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Abstract

Background—Sertraline, a selective serotonin reuptake inhibitor (SSRI), is the most commonly 

prescribed therapy for maternal depression. Epidemiologic studies have linked SSRI exposure 

with decreased fetal growth, altered autonomic regulation, and cardiac malformations. We 

hypothesized SSRI exposure decreases left ventricular volumes and increases adult sympathetic 

nervous system activation, resulting in increased adult heart rates.

Methods—C57BL/6 mice received saline or sertraline (5 or 15 mg/kg/day i.p.) on postnatal days 

1–14. Adult phenotypes were assessed at 5 months.

Results—Sertraline-exposed mice had smaller left ventricular internal diameters in diastole 

(control 4.0 ± 0.1 mm, SSRI 3.7 ± 0.1 mm, p < 0.05), decreased stroke volumes (control 46 ± 2.6 

μL, SSRI 37 ± 2.3 μL, p < 0.05), higher heart rates (control 530 ± 13 beats per minute (bpm), 

SSRI 567 ± 6 bpm, p <0.05) and increased urinary excretion of noradrenaline (control 174 ± 29.4 

ng/mL, SSRI 276 ± 35.1 ng/mL, p<0.05). These changes were associated with increased cerebral 

serotonin transporter (5-HTT) expression.

Conclusion—Neonatal sertraline exposure causes long term changes in cardiac morphology and 

physiology. We speculate that early life SSRI exposure impairs cardiomyocyte growth and central 

serotonin signaling, leading to a small left heart syndrome in adult mice.

INTRODUCTION

Over the past 4 years, selective serotonin reuptake inhibitors (SSRIs) have been the most 

commonly prescribed antidepressants in America (1). Annual prescriptions for sertraline 

have increased dramatically from 10.8 million in 2006 to 35.7 million in 2010 (1). Similarly, 

SSRI use during pregnancy has been steadily increasing and is now estimated to affect 6.2% 

of pregnancies (2–5). With more than 4 million annual live births in America 

(www.census.gov), a significant number of pregnancies are being impacted by SSRI 

therapy.
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Pharmacokinetic and epidemiologic studies have shown significant fetal exposure occurs 

during maternal SSRI therapy (6–8). Intrauterine exposure is associated with decreased fetal 

growth, impaired neonatal adaptation, and increased risk of cardiac malformations (7–9). 

While the neonatal effects from intrauterine SSRI exposure are well established, the long-

term effects of exposure remain unclear. Prospective human studies are beginning to 

demonstrate persistent changes in hypothalamic regulation, heart rate responses to pain, and 

behavior in children exposed to maternal SSRI therapy (10–12).

Animal studies have demonstrated neonatal SSRI exposure suppresses adult serotonergic 

signaling and elicits features of depression (13, 14). In particular, neonatal SSRI exposure 

elicits a persistent down-regulation in midbrain expression of tryptophan hydroxylase, the 

rate limiting enzyme in serotonin production (15). Beyond effects on mood, midbrain 

serotonergic neurons project widely, including prominent input to the hypothalamus and 

rostral ventrolateral medulla (16, 17). In these regions, serotonin receptor stimulation blunts 

the cardiovascular responses to stress, suggesting a sympatho-inhibitory effect of central 

serotonergic signaling (16, 17).

Due to the high rate of in-utero exposure, postmarketing surveillance of the SSRIs has been 

extensive. In 2005, GlaxoSmithKline reported an increased risk of congenital heart disease 

in infants of mothers taking paroxetine, leading to the U.S. Food and Drug Administration 

changing the paroxetine product label to pregnancy category D (indicating studies in 

pregnant women have demonstrated a risk to the fetus) (9). Many subsequent studies have 

been completed supporting an association between maternal SSRI therapy and ventricular 

septal defects (VSDs) in infants (18–21).

