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Abstract
Several drift-diffusion models have been developed to account for the performance in conflict tasks. Although a common
characteristic of these models is that the drift rate changes within a trial, their architecture is rather different. Comparative studies
usually examine which model fits the data best. However, a good fit does not guarantee good parameter recovery, which is a
necessary condition for a valid interpretation of any fit. A recent simulation study revealed that recovery performance varies
largely between models and individual parameters. Moreover, recovery was generally not very impressive. Therefore, the aim of
the present study was to introduce and test an improved fit procedure. It is based on a grid search for determining the initial
parameter values and on a specific criterion for assessing the goodness of fit. Simulations show that not only the fit performance
but also parameter recovery improved substantially by applying this procedure, compared to the standard one. The improvement
was largest for the most complex model.
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Introduction

The ability to act in a goal-oriented manner is an essential
characteristic of human performance. To investigate involved
mental processes, several so-called conflict paradigms have
been developed, such as the Stroop task (Steinhauser &
Hübner, 2009; Stroop, 1935), the Eriksen flanker task
(Eriksen & Eriksen, 1974), and the Simon task (Hübner &
Mishra, 2013; Proctor, 2011; Simon, 1969), where irrelevant
stimulus features produce response conflicts that are reflected
by congruency effects. Recently, conflict DDMs (drift diffu-
sionmodels) have been proposed that, based on response-time
(RT) distributions and accuracy data, model the dynamics of
the performance in conflict tasks. The first of these models
was the Dual-Stage Two-Phase (DSTP) model (Hübner,
Steinhauser, & Lehle, 2010), followed by the Shrinking
Spotlight (SSP) model (White, Ratcliff, & Starns, 2011).
Both models were first applied to the flanker task. Later, the
Diffusion Model for Conflict (DMC) tasks (Ulrich, Schröter,
Leuthold, & Birngruber, 2015) has been proposed, which has
also been applied to Simon-task data. If interpreted

accordingly, however, the DSTP model can be used as well
to model Simon-task data (Hübner & Töbel, 2019).

In studies, in which conflict tasks are modeled, one or
several of the considered models are fitted to experimental
data in the same way as common DDMs, and much effort is
usually spent to obtain good fits. However, although a good fit
is important for modeling, it does not guarantee that the ob-
tained parameters are valid (Pitt & Myung, 2002; Roberts &
Pashler, 2000). Indeed, it is possible that a model fits data
satisfactorily, but the corresponding parameter values are rath-
er different from those in the underlying population. In this
case the model and/or fitting procedure did not validly recover
the true parameter values of the population. It can therefore be
argued that data recovery is just as important, if not more
important, for modelling than a good fit, especially if a model
is fitted to individual data and the obtained parameter values
are used for diagnostic purposes.

Because parameter recovery is an important issue, several
studies have tried to assessed the corresponding performance
of DDMs (e.g., Lerche & Voss, 2016; van Ravenzwaaij &
Oberauer, 2009). For conflict DDMs, however, recovery per-
formance has not been investigated until recently, when
White, Servant, and Logan (2018) simulated flanker-task data.
In the flanker task (Eriksen & Eriksen, 1974), a central target
item, which has to be categorized, is presented along with two
or more irrelevant flanker items. A stimulus is said to be con-
gruent or incongruent, depending on whether the flankers ac-
tivate the correct or wrong response, respectively. Thus, in
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contrast to congruent stimuli, incongruent stimuli produce a
response conflict, which is usually expressed by an increased
RT and error rate. White et al. (2018) found that recovery
performance largely differed between the three conflict
models and individual parameters. Remarkably, their results
have also been interpreted as indicating a generally poor pa-
rameter recovery of the three conflict DDMs, which led to
their exclusion from modeling (Weigard, Heathcote, &
Sripada, 2019). This example shows how important a good
recovery performance is for model selection. Because param-
eter recovery not only depends on the model as such but also
on the applied fit procedure, the aim of the present study was
to investigate to what extent recovery performance of conflict
DDMs can be improved by using a fit procedure that is more
sophisticated than those usually applied.

Parameter estimation

In formal modeling, it is assumed that the performance of a
person or population can be represented by a set of model
parameters. The specific values of these parameters depend
on the persons and on the condition in which the behavior is
observed. These parameter values are estimated by fitting the
model to observed data. The estimation involves the usual
problems concerning the properties of estimators, such as
consistency and efficiency. Unfortunately, up to now, little is
known about these properties with respect to DDMs.

