate the deconvolution
estimates. Supplementary Figure S3 shows that the imperfect

deconvolution may lead to more FP for linear and periodic patterns
and decrease power for the focal pattern. Fortunately, when a0 � 20
(i.e. the deconvolution is not much bad), the performances of CTSV
in most cell types are satisfactory.

Model misspecification. We carried out model misspecification
experiments where data were generated from a different model.
Specifically, we introduced the zero-inflated Poisson log-normal
regression model to generate the expression count data, Ygi �
pgd0 þ ð1� pgÞPoiðcikgiÞ and log kgi ¼

PK
k¼1 lgkiwik þ �gi; �gi �

Nð0; s2
gÞ. In each spatial pattern, we set the standard deviation sg ¼

0:1; 0:2; 0:3 and other parameters are the same as those in the origin-
al simulation study. CTSV and competing approaches were then
applied. The ROC curves in Supplementary Figure S4 and TPR/FP
comparison in Supplementary Table S1 show that CTSV can outper-
form SPARK-X and other methods for sg ¼ 0:1. However, when sg

increases, the performance of SPARK-X begins to be better than
CTSV due to a larger gap between the generating distribution and
the assumed zero-inflated negative binomial distribution.
Fortunately, from the perspective of detecting cell-type-specific SV
genes, CTSV can still achieve relatively high accuracy for sg ¼
0:1; 0:2; 0:3 (Supplementary Tables S2–S4). Therefore, when ST
data do not follow the zero-inflated negative binomial distribution,
the nonparametric approach SPARK-X may outperform CTSV at
the aggregated level. We leave the extension of CTSV to a nonpara-
metric approach as a future work.

Fig. 4. SV genes’ spatial expressions in (a) linear pattern, (b) focal pattern and (c) periodic pattern, where the coordinates are scaled to have mean zero and standard deviation one. (d–f)

The ROC curves with false positive rate (FPR) controlled to be<0.05 for CTSV, SPARK-X, SPARK, BOOST-GP, SpatialDE, trendsceek and SOMDE in the three spatial expression pat-

terns. Only the FPR range ð0; 0:05Þ is shown because in medical and clinical practice we often need to control FPR to be less than a threshold and some range of thresholds may be more

important than others (Pencina et al., 2008). To provide more information, the ROC curves over the whole FPR range (0, 1) are also given in the Supplementary Figure S2

Table 1. The comparisons of true positive rate (TPR) and the number of false positives (FP) in SV gene detection at the aggregated level

Pattern CTSV SPARK-X SPARK BOOST-GP SpatialDE SOMDE Trendsceek

TPR Linear 0.999 0.907 0.178 0.001 0 0 0

Focal 0.871 0.293 0 0.001 0 0 0

Periodic 0.999 0.819 0 0.003 0 0 0

FP Linear 33 1 0 5 0 0 0

Focal 19 3 0 5 0 0 0

Periodic 21 3 0 4 0 0 0

4140 J.Yu and X.Luo

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac457#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac457#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac457#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac457#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac457#supplementary-data


Missing cell types. The notation K is the number of cell types
across all spots in the studied tissue section. We acknowledge that it
is possible that each spot i can have its own cell type number Ki

ðKi � KÞ due to the increasing resolution of spatial transcriptomics.
Fortunately, our model can be easily adapted to this situation. For
example, if there are K¼6 cell types in total and spot i only has
three cell types (e.g. 30% cell type 1, 45% cell type 3 and 25% cell
type 6), then we can let the cell-type proportion xi for spot i be
ð0:3; 0;0:45; 0;0;0:25Þ, which is also a K¼6 dimensional vector.
To evaluate the performance of CTSV in this ‘missing cell type’ case,
we randomly chose some spots with the missing cell type number
from 1 to 5 (i.e. Ki 2 f1; 2; 3;4; 5; 6g), resulting in 21 spots with
only 1 cell type, 40 spots with 2 cell types, 61 spots with 3 cell types,
58 spots with 4 cell types, 52 spots with 5 cell types and 368 spots
with all the 6 cell types. For the three spatial patterns,

Supplementary Figure S5 and Table S5 show that CTSV also
achieves good performances in detecting cell-type-specific SV genes.

Mixed spatial patterns. We considered three types of mixed spa-
tial patterns: (i) h1 is linear and h2 is periodic, where h1ðsi1Þ ¼ si1

and h2ðsi2Þ ¼ cosð2psi2Þ; (ii) h1 is linear and h2 is focal, where

h1ðsi1Þ ¼ si1 and h2ðsi2Þ ¼ exp
�s2

i2

2

� �
; and (iii) h1 is periodic and h2 is

focal, where h1ðsi1Þ ¼ cosð2psi1Þ and h2ðsi2Þ ¼ exp
�s2

i2

2

� �
. In each

setting, we implemented the CTSV method described in Sections 2
and 3, where h1 and h2 used in CTSV still belong to the same pat-
tern, so these experiments are actually also model misspecification
cases. Supplementary Figure S6 and Table S6 illustrate that under
mixed spatial patterns, CTSV also outperforms other competing
methods and achieves higher TPR with q-value threshold 0.01.
Importantly, CTSV can still achieve relatively high accuracy in
detecting cell-type-specific SV genes (Supplementary Table S7).