The association between SSRI exposure and cardiac defects is further supported by decades 

of research highlighting the importance of regulated serotonin (5-HT) signaling in 

cardiomyocyte proliferation and maturation. Sari and Zhou have previously investigated the 

effects of 5-HT and paroxetine on fetal rat cardiomyocyte proliferation. They found that 5-

HT concentration at a physiologic level, 4 μM, permitted optimal proliferation of heart cells 

as indicated by the number of 5-bromo-deoxyuridine immunoreactive cells (22). Lower and 

higher concentrations of 5-HT and 5-HT reuptake inhibition by paroxetine decreased 

proliferation (22). Likewise, 5-HT2B knockout mice are born with cardiac hypoplasia 

resulting from impaired proliferation and a decrease in cardiomyocyte size (23). 

Importantly, while human cardiomyocyte proliferation is essentially complete at delivery, in 

mice, cardiomyocyte growth and proliferation are robust for 14 days after delivery (24, 25). 

We hypothesized SSRI exposure decreases left ventricular volumes and increases adult 

sympathetic nervous system activation, resulting in increased adult heart rates.

RESULTS

Exposure Model

Pup weights at initiation of sertraline exposure (d1) were similar. By the final day of 

exposure (d14), sertraline mice had significantly decreased weights (control 7.35 ± 0.15 g, 

sertraline 6.8 ± 0.12 g (p=0.011)). Twenty-four hours after the final exposure, sertraline 

exposed mice had plasma levels of 18.9 ± 4.4 ng/mL (N = 7) and whole brain levels of 370 
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± 39 ng/g (N = 6). Sertraline exposed mice achieved normal adult weights by 5 months 

(control 31.2 ± 1.0 g, sertraline 29.9 ± 0.9 g). Because no hemodynamic differences were 

observed between the 5 mg/kg/day and 15 mg/kg/day sertraline groups, they are presented 

as one group.

Increased Heart Rates in Adult Mice

Overall mean heart rates were obtained by first calculating an individual mouse’s 

hemodynamic parameters from the capture of telemetry data every 5 minutes for 60 

continuous hours, and then averaging these values across the group. Based on this 

comprehensive analysis, sertraline exposed mice had higher heart rates compared to controls 

(control 530 ± 13 vs. SSRI 567 ± 6, p<0.01 by Students t-test) (Figure 1a). Looking in more 

depth at the data by repeated measures ANOVA, significant interactions occurred between 

exposure and time of day. On post-hoc testing, SSRI exposure increased heart rates from 

1800 through 0800 (p<0.05). Compared with controls, sertraline-exposed male mice had 

similar arterial pressures (Figure 1b) and temperatures (Figure 1c). Sertraline exposed mice 

had higher overall activity levels than control mice (control 3.9 ± 0.4, sertraline 5.1 ± 0.3, p< 

0.05 by Students t-test). By repeated measures ANOVA, there was likewise an overall effect 

of SSRI on activity level (p<0.05) (Figure 1d) with significant differences noted on post-hoc 

testing from 2000 through 0400 and at 0600–0700 for SSRI vs. control.

Markers of Sympathetic Activation

As shown in Figure 1, mice exposed to sertraline had increased heart rates and increased 

activity levels, most prominent during the dark cycle (1800–0600). For a given activity 

level, sertraline exposed mice had persistently higher heart rates than control mice (Figure 

2a). Sertraline exposed mice also had increased urinary noradrenaline excretion (Figure 2b). 

To test the hypothesis that sertraline exposed mice had increased cardiac sympathetic tone, 

recordings were obtained following the administration of sympathetic and/or 

parasympathetic antagonists. Mice exposed to sertraline had exaggerated hypotensive 

responses to prazosin (Table 1). Following chlorisondamine injections, sertraline exposed 

mice tended to again have decreased blood pressures, but this was not statistically 

significant (Table 1). There were no significant differences in heart rate responses to 

sympathetic and parasympathetic blockade between control mice and sertraline exposed 

mice (Table 2). To further quantify resting autonomic tone, beat-to-beat heart rate variability 

was assessed. While no significant differences in pulse interval variability were seen by time 

domain analysis (data not shown), frequency domain analysis revealed significantly 

increased very low frequency pulse interval variability in sertraline-exposed mice (Figure 

3a) which was almost entirely eliminated by chlorisondamine (Figure 3b). Frequency 

domain analysis by ECG telemeter tracings revealed significantly increased spectral power 

at all frequencies in sertraline-exposed mice compared to control mice (Figure 3c). 