As mentioned, the basis of parameter estimation is ob-
served data. In applications of DDMs, the considered data
are usually RTs and proportions of correct and wrong re-
sponses, respectively. For simple versions of DDMs, for
which analytic expressions of the densities exist, maximum-
likelihood procedures can be used to estimate the parameter
values. However, for most of the usually applied models no
analytic expressions are available. Therefore, model data are
simulated and compared to the observed ones. For this objec-
tive, the observed RTs are usually summarized by quantiles of
the corresponding cumulative distribution functions (CDFs).
Often, five quantiles (0.1, 0.3, 0.5, 0.7, 0.9) are computed for
correct and incorrect responses, respectively. In conflict tasks,
however, categorization accuracy is often near perfect in the
congruent condition, and thus very few (possibly zero) obser-
vations are available to estimate the quantiles of the error
response time distribution with. Few errors might be summa-
rized by a single quantile (e.g., the median). Often, however,
especially if one models individual data, there are no errors at
all. Therefore, Hübner (2014) suggested to represent errors by
corresponding proportions derived from so-called conditional
accuracy functions (CAFs, De Jong, Liang, & Lauber, 1994).
A CAF is usually constructed by first dividing the distribution
of all RTs (correct and error RTs) by means of quintiles (i.e.,
.2, .4, .6, .8) into five equal sized intervals: (0, .2), (.2, .4), (.4,
.6), (.6, .8), (.8, 1). Accuracy (i.e., correct responses divided by

all responses) in each interval is then plotted against the mean
RT in the corresponding interval. CAFs are an informative
data representation, because they nicely visualize how accu-
racy varies with RT. Whereas accuracy for congruent stimuli
has a constantly high level across RT, that for incongruent
stimuli is usually low for fast responses, but increases with
RT. In any case, error proportions can easily be computed
from CAFs if few or even no errors are present in the congru-
ent condition (for details see below).

The summary data span a multidimensional space, whose
dimensions depend on the number of considered CDF and
CAF quantiles, respectively. The parameters of a model also
span a multidimensional space. Accordingly, each set of pa-
rameter values defines a point p in this parameter space P. A
model can therefore be considered as function m that maps a
point in parameter space to a point r in data space R :

m pð Þ ¼ r: ð1Þ

Because of the missing analytical formulas for m, the func-
tion must be approximated by a procedure, usually the Euler–
Maruyama schema (Maruyama, 1955), which approximates
the numerical solution of the corresponding stochastic differ-
ential equation by means of a Wiener process. Consequently,
each approximation produces a slightly different value, i.e.,
set of data (given the random-number generator starts with a
different seed). As a result, m now maps one p to multiple r
and, therefore, represents a multivalued function. The simu-
lated result can be expressed by means of a multi-dimensional
error term e and the true r (see Eq. 1), i.e., we have:

m pð Þ ¼ r þ e ð2Þ

Although the exact distribution of Eq. 2 is not known, it is
reasonable to assume that, due to characteristics of the Wiener
process, e is normally distributed. Moreover, with an increas-
ing number n of simulations the variance of the error term
decreases so that e approaches zero. This means that the solu-
tion of Eq. 2 relates to more or less points in data space de-
pending on n. The smaller n, the larger the number of points,
and, consequently, the larger is the possibility of an overlap of
points resulting from different parameter sets. Unfortunately,
for the models considered here, little is known in this respect.

Given observed distributional data (quantiles, proportions),
one task of modeling is to find parameter values that produce
the most similar data. The goodness of fit is assessed by con-
sidering a corresponding measure such as chi2 or RMS (root
mean square) error. The smaller the corresponding values the
better is the fit. Each of these measures defines a scalar eval-
uation function f that maps a given point r in data space, and a
point p in parameter space to a single value g, reflecting the
goodness of fit. It should be noted that, even though f takes p
as an argument, it computes the goodness of fit bymeans ofm.
This reduces f to a mere comparator function between two
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data sets:

f p; rð Þ≡ f m pð Þ; rð Þ ¼ g: ð3Þ

Thus, modeling consists of searching for a set of parameter
values p that minimizes g. Finding the minimum of the eval-
uation function is usually achieved by applying minimization
algorithms such as the Simplex (Nelder & Mead, 1965) or
Powell’s (Brent, 1973) algorithm. They systematically vary
parameter values in such a way that the deviation between
observed and simulated data, i.e., the goodness-of-fit value
g, is gradually reduced until a minimum is found. The finally
obtained parameter values are then taken as estimates of the
respective population values.