Increased dropout zero proportions. To evaluate whether the FP
number of CTSV increases with the dropout zero proportion pg, we
implemented two additional settings where pg ¼ 0:7 and 0.8. The
corresponding results are shown in Supplementary Figure S7 and
Tables S8–S10. Compared with other methods, we observe that
CTSV is more robust to the dropout zero proportion, and the num-
ber of FP does not increase with pg.

Computational speed. We set the spot size as 600, 1000, 2000,
and 5000 to investigate the computational time of CTSV. The aver-
age execution time per gene were 9.608 s, 12.187 s, 22.447 s and
45.673 s, respectively, using 4 cores for paralleling. The experiments
were implemented on a MacBook Pro computer with Intel Core i5,
4 cores, 8 GB memory and 2.40 GHz.

4 Real-data analysis

We applied CTSV to PDAC ST data (Moncada et al., 2020), which can
be downloaded from Gene Expression Omnibus (Edgar et al., 2002)

Fig. 5. (a–c) Significance plots of CTSV and (d–f) significance plots of SPARK-X in the three spatial expression patterns for the first 1000 genes. Values in the heatmaps are

� log 10p of the corresponding gene in each cell type. The darker the color, the more likely the corresponding gene is to be SV in that cell type

Table 2. Cell-type-specific TPR and FP of CTSV and SPARK-X

Pattern Linear Focal Periodic

Methods CTSV SPARK-X CTSV SPARK-X CTSV SPARK-X

TPR Cell-type 1 1 0.375 0.800 0 1 0

Cell-type 2 0.995 0.095 0.785 0 0.940 0

Cell-type 3 0.980 0 0.605 0 0.970 0

Cell-type 4 0.975 0 0.515 0 0.980 0

Cell-type 5 0.995 0 0.780 0 0.970 0

Cell-type 6 0.995 0 0.905 0 0.995 0

FP Cell-type 1 35 33 9 0 1 0

Cell-type 2 22 4 9 0 1 0

Cell-type 3 10 0 5 0 7 0

Cell-type 4 11 0 8 0 6 0

Cell-type 5 3 0 9 0 3 0

Cell-type 6 21 0 119 0 5 0
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with accession code GSE111672, and our analysis focuses on the ST1
data from PDAC Patient A. As there are associated scRNA-seq
data with 18 cell types for Patient A, we employed the deconvolution
approach SPOTlight (Elosua-Bayes et al., 2021) to obtain cell-type
proportion estimates ŵ i of each spot. SPOTlight is based on a seeded
non-negative matrix factorization regression algorithm. It uses the
ST data, scRNA-seq data and a set of marker genes as input,
and applies non-negative least squares iteratively to carry out the
deconvolution.

We remark here that the deconvolution is a nontrivial task and
current methods do not perform equally well in different situations,
so data analysts need careful considerations in choosing suitable de-
convolution tools in their own problems. Here, in the PDAC data
analysis, we chose SPOTlight (Elosua-Bayes et al., 2021) mainly for
two reasons. First, SPOTlight was shown to have higher accuracy
and sensitivity than other state-of-the-art deconvolution approaches
based on synthetic mixture data, and it can be flexibly applied to dif-
ferent technical conditions and protocols. Second, the performance
of SPOTlight on the PDAC data has been biologically validated, and
the deconvolution results provide many insights into tumor regions
(Elosua-Bayes et al., 2021).

We then merged cancer clones A and B into one cell type denoted
by ‘cancer cell’, and combined macrophages A and B to one cell type
named ‘macrophages’. To alleviate the effects of rare cell types, we
calculated the 80th percentile of proportions across spots for each
cell type and removed cell types whose 80th percentile is <0.1. After
the procedure, six cell types—antigen presenting ductal cells, cen-
troacinar ductal cells, high/hypoxic ductal cells, terminal ductal
cells, cancer cells and macrophages—were remained for down-
stream analysis, and their proportions were adjusted such that they
are positive and summed to be one.