Following metoprolol injections, sertraline-exposed mice had a significant decrease in very 

low frequency spectral power (Figure 3d), and non-significant decreases in other spectral 

bands.
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Decreased Stroke Volume in Adult Mice

Sertraline exposed mice had significantly smaller left ventricular internal diameters in 

diastole and decreased stroke volumes (Table 3). No differences were observed in fractional 

shortening (p = 0.45) or predicted LV mass (p = 0.42) (Table 3). No adult mouse had a 

septal defect discovered by echocardiography. Although no right sided measurements were 

recorded, the interventricular septum was normally-shaped in all echocardiograms, and there 

was no evidence of pulmonary hypertension. No differences were observed between the 

groups in overall morphology based on hematoxylin-eosin staining (Figure 4).

Neonatal Sertraline Exposure Alters Central Serotonergic Signaling

Quantitative PCR studies demonstrated that neonatal sertraline exposure lead to a 2–3 fold 

increase in 5-HTT in the cortex and midbrain in adults compared to control mice (Figure 

5a). The serotonin receptor 5-HT2B had decreased expression in the cortex compared to 

control mice (Figure 5b).

DISCUSSION

With up to 6.2% of pregnancies influenced by SSRIs (2–5), it is crucial to investigate the 

consequences of fetal SSRI exposure. To our knowledge, this is the first study that 

investigated the long term cardiovascular effects from analogous neonatal sertraline 

exposure. Because the majority of prior animal studies have focused on behavioral aspects, 

this is a novel area with no preclinical studies for comparison. Likewise, SSRI therapy was 

only introduced to obstetrical care over the last decade and there are no data on adult 

cardiovascular phenotypes in exposed humans. The key findings in our model were 

increased heart rates, increased urinary noradrenaline excretion, and decreased stroke 

volumes. The cause-effect relationship between the increased heart rates and decreased 

stroke volumes is not clear, but we hypothesize it may be from increased sympathetic tone, 

altered vascular capacitance, and/or decreased cardiomyocyte proliferation.

One hypothesis is that the increased heart rates are related to increased central sympathetic 

outflow. The increased urinary noradrenaline excretion, in combination with increased heart 

rates and increased activity levels, supports this hypothesis. The increased expression of 5-

HTT in the cortex and midbrain demonstrates a rebound increase in the serotonin transporter 

protein in adults following neonatal 5-HTT inhibition during SSRI exposure. This increase 

in 5-HTT expression may lead to decreased serotonergic tone and increased sympathetic 

activation. Heart rate variability (HRV) analysis was developed to assess sympathetic and 

parasympathetic influences in humans. There is a large body of evidence to suggest that 

autonomic imbalance, in which the sympathetic system is hyperactive and the 

parasympathetic system is hypoactive (or increased low frequency: high frequency ratio), is 

associated with an increased risk of cardiovascular disease (26). Sertraline exposed mice had 

increased very low frequency spectral power, but the role of very low frequency power is 

not entirely understood. In addition, if our findings were entirely related to sympathetic tone 

then we would have observed significant differences in our heart rate responses following 

sympathetic blockade. One way to further analyze and support the hypothesis that sertraline 

Haskell et al. Page 4

Pediatr Res. Author manuscript; available in PMC 2013 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exposed mice have increased sympathetic activation would be to measure renal nerve 

sympathetic activity in these mice.

An alternative hypothesis for increased heart rates and decreased stroke volumes is altered 

vascular capacitance. Sertraline exposed mice had exaggerated responses to prazosin, an α-

antagonist, suggesting altered vascular capacitance. With no other structural differences 

noted by echocardiograms and no differences noted on hematoxylin-eosin staining, the 

increased heart rates observed in our mice may be purely related to decreased passive filling. 

Serotonin’s effects on vascular tone are mediated by multiple receptors which are located on 

vascular smooth muscle cells. Ungvari et al. demonstrated that fluoxetine elicited substantial 

dilation of isolated skeletal muscle arterioles and small cerebral arteries of rats (27) and it is 

possible early life SSRI exposure permanently altered vascular tone as a result of altered 

gene expression.