Parameter recovery

As mentioned, even if a set of parameter values is found that
produces a good fit to the data, this does not guarantee that the
parameters are close to the parameters of the population. This
is the parameter-recovery problem. There are several possible
reasons for a bad recovery, most of which have to do with
properties of the solution space of the function given by Eq.
2. One possibility is that the fit routine gets trapped in a local
minimum and therefore does not find the global minimum of
the evaluation function. This problem is usually addressed by
starting the fit process several times beginning from different
starting points, which increases the probability that the global
minimum is found. Another measure is to restrict the consid-
ered parameter space. If the region of plausible parameter
values is known, then one can impose restrictions, which
might reduce the number of local minima.

Furthermore, a reliable recovery is possible only if there is
a functional one-to-one mapping between parameter space
and data space. If several sets of parameter values produce
the same data, then it is impossible to uniquely decide whether
the estimated values reflect the original ones or not. It can also
be the case that different sets of parameters produce the same
goodness-of-fit with different data. For instance, one set leads
to a better fit of the error RTs, whereas another produces a
better fit to the correct RTs. If different parameter sets produce
the same goodness of fit, one could choose the values that are
more plausible.

Additionally, because f takes m(p) as argument, there will
also be a variability in g itself, even if the same p is used:

f m pð Þ; rð Þ ¼ f rm þ em; rð Þ ¼ g þ e: ð4Þ

Moreover, it is usually assumed that the observed data r
themselves are noisy, which further reduces the reliability of g.

The properties of the parameter space depend on the model.
For instance, a model can be over-parameterized, or the pa-
rameters are strongly related. The risk that this is the case
increases with the number of parameters. The uniqueness of

the mapping from parameter space to data space, however,
also depends on the representation of the data space. The
smaller the number of dimensions, the more likely it is that
different parameter sets produce the same data or goodness of
fit. An extreme case is given, for instance, if only the means or
medians of the data are considered. Therefore, it is a great
advantage of DDMs, that they can also model multiple distri-
butional data. But even in this case it is likely that the map-
pings are not unique.

In practice, the true population parameter values are un-
known. However, to assess the models and fit procedures
with respect to recovery performance, one can use the
models and simulate data with a given set of parameter
values. If the model recovers well, the fit procedure should
always find values that are close to the original ones. This is
the method followed by White, Servant, and Logan (2018) in
their study of the three conflict-task models.

As mentioned, recovery performance depends on the mod-
el as well as on the fit procedure. Therefore, if a model does
not recover well, the exact reason remains open. Because
White et al. (2018) kept the fit procedure constant, they were
able to compare model performance. However, it is possible
that models and fit procedures interact. The present study
demonstrates that this is indeed the case. The most complex
model profits more from an improved fit procedure than the
other models. In other words, optimizing parameter recovery
can require a more sophisticated fit method for complex
models, compared to simple ones.

Models

All three considered models are based on a response-selection
mechanism, implemented as diffusion process (cf. Ratcliff,
1978). This process is characterized by a drift rate μ reflecting
the evidence available for response A relative to response B
and by two corresponding thresholds A and –B. Responses A
and B usually represent a correct and a wrong response, re-
spectively. Noisy samples of the evidence are accumulated
beginning at t0 with value X0, until threshold A or –B is
reached. The duration of this process is the decision time. It
is assumed that the response time is the sum of this decision
time and some non-decisional time ter, representing the dura-
tion of processes such as stimulus encoding, response execu-
tion, etc. The complexity of the diffusion process can further
be increased by assuming that the starting value, the non-
decisional time, and/or the rate vary randomly across trials
according to specific distributions (Ratcliff & Rouder, 1998).
In the original DMC application, Ulrich et al. (2015) assumed
across-trial variability for the starting value and the non-
decision time. For simplicity, White et al. (2018) dropped
these assumptions. In the present study, we made the same
simplifications.
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Whereas all models assume such a single response-
selection process, the models largely differ in their architec-
ture. A helpful visualization of the three architectures is pro-
vided by White et al. (2018, Fig. 1). Here, we limit their
description to a short introduction.