Subsequently, we filtered out genes that are expressed in <20
spots and kept all spots, resulting in 4070 genes and 428 spots. The
justification for using a zero-inflated distribution in CTSV in this
dataset is provided in Supplementary Section S3. We afterward
applied CTSV, trendsceek (Edsgärd et al., 2018), SpatialDE
(Svensson et al., 2018), SPARK (Sun et al., 2020), SPARK-X (Zhu
et al., 2021), SOMDE (Hao et al., 2021) and BOOST-GP (Li et al.,
2021) to the processed bulk ST data. Because trendsceek and
SOMDE did not detect any SV gene in PDAC dataset, we did not
display them in the downstream comparisons. The Venn plot
(Fig. 6) shows the SV gene overlap among CTSV, SpatialDE,
SPARK, SPARK-X and BOOST-GP. When q-value threshold is
0.05, CTSV identified 61 SV genes from 4070 genes at the aggre-
gated level, around half of which were also detected by SpatialDE,
SPARK, SPARK-X and BOOST-GP. In contrast, each of the compet-
ing methods detected more than 800 SV genes.

For the identification of cell-type-specific SV genes, we compared
the performance between CTSV and SPARK-X. In SPARK-X, each
spot was assigned to the major cell type of that spot, and then
SPARK-X was applied to spots that belong to the same cell type.
Table 3 shows the SV gene number in each cell type for the two
methods as well as the number of overlapping SV genes. We also
provided the spatial expression patterns of cancer-cell-specific SV
genes detected by CTSV for spots with cancer cells being the major
cell type component (Fig. 7a). The distribution of cell types is also
displayed in Figure 7b. We observe that the expressions show spatial
changes in the cancer regions. Specifically, genes like CEL, CPA1
and CLU show relatively low expression levels in the upper right of
the cancer region and have relatively high expression values in the
lower middle, indicating the cancer-region-specific spatial expres-
sion variation of genes identified by CTSV. The spatial expression
patterns of 673 cancer-cell-specific SV genes detected by SPARK-X
are also given in Supplementary Figure S8, where more than one
half of detected SV genes (e.g. AQP8, HMGB1 and NDN) show in-
significant spatial variation.

In addition, some cell-type-specific SV genes of CTSV provide
some connections with tumor or PDAC. Table 4 displays these
genes. For example, ARHGDIB in cancer cells, which was not iden-
tified by SPARK-X, encodes the protein RhoGDI2 that functions as
a metastasis suppressor in human cancer (Gildea et al., 2002) and

plays an important role in tumor dormancy regulation (Said et al.,
2011). ISG15 found in antigen presenting ductal cells is associated
with the reinforcement of cancer stem cells’ self-renewal, invasive
capacity and tumorigenic potential in PDAC (Sainz et al., 2014). In
terminal ductal cells, JADE1 may contribute to the development of
pancreatic cancer (Liu et al., 2015). CLPS was detected as an SV
gene in more than one cell type, and the pancreatic lipase requires
the colipase protein encoded by CLPS for efficient dietary lipid hy-
drolysis (Lowe, 1997; Van Tilbeurgh et al., 1999). Thus, the results
by CTSV provide some clues for clarifying the underlying tumor
mechanisms, which requires further validations by biological
experiments.

5 Conclusion

In this article, we developed a cell-type-specific SV gene detection
method (CTSV) for bulk ST data. CTSV directly models raw count
data through a zero-inflated negative binomial distribution, incorpo-
rates cell-type proportions and relies on the R package pscl (Zeileis
et al., 2008) to fit the model. To capture different types of spatial
patterns, five spatial effect functions are used, and then CTSV
applied the Cauchy combination rule (Liu et al., 2019) to obtain P-
values for robustness.

In simulation studies, CTSV was not only shown to be the most
powerful approach at the aggregated level in the three spatial ex-
pression settings, but it also outperformed SPARK-X in terms of
cell-type-specific SV gene detection, perhaps due to the direct con-
sideration of cell-type proportions. In the analysis for PDAC data,
CTSV also identified reasonable cell-type-specific SV genes that are
related to meaningful biological functions.

Fig. 6. Venn plot of SV genes detected by CTSV, SPARK, BOOST-GP, SPARK-X

and SpatialDE in the PDAC data. The number in the parentheses indicates the total

number of SV genes detected by that method

Table 3. Number of SV genes in each cell type by CTSV and

SPARK-X

Cell types CTSV SPARK-X Overlapping genes

Antigen presenting ductal cells 13 0 0

Centroacinar ductal cells 31 0 0

High/hypoxic ductal cells 6 0 0

Terminal ductal cells 6 0 0

Cancer cells 15 673 9

Macrophages 12 0 0
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In fact, the spatial information can be incorporated into the
Gaussian process in two ways—the spatial effect on the mean vector
or the spatial dependency induced by the covariance matrix.