In addition, recent studies have demonstrated a direct effect of serotonin on the developing 

heart. The 5-HT2B receptor is expressed in cardiovascular tissues and is the only 

serotonergic receptor known to be involved in cardiac proliferating cells (28). 5-HT2B null 

mice have heart defects with high mid-gestation lethality (29, 30). Newborn 5-HT2B 

knockout mice develop cardiac dilation with cardiac hypoplasia resulting from impaired 

proliferation and a decrease in cardiomyocyte size (29, 30). Although no differences were 

detected on H&E staining or in overall left ventricular mass, sertraline exposed mice had 

smaller left ventricular internal diameters in diastole and smaller stroke volumes. Our PCR 

data demonstrate decreased expression of 5-HT2B receptors in the sertraline exposed adult 

mice, suggesting impaired central serotonergic tone. Further studies on isolated neonatal 

cardiac myocytes are needed to assess impaired growth or proliferation as an etiology of the 

diminished stroke volumes. Further studies with echocardiograms at earlier time points will 

also be crucial to determine the onset and trajectory of the diminished stroke volumes. These 

studies must focus on changes in neonatal mice during a time of rapid cardiomyocyte 

development that establishes adult myocyte endowment.

The hyperactivity we measured could be secondary to increased sympathetic tone, but is a 

well described finding in SSRI exposure models (15, 31, 32). Zeskind et al. also found 

newborns exposed to intrauterine SSRIs to have higher activity levels (33). The etiology of 

this increased locomotor activity is currently an area of active investigation. SSRI exposure 

may trigger region specific changes in serotonin production or receptor density which could 

influence physical activity (34, 35). Importantly, the increased heart rates in sertraline 

exposed mice were not solely due to activity. When we compared heart rates at specific 

activity levels, the sertraline exposed mice continued to have higher heart rates than control 

mice. This hyperdynamic, hyperactive state is consistent with the post-SSRI hypermetabolic 

state we recently described in identically exposed male and female mice (32).

It is important to emphasize why we utilized a neonatal exposure model in mice to mimic 

late intrauterine SSRI exposure in humans. We were interested in this window since up to 

6% of infants are exposed to SSRIs during fetal development (2–5). Neonates are rarely 

prescribed SSRIs and there are typically undetectable SSRI levels in breast milk. In humans, 

the embryonic stage of cardiac development is complete and the heart has taken its adult 
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shape by the end of the first trimester. The subsequent fetal stage of cardiac development 

largely establishes the adult complement of myocytes, given that mononucleated 

cardiomyocytes begin to terminally differentiate into binucleated cells (36). At the time of 

delivery, more than 70% of human cardiomyocytes have withdrawn from the cell cycle and 

the myocyte turnover rate falls to less than 1% per year (37). Postnatal mice still undergo 

growth and proliferation of cardiomyocytes during the first 14 days of life (24, 25). To 

capture the terminal proliferative phase of cardiomyocyte development without eliciting 

teratogenic effects from embryonic exposure, we thus utilized a targeted neonatal exposure 

which captures a window of susceptibility analogous to third trimester in humans. For 

example, Noorlander et. al demonstrated the teratogenic effects of earlier exposure as mice 

exposed to fluoxetine during intrauterine phase of cardiac development had significantly 

decreased survival during the preweaning period (23). Eighty-one percent of mice treated 

prenatally with fluoxetine died and were found to have dilated cardiomyopathy (23), thus 

eliminating the use of combined intrauterine and neonatal exposure for our experiments.

In our model, we injected mice during the first 14 days and the sertraline dose we used led to 

levels comparable to typical human levels (38, 39). Further supporting the biologic 

relevance of our model, we noted mild neonatal growth restriction, which is consistent with 

the lower birth weights seen in SSRI exposed infants (4, 40). Regarding the clinical 

relevance of the 5 mg/kg dose of sertraline we utilized, we have previously reported plasma 

levels 2 hours after injection of 71.8 + 1.3 ng/mL and plasma levels 12 hours after injection 

of 13.1 + 0.6 ng/mL (32). Based on these levels, there was an estimated peak concentration 

of 101 ng/mL, and estimated trough concentration of 1.7 ng/mL. Our projected peak 

concentration approximates that seen in pregnancy, and our projected trough approximates 

umbilical cord levels (32). Although our drug levels were comparable to maternal levels 

during pregnancy, the placenta provides a partial barrier to fetal exposure. It is therefore 

possible that the lowest dose we utilized exceeds clinical exposure, and the relatively high 

exposure seen in our model may explain the lack of dose-response.