SSP model

In the SSP model the overall rate for a given stimulus
is computed from the weighted evidence provided by
the target and flankers. It is assumed that all items pro-
vide the same amount of perceptual evidence p.
However, the weight for each item is determined by
the proportion of the attentional ‘spotlight’ that falls
on the item’s location in the display. Selectivity, and
consequently the influence of the target stimuli on the
drift rate, increases gradually as the width of the target-
centered spotlight shrinks over time at a linear rate, rd,
from sd0 to a minimum. Thus, if we assume that A = B,
the model has, including ter, five parameters.

The DMC model

The specific idea for the DMC model (Ulrich et al.,
2015) is based on the dual-route model (De Jong

et al., 1994; Kornblum, Hasbroucq, & Osman, 1990),
which assumes that task-relevant and task-irrelevant ac-
tivations result from a controlled and from an automatic
process, respectively, and that these activations are
transmitted through separate, parallel processing path-
ways. Moreover, whereas the rate μc, representing the
controlled process, remains constant, the rate μa(t)
resulting from the automatic processes varies as a func-
tion of time t. The dynamics of this rate is modeled by
a gamma density function with shape parameter a > 1
and scale parameterτ. The function is further scaled
(multiplied) by a parameter m reflecting the strength of
automatic activation.

The DMC model further assumes that the relevant and
irrelevant activations superimpose. This means that the
overall drift rate at time t is the sum of the rate for the
controlled process and the rate at time t for the automatic
process. Furthermore, it is assumed that the rate of the
automatic process is of the same size for congruent and
incongruent stimuli, but that its sign is negative for incon-
gruent stimuli, which can easily be achieved by scaling
the rate with –m instead of m. Thus, the overall rate for
selecting a response to a congruent stimulus is μ(t) =
mμa(t) + μc. Altogether, the number of parameters for
the DMC model adds up to six.

Fig. 1 Recovery performance for the three models in the situation that
was similar to that in White et al. (2018). The colored lines show the
results for the five simulations. The black thick line is the corresponding

mean performance. The errors bars are constructed based on variability
across the five runs and indicate the 95% confidence interval. The blue
crosses represent the results from White et al. (2018)
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The DSTP model

The main characteristics of the DSTP model are two discrete
stages of information selection, an early, and a late stage de-
termining the rate of response selection. Response selection
starts with the rate of evidence provided by Stage 1. This stage
is already selective, for instance by applying perceptual (e.g.,
spatial) filters, although selectivity is far from perfect. It is
assumed that the rate μRS1 for the first phase of response se-
lection is composed of two component rates, μt, and μf, which
are the result of the early stage of stimulus selection. The
components represent the evidence provided by the target
and the flankers in favor of the correct response A, respective-
ly. Both components sum up to the total rate, i.e., μRS1 = μt +
μf. The component μf is positive, if the flankers are response
compatible, but negative, if they are incompatible. Thus, the
rate μRS1 is usually smaller for incongruent than for congruent
stimuli, and can even be negative.

Additionally, a second and more effective stage of stimulus
selection is assumed. If the processes at this stage finishes, the
rate for response selection usually changes, which divides
response selection into a first and a second phase (Phase 1
and Phase 2). Information selection at Stage 2 is also modeled
by a diffusion process, running in parallel with response se-
lection during Phase 1. If the evidence accumulated by this
process in favor of some information C relative to information
D hits threshold C or –D, then the rate of response selection
changes to a corresponding value. However, it can also hap-
pen that a response is already selected during Phase 1.

To account for the fact that accuracy for incongruent stim-
uli usually improves with RT, the diffusion process that initi-
ates a rate change of response selection is assumed to repre-
sent a late categorical stimulus-selection process SS with rate
μSS. It selects the mental category of the target letter or that of
the flanker letter, depending on whether it hits thresholds C or
–D, respectively. If the target is selected, then response selec-
tion continues with rate μRS2C, which is usually higher, com-
pared to μRS1. In case the flanker was selected, the new rate is
μRS2D. This rate is positive or negative depending on whether
the flanker is congruent or incongruent, respectively.

For the model applied in this study, we assumed symmetric
thresholds for response and stimulus selection, i.e., A=B, and
C=D. Furthermore, we assumed that target and flanker letter
selection leads to the same rate for response selection in Phase
2, i.e., μRS2C = μRS2D. Thus, altogether, the model has seven
parameters.