Previous methods including SpatialDE and SPARK used the covari-
ance matrix modeling, while CTSV chose the mean to reflect spatial
effects for two reasons. First, from the perspective of statistics, it is
easier to test the regression coefficients bgk‘ (bgk‘ 2 ð�1;þ1Þ with
null hypothesis H0 : bgk‘ ¼ 0) in the mean function than the scale
parameter sg1 (sg1 2 ½0;þ1Þ with null hypothesis H0 : sg1 ¼ 0) in
the covariance matrix (e.g. SPARK), as the latter is a hypothesis test-
ing at the parameter space boundary and thus needs more compli-
cated statistical techniques. Second, from the perspective of biology,
by modeling two axes si1 and si2 separately, we have the opportunity
to distinguish which axis may affect the gene expression based on
H0 : bgk1 ¼ 0 and H0 : bgk2 ¼ 0. For example, it is possible that the
expression changes only with si1 and keeps invariant with si2 (see
Supplementary Fig. S9). We acknowledge that CTSV can be further
equipped with the spatial dependency via the covariance matrix, but
this makes the statistical inference difficult and computationally
inefficient. Hence, we leave it as a future work.

In addition, the performance of SPARK-X and CTSV are close in
the simulation but are very different on the real data for the follow-
ing reasons. On the one hand, the difference between simulation and
real data may be due to the different zero-inflation rate. In PDAC
ST data, the gene-wise zero proportions have the interquartile range
[0.8014, 0.9322], while in simulation the interquartile range of
gene-wise zero proportions is [0.5867, 0.6150] with the dropout
probability p ¼ 0:6. When we increase p from 0.6 to 0.7 and 0.8,
the gap between SPARK-X and CTSV becomes larger in the ROC
curves (Supplementary Fig. S7). On the other hand, in the simulation
setting, we let the spatial pattern be linear, focal and periodic, re-
spectively, while in the real-data analysis the spatial pattern of SV
gene expressions can be more complex, e.g. the combination of two
or more patterns. Therefore, these factors may make the statistical
performances of CTSV and SPARK-X different between simulation
and real-data application.

Several extensions are worth exploring in the future. First, for ro-
bustness, we choose five simple spatial effect functions for h1 and
h2, and it is better to utilize nonparametric statistical methods to

Fig. 7. (a) The spatial expression patterns of cancer-cell-specific SV genes detected by CTSV in the cancer region of PDAC data. Values are relative expressions, and the calcula-

tion details are given in Supplementary Section S4. (b) The distribution plot of six cell types, where each spot corresponds to a pie chart describing the cell type proportions

Table 4. Cell-type-specific SV genes detected by CTSV

Cell types SV genes

Antigen presenting

ductal cells

AC092798.1, AL139039.2, CEL, CERS5

CLPS, CTRB1, CTRB2

DUOXA2, FP671120.4, GAPDH

GP2, ISG15, MED16

Centroacinar ductal

cells

AC009078.2, AC090114.1, C3, C4A

CD63, CD74, CEL, CELA3A

CELA3B, CLPS, COL6A2, CPA1

CPA2, CPB1, CRP, CTRB1

CTRB2, CTRC, DUOXA2, ELF3

FUT11, GP2, HEIH, IFI6

IGHGP, KRT8, LCN2, MMP1

MMP14, MUC5B, NR4A1

High/hypoxic ductal

cells

AL139039.2, APBB1, ATXN2L

FYCO1, GALNT14, MMP23A

Terminal ductal cells AC022558.1, AL139039.2, CLPS

COLGALT2, JADE1, MCRIP2

Cancer cells AC022558.1, AL139039.2, ARHGDIB, C3

CEL, CHMP6, CLPS, CLU

CPA1, CPB1, CTRB1, CTRB2

ELN, GALNT14, LINC00685

Macrophages AC073896.4, CBLC, CDKN1A, COLGALT2

DES, ELF3, FGFRL1, FTL

GALNT14, IGFBP4, LNPEP, NSDHL
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directly fit the functions, such as splines or wavelets. Second, it is
more helpful to incorporate prior knowledge of the tissue images
(Hu et al., 2021). Third, when it comes to single-cell spatial expres-
sion data, we can also apply CTSV by setting the proportion of the
cell type to which this cell belongs as one and the proportions of
other cell types as zero.

Moreover, integrating multiple datasets can borrow strengths
across different platforms to increase statistical power. However,
due to the different protocols, it may suffer from platform effects. In
principle, CTSV may incorporate the platform effects cbg in platform
b through the following modeling.

Ybgi � pgd0 þ ð1� pgÞNBðcbikbgi;wgÞ;

log kbgi ¼
XK

k¼1

lgkiwik þ cbg;

lgki ¼ ggk þ bgk1h1ðsi1Þ þ bgk2h2ðsi2Þ;

where Ybgi is the read count of gene g for spot i in platform b, plat-
form b has an additive effect cbg on the gene expression and c1g on
the platform one is fixed at zero for identifiability. Moreover, the
platform may also affect the variance or the dropout zero propor-
tion pg, which makes the statistical inference for CTSV more com-
plex. Therefore, our future direction is to equip CTSV with the
ability to address platform effects.
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