Limitations

A major caveat to our study is the lack of clinical correlates. Although multiple studies have 

been done to determine if SSRIs are cardiac teratogens, no clinical studies have looked at 

long term cardiovascular effects from neonatal exposure. Our findings of exaggerated 

hemodynamic responses to sympathetic blockade that suggest increased sympathetic tone 

could be reinforced by measuring renal nerve sympathetic activity. We only investigated 

male mice, but previous studies suggest similar phenotypes may be present in female mice.

CONCLUSIONS

There is converging evidence in our model that neonatal SSRI exposure causes long-

standing cardiovascular changes including increased heart rates, decreased stroke volumes, 

and increased urinary noradrenaline excretion in adult male mice. Human studies will be 

indispensable in establishing the clinical implications of these murine studies. With up to 

6% of pregnancies complicated by intrauterine SSRI exposure, the long-term effects of 

maternal SSRI therapy need to be investigated further. In our study, increased sympathetic 

Haskell et al. Page 6

Pediatr Res. Author manuscript; available in PMC 2013 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tone is the most likely hypothesis for our findings but we cannot exclude the etiology of our 

long term cardiovascular changes as being multi-factorial. While maternal antidepressant 

therapy has a critical role in the preservation of fetal and maternal health, additional data are 

needed to understand the long-term risks of intrauterine antidepressant exposure.

MATERIALS AND METHODS

Animal model

All procedures were approved by the University of Iowa Animal Care and Use Committee. 

Pregnant C57BL/6 mice (Jackson Laboratory, Bar Harbor, ME) were allowed natural 

delivery. Pups were culled into litters of 6 and included male and female mice. Within each 

litter, pups were randomized to receive intraperitoneal saline (10 mL/kg/day) or sertraline (5 

or 15 mg/kg/day). Injection volumes were the same in each group (10 mL/kg/day). 

Injections were administered from postnatal day 1 to 14 to encompass a developmental 

window similar to the third trimester of human pregnancy. When normalized by body 

surface area, 15 mg/kg/day sertraline corresponds to the upper range of clinical dosing 

(human dose of 200 mg/day). The lower 5 mg/kg dose was chosen to reflect exposure under 

the assumption that maternal therapy is prescribed at the lowest effective dose (typically 50 

to 100 mg/day). Pups were weighed daily during injections and sertraline-exposed and 

control pups were nursed by the same mother to minimize environmental influences on 

growth and development. Weights were obtained again at time of weaning (21 days) and 5 

months of age. Plasma and brain sertraline levels were assayed in the 5 mg/kg/day 

sertraline-exposed group after the final injection. Mice were anesthetized with isoflurane 

and then euthanized by exsanguination. The liver was excised and 600–750 μL of blood was 

collected. Plasma was stored at −20°C until analysis. Whole brain tissue was dissected and 

stored at −80°C. Analysis by gas chromatography was performed at NMS Labs (Willow 

Grove, PA).

Echocardiograms

Beginning at 5 months of age, baseline echocardiograms were performed on male mice who 

received the 5 mg/kg sertraline injections and control mice. The mice were anesthetized 

using isoflurane and placed on a warming platform. Anesthesia was titrated to minimize 

movement yet maintain heart rate between 450 and 600 beats per minute. Temperature was 

monitored with a rectal thermometer and maintained between 35 to 36 degrees Celsius. 