White et al.’s Study

In their recovery study, White et al. (2018) simulated flanker-
task data for each of the three models. For each model, they
used Npop = 100 parameter sets, each representing a

population. The corresponding values were randomly drawn
from uniform distributions, whose ranges were determined by
values found in empirical studies. Each parameter set was
used to simulate data of six different sample sizes NS (50,
100, 200, 500, 1000, and 5000). Each sample comprised a
congruent and an incongruent condition. Thus, altogether,
they simulated 600 data samples of different sizes. They then
fitted the three models to these data samples with different fit
procedures.

Fit procedure

The simulated data samples were summarized by distribution-
al data. Correct RTs were represented by five quantiles (0.1,
0.3, 0.5, 0.7, 0.9) in each condition. For error RTs, whose
number is often very small, the quantiles were determined
by an adaptive median-based procedure. More specifically,
the five quantiles were computed only if there were more than
ten errors. If the number of errors was ten or smaller but larger
than five, three quantiles (.3, .5, .9) were computed. Five or
fewer errors were represented by their median. Alternatively,
they also applied a method proposed by Hübner (2014) that
extracts error proportions from CAFs.

As goodness-of-fit measure, they used chi2:

χ2 ¼ ∑
2

i¼1
Ni ∑

X

j¼1

oij−πij
� �2

πij
; ð5Þ

where Ni is the number of observations in compatibility con-
dition i. The quantities oij and πij are the observed and predict-
ed proportion j in condition i, respectively. As can be seen, the
deviation of each point is weighted by the proportion of the
corresponding data.

The Simplex algorithm (Nelder & Mead, 1965) was ap-
plied to find parameter values that minimize chi2. To reduce
the risk that the result represents a local minimum, a two-step
procedure was used. In the first step 20 fit processes were run,
each with a different randomly chosen set of starting values,
drawn in the same way as the parameter sets for producing the
data samples. 10,000 trials were simulated in each compati-
bility condition at iteration of the parameter optimization al-
gorithm. In the second step the parameter sets resulting from
the two best fitting processes were used to continue the fit
process with 50,000 trials per condition and fit cycle. The best
fit was then considered as final solution. This two-step proce-
dure was applied to all 600 data samples of each model.

Assessment

The recovery performance of the models was assessed by
comparing the original parameter values with the estimated
ones. As goodness-of-recovery measure for a given parameter
θi and sample size they computed the quantity ηi:
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ηi ¼ ∑
j¼1

Npop simulatedθij−recoveredθij
�� ��� �

rangeθij
;

where the summation extends over the Npop = 100
populations.

As a result, White et al. found that, overall, recovery was
relatively good for all models. However, different parameters
recovered differently well. Recovery performance also im-
proved generally with sample size.

For comparingmodel performance, they summed ηi over the
parameters of each model. We think that summation is not
appropriate, because it complicates a direct comparison be-
tween models that differ in their parametrization, which is the
case for the three models under consideration. Even though the
result, that the SSP model recovered best and the DSTP model
worst, still holds if model parameterization is taken into ac-
count, the difference between the models is reduced.

Concerning the method for summarizing error data, the
median-based procedure was slightly better than the CAF-
based one. Summed over all sample sizes, models, and param-
eters, the first method results in η = 1670, whereas the second
gives η = 1725. If we consider the corresponding means, how-
ever, then that of the first procedure is 15.46 and that of the
second procedure 15.97, which is a relatively small difference.

Our study

A first goal of our study was to replicate White et al.’s (2018)
results. For this objective we simulated data and fitted the
three models in the same way as these researchers. In addition,
we repeated all simulations four times to assess the variability
of data simulation and model-fitting procedures.

The main goal of our study, however, was to compare differ-
ent fit methods and their relation to parameter recovery. As al-
ready mentioned, a problem in model fitting is that minimization
algorithms often get trapped in local minima, which can lead to a
poor goodness of fit and parameter recovery. A commonmethod
to address this problem is to run the fit process several times, each
with a different set of initial parameter values.White et al. (2018),
for instance, used 20 randomly selected sets of start values for
each of their model fits. Here, we sought to investigate whether
this part of the fitting procedure could be improved by the addi-
tion of a grid searchmethod (Zielesny, 2011) prior to the two-step
procedure of White et al. (2018).