Echocardiograms were performed using the VisualSonics Vevo 2100 High Resolution 

Imaging System and software (VisualSonics Inc., Toronto, Ontario, Canada) by an 

investigator blinded to group assignment. Parasternal long axis, parasternal short axis, and 

apical four chamber views were obtained in all animals. M-mode recordings were obtained 

of the right and left ventricles in the parasternal short axis view at the level of the left 

ventricular papillary muscles. Measurements were made of the interventricular septum 

thickness in diastole and systole (IVSd, IVSs), left ventricular internal dimension in diastole 

and systole (LVIDd, LVIDs), and left ventricular posterior wall thickness in diastole and 

systole (LVPWd, LVPWs). These measurements were then used to calculate the left 

ventricular ejection fraction (EF) and fraction shortening (FS), left ventricular diastolic and 

systolic volumes (LVVd, LVVs), and left ventricular mass. Calculations were made by the 
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Vevo 2100 software. Measurements and calculations were made in accordance with the 

American Society for Echocardiography Guidelines (41). Volumes were calculated based on 

Teicholz et al. formulas (42).

Telemetry recordings

At 5 months, carotid radiotelemeters (PA-C10: Data Sciences International, St. Paul, MN) 

were implanted in male mice as previously described (43). All telemetry implants were 

performed using isoflurane titrated based upon respiratory status and pedal reflex. Following 

a 7 d recovery, arterial waveforms were sampled for 10 seconds every five minutes over a 

total of 60 hours (an uninterrupted series of 3 dark cycles and 2 light cycles). We 

subsequently utilized electrocardiogram telemeters to further assess heart rate, activity 

levels, and temperature avoiding unilateral carotid artery ligation on male mice injected with 

5 mg/kg/day sertraline or saline as neonates. These electrocardiogram telemeters (TA-F10; 

Data Sciences International, St. Paul, MN) were implanted with the transmitter secured 

within the peritoneum. Mice were anesthetized and placed supine on a heated surgical table. 

Limbs were secured with tape and the abdomen was shaved and disinfected with alcohol 

swab. A 1.5 -2 cm midline incision through the skin and abdominal wall was made. The 

transmitter was placed in the peritoneal cavity, parallel to the long axis of the body with the 

leads oriented caudally. The terminal end of the negative lead was tunneled subcutaneously 

from the abdominal incision toward the right pectoral muscle. The positive lead was 

tunneled subcutaneously from the abdominal incision to the left caudal rib region. The 

radiotransmitter was secured using a stay suture through the abdominal wall. All skin 

incisions were closed using 6–0 silk suture. After a 7 day recovery, heart rate, locomotor 

activity, and temperature were sampled for 10 seconds every 5 minutes over 60 hours. 

Activity was measured as the number of horizontal movements per minute.

After the baseline recordings, mice were injected once daily with one of the following 

medications (Sigma Chemical, St. Louis, MO): vehicle alone (0.9% NaCl, 10 mL/kg), 

muscarinic receptor antagonists (atropine, 1 mg/kg or scopolamine, 2 mg/kg), β1-receptor 

antagonist (metoprolol, 4 mg/kg), α1-adrenergic receptor antagonist (prazosin, 2 mg/kg), 

and/or nicotinic receptor antagonist (chlorisondamine, 2.5 mg/kg). Responses were assessed 

at the plateau phase, 20–30 minutes after injection.

Heart rate variability

Using the 1000-Hz arterial blood pressure recordings or electrocardiogram recordings and 

HemoLab software, heart rate variability was evaluated according to the guidelines of the 

Task Force of the European Society of Cardiology (44, 45). Two separate three minute 

epochs were selected during a phase of inactivity to allow analysis of heart rate variability in 

duplicate. For time-domain analysis, beat-to-beat pulse intervals were utilized to calculate 

the standard deviation of normal-to-normal intervals (SDNN), the square root of the mean 

squared differences of successive NN intervals (RMSSD), and the total normal-to-normal 

(NN) intervals divided by the height of the histogram of all NN intervals (Triangular Index). 

For frequency domain analysis, the same 3 minute epochs were utilized to calculate power 

spectral density.
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Nonparametric spectral analysis was performed with the fast Fourier transformation 

technique to calculate absolute and relative power of the murine heart rate-specific very low 

frequency (0.03–0.1 Hz), low frequency (0.1–1.5 Hz), and high frequency (1.5–4.0 Hz) 

spectral components.