Method

Our computational method was very similar to that used by
White et al. (2018). We integrated, after translation, crucial
parts of their Python program into our C++ program. As in
White et al., the performance of all models was approximated

by the Euler–Maruyama method (Kloeden & Platen, 1992).
Integration constants and diffusion coefficients were the same
as in White et al. We also applied the Simplex algorithm
(Nelder & Mead, 1965) for minimization.

Data simulation

We randomly selected Npop = 100 sets of parameter values for
each model in the same way as White et al. (2018). These
parameter sets were then used to simulated data samples of
sizes NS = 50, 100, 200, 500, 1000, and 5000. Each data set
represents the performance in a conflict task with a congruent
and an incongruent condition. Different from White et al., we
additionally repeated the basic simulations four times. For
each repetition, 100 new sets of parameter values were ran-
domly selected. Thus, altogether, we had Npop= 500.

Model fitting

Goodness-of-fit measures As summary statistics for the data
samples, we used five CDF quantiles (.1, .3, .5, .7, .9) for
correct responses and the accuracies in the five CAF intervals
resulting from quintiles. These 10 values were computed for
congruent as well as for incongruent trials. Thus, each data
sample was represented by 20 values (oij). The RTs corre-
sponding to these values were then used as cut points in the
predicted (simulated) CDF and CAF, respectively (because a
CAF cannot be expressed on a per response basis, we com-
puted the conditional accuracy for every percentile. If a cut
point fell in between two percentiles, we calculated the corre-
sponding accuracy by linear interpolation between the two
adjacent percentiles). The quantiles (CDF) and accuracies
(CAF) found using these cut points were then used as values
πij for comparison with the corresponding values of the data
sample (see. Eq. 5).

In addition to the chi2-based method, we also applied an-
other method. Instead of comparing quantiles and accuracies
corresponding to certain RT cut points, we compared RTs and
accuracies corresponding to quantile/interval cut points. That
is, we simply used the same summary statistics for the predict-
ed data that were used for the data samples. This increased the
number of values for comparison from 10 to 15 (five CDF
RTs, five accuracies, and five mean RTs of the CAF intervals).

One characteristic of this method is that we have to deal
with different units of measurement, i.e., millisecond and pro-
portion. To treat the respective values equally, we used the
squared percentage error (SPE) between observed and pre-
dicted values as fit criterion:

SPE ¼ ∑
oi−si
oi

� �2

; ð6Þ
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where oi is a quantity from the population sample, and si the
corresponding quantity obtained by the fitting process.
Because each component of the SPE represents the relative
deviation in percentage, measures of different units are
mapped to a common scale. Accordingly, they are weighted
equally, which would not be possible with the chi2 criterion.

However, the deviation sensitivity of the SPE depends on
the size of the respective value. The larger the observed value,
the greater the deviation of the simulated data must be to
produce a similar change in SPE. This characteristic produces
a bias, because similar absolute deviations from small values
have a larger effect on the SPE than those from larger values.
However, because the bias remains constant for a given em-
pirical data sample, comparisons between different parameter-
izations or n regarding a fixed data sample are still valid.

Nevertheless, with respect to comparing SPEs, we have to
distinguish between the situation, where different data sam-
ples are fitted by the same model, and the situation, where one
data sample is fitted by different models. Whereas in the for-
mer situation differences can only be interpreted if the ob-
served samples are similar, this is not necessary in the latter
situation. Because different models are fitted to different data
samples in the present study, as in White et. al., and the con-
sidered models show different limitations regarding RTs (see
Fig. 2 in White et. al.), we decided not to compare obtained
SPE values between the three models.

Starting values For the replication part, we used the same two-
step procedure as White et al. (2018), which was described
above and will be called the rand method. In addition to the
rand method, however, we also applied a grid-search method
(Zielesny, 2011). Instead of relying on a random selection of
20 start values, we systematically sampled the whole param-
eter space to find 20 starting values that already produced
relatively good fits. For this objective, we defined for each
parameter Ng equally spaced grid points inside its value range.
The points of all parameters constitute a multidimensional
grid, i.e. a systematic subset of the whole parameter space.
We defined the grid size by the number of points per param-
eter, i.e. by Ng. After some preliminary simulations, we came
up with a grid size of six as appropriate for our objective. For a
model with n parameters and a grid size of Ng, the grid in-
cludes (Ng)

n sets of parameter values. For instance, if a model
has six parameters, then the grid includes 46,656 sets of pa-
rameter values.