Urinary noradrenaline excretion

While in metabolic cages, a 24 hour urine sample was collected from adult male mice. 

Samples were acidified and stored at −80°C. Urinary excretion of noradrenaline was 

quantified by ELISA (RE59261, IBL Hamburg, Hamburg, Germany).

Hematoxylin-eosin staining

Hearts were dissected and atria removed from mice that received the 5 mg/kg/day sertraline 

or saline from postnatal day 14 and adult hearts. Ventricles were washed with cold PBS then 

fixed in formalin overnight at 4° C. Samples were embedded in paraffin, then sectioned 

(5μm thick) and hematoxylin-eosin stained following standard protocols.

Serotonin Transporter Protein (5-HTT) and Serotonin Receptor Expression

In adult male mice who received 5 mg/kg/day sertraline and control mice, the brain was 

quickly dissected and bluntly segmented and stored in RNAlater until purification with 

RNeasy kits (Qiagen, Valencia, CA). Initial coronal sectioning removed the olfactory bulbs 

anteriorly, as well as the cerebellum and medulla posteriorly. The remaining brain was then 

sectioned both superiorly and laterally to obtain a sample labeled “cortex” including both the 

cerebral cortex and pineal gland. The remaining segment, labeled “midbrain” included the 

dorsal raphe nucleus as well as the diencephalon (thalamus and hypothalamus). Finer 

dissection was not completed to avoid loss of message due to either passage of time or 

indiscriminate removal of grossly indistinct regions. RNA was quantitated using a 

NanoDrop ND-1000 spectrophotometer (Labtech International, East Sussex, UK). Reverse-

transcription reactions were performed on 0.5 μg total RNA with the addition of oligo dT, 

dNTPs, DTT, RNasin, and Superscript III reverse transcriptase (Invitrogen). Quantitative 

real-time RT-PCR (qPCR) utilized the TaqMan reagent and instrumentation systems 

(Applied Biosystems, Foster City, CA). Taqman gene expression assay primer/probe sets for 

mouse 5-HTT (assay ID = Mm00439391_m1) and 5-HT2B (assay ID = Mm00434123_m1) 

were purchased from Applied Biosystems. Since the reaction efficiencies for the assays are 

matched by design, we used the ΔΔCT method for quantitation.

Data analysis

All values other than RT-PCR data are presented as means ± standard error of the mean. 

Statistical comparisons were performed by two-tailed t-tests. Telemetry data were also 

compared by 2-way repeated measures ANOVA factoring for neonatal exposure (sertraline 

vs. saline) and time of day. RT-PCR data were compared by 2-way repeated measures 

ANOVA factoring for neonatal exposure (sertraline vs. saline) and brain region (midbrain 

vs. cortex). Post hoc analysis (Holm-Sidak test) was performed if statistically significant 

differences were detected. P < 0.05 was considered significant.
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Figure 1. 
Neonatal sertraline exposure increases adult heart rates and activity level, but not 

temperature or blood pressure. Radiotelemetry was utilized to monitor control mice (black 

circles, N=29 mice from 17 litters) and sertraline-exposed mice (white circles, N=17 mice 

and 12 litters). Hourly averages are shown for the dark cycle (1800–0600, left side of x-axis) 

and light cycle (0600–1700, right side of x-axis). Sertraline exposure increased adult heart 

rates (a). There were no differences in mean blood pressure (b) or temperature (c) between 

sertraline-exposed mice and controls. Sertraline exposed mice had increased activity levels 

(d).
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Figure 2. 
Sertraline exposed mice had higher heart rates when controlled for activity level and 

increased urinary excretion of noradrenaline. Tertiles for activity level are demonstrated (a). 

For a given activity level, sertraline-exposed mice (white diamonds) had higher heart rates 

than control mice (black squares). Sertraline-exposed mice (white bar, N=17 mice from 11 

litters) also had increased urinary excretion of noradrenaline compared to control mice 

(black bar, N=17 mice from 11 litters) (b). *P<0.05 versus control.
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Figure 3. 
Sertraline exposure increased low frequency heart rate variability. Sertraline-exposed mice 

(white bars, N=12 mice from 7 litters) had significantly increased very low frequency (VLF) 

heart rate variability by carotid telemetry compared to control mice (black bars, N=6 mice 

from 5 litters) (a). Following chlorisondamine, VLF and low frequency (LF) spectral power 

were almost entirely eliminated (b). By electrocardiography (c), sertraline-exposed mice had 

increased VLF, LF, and high-frequency (HF) spectral power compared to control mice. 

After metoprolol, sertraline exposed mice had significantly decreased VLF spectral power 

(d) but all spectral power was reduced. * P<0.05 versus control.
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Figure 4. 
-xposed mice had no differences in morphology compared to control mice on hematoxylin-

eosin staining. Sertraline-exposed mice (a) and control mice (b) had normal cardiac structure 

as neonates (left, N = 4 neonatal SSRI, 4 neonatal control) and adults (right, N = 6 SSRI, 6 

control). Scale bar is 100 μm.
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Figure 5. 
Sertraline exposed mice have increased expression of the serotonin transporter protein (5-

HTT). PCR was performed on midbrain and cerebral cortex homogenates obtained from 

control and SSRI-exposed mice (gray bars). Expression of the serotonin transporter protein 

and serotonin receptor 5-HT2B were quantified and compared to control mice. Midbrain and 

cerebral cortex expression of 5-HTT mRNA is significantly increased in SSRI-exposed male 

mice compared to control mice (a). Midbrain 5-HTT expression is significantly increased 

compared to cortex (a). No differences were observed in expression of 5-HT2B receptors 

Haskell et al. Page 17

Pediatr Res. Author manuscript; available in PMC 2013 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between brain regions or between sertraline exposed mice and control mice (b). N = 7–10 

mice from 5–10 litters. *P<0.05 versus control. **P<0.05 versus cortex.
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Table 1

Mean blood pressures (MBP) by telemetry following injections with prazosin and chlorisondamine

Medication (dose) Measurement Saline Sertraline

N=5 N=16

Prazosin (1mg/kg) MBP, mm Hg 89 ± 2 79 ± 2*

MBP, % baseline 74 ± 1 64 ± 2*

Chlorisondamine (2.5mg/kg) MBP, mm Hg 78 ± 3 72 ± 3

MBP, % baseline 65 ± 2 61 ± 3

*
p < 0.05.
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Table 2

Mean heart rates (HR) by telemetry following injections with sympathetic and parasympathetic antagonist.

Medication (dose) Measurement Saline Sertraline

10 ml/kg/d 5 mg/kg/d

N = 10 N = 11

Prazosin ( 1mg/kg) HR, bpm 534 ± 92 518 ± 14

HR, % baseline 99 ± 13 100 ± 13

Scopolamine (2mg/kg) HR, bpm 613 ±13 633 ± 20

HR, % baseline 120 ± 3* 120 ± 4*

Metoprolol ( mg/kg) HR, bpm 504 ± 9 486 ± 35

HR, % baseline 99 ± 3 91 ± 7

bpm = beats per minute.

*
p < 0.05.
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Table 3

Baseline echocardiograms for adult male mice

Echocardiogram Measurements Control (N=14) Sertraline (N=17)

Shortening Fraction (%) 37 ± 2.1 35 ± 1.6

Ejection Fraction (%) 66 ± 2.7 64 ± 2.1

Interventricular septum, diastole (mm) 0.8 ± 0.05 0.9 ± 0.04

LV Posterior wall, diastole (mm) 1.0 ± 0.1 1.0 ± 0

LV Posterior wall, systole (mm) 1.5 ± 0.1 1.5 ± 0.1

LV Mass (mg) 147 ± 7.5 139 ± 6.7

LV Internal Diameter, diastole (mm) 4.0 ± 0.1 3.7 ± 0.1*

LV Internal Diameter, systole (mm) 2.6 ± 0.1 2.4 ± 0.1

LV Volume, diastole (μL) 71 ± 4.3 59 ± 4.2

LV Volume, systole (μL) 25 ± 2.7 22 ± 2.4

Stroke Volume (μL) 46 ± 2.6 37 ± 2.3*

*
p < 0.05.
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