Grid search means to simulate some trials for each point
(parameter set) in the grid and to compare the result to the
sampled data. Because to repeat this procedure for each sam-
ple size would have taken rather long, we computed the trial
data only once for each point in the grid and stored the results.

It is important to note that the limitations with respect to the
validity of data representation mentioned in the Introduction
(see Eq. 2) also hold for the generated grid. This means that

Fig. 2 Mean η for all models, NS, fit criteria, and start methods. The goodness-of-recovery measures were averaged across all Npop. The error bars
represent the 95% confidence interval
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the error strongly depends on the number of simulated trials,
which was 10,000 in the present case (all simulations started
with a random seed). The required resources for the grid-
search method are also dependent on the used fit criterion.
For computing chi2 the complete RT distributions must be
stored. This is necessary for finding the cut points correspond-
ing to the RTs in the summary distributions of the data sample,
which are needed for computing the respective proportions.
This requires large amounts of storage space and later also
much time for reloading. For instance, the stored distributions
for the DSTP model alone had a size of 89 GB. However, this
value strongly depends on the resolution and range of the data
distribution. In our case, we conservatively sampled CDF dis-
tributions in milliseconds up to 5000 ms, even though none of
the considered models and parameter sets produced RTs that
large. CAF distributions where sampled by 100 intervals.

In this respect, the SPE criterion has a great advantage. It
requires only to store the summary statistics (quantiles, error
proportions) of the simulated data and not the complete distri-
butions. This decreases the file size of the stored grid by factor
100. Moreover, computation time for the grid search de-
creased by factor 3. Grid search with SPE took about 1 min
for a model with seven parameters. However, generating the
grid lasted about 3 days, calculated single threaded on a mod-
ern prosumer processor, or about one hour, 32 threaded. These
costs are, at least partly, compensated by a faster model fits,
because the Simplex usually converges much faster starting
from the selected grid values than with randomly selected start
values. The latter aspect makes grid search especially attrac-
tive for fitting data from individuals of a large group, because
the same grid can be used for all data fits.

As mentioned, White et al. assessed the general recovery
performance of a model for a given sample size by summing
their goodness-of-recovery over the populations (Npop = 100)
and model parameters. To have a measure that is independent
of these quantities, we used the average performance as mea-
sure. Thus, as recovery measure η for a model with Npar pa-
rameters and a given sample size we used:

η ¼ 1

Npar
∑
i¼1

Npar 1

Npop
∑
j¼1

Npop simulatedθij−recoveredθij
�� ��� �

rangeθij

 !
:

Results

Replication

Figure 1 shows the recovery performance of the three models
in the condition that is similar to that in White et al. (2018),
i.e., the goodness-of-fit measure was chi2 and the start-value
method was rand. As can be seen, there is some variation

between the five individual simulations. Interestingly, al-
though recovery improves with sample size, the variation re-
mains almost unchanged. The blue crosses represent the re-
sults obtained by White et al. (error data derived from the
CAFs). As can be seen, for the SSP and DMC models most
of the crosses lie within confidence intervals. For the DSTP
model there seems to be a systematic deviation. Except for the
smallest sample size, recovery was worse in our study.

Taken together, by and large, we were able to replicate the
results of White et al. Although there were some deviations,
the relative performance between the three models was the
same.

Effect of fit procedure

To reduce variability for further analyses, the individual
samples were combined to form a singly sample of Npop

= 500. Figure 2 shows the mean recovery performance
of the models for the different fit procedures and con-
ditions. For analyzing the results, the goodness-of-
recovery measures were subjected to a four-way
ANOVA with independent factor model (DSTP, DMC,
and SSP) and the three repeated-measures factors sam-
ple size (50, 100, 200, 500, 1000, and 5000), fit
criterion (chi2, and SPE), and start-value method (rand,
and grid search).

The analysis revealed that all main effects were sig-
nificant (for the F and p values see Table 1).
Concerning the factor model, the DMC model recovered
best (0.116), followed by the SSP model (0.123) and,
with greater distance, the DSTP model (0.181). With
respect to sample size, recovery improved with an in-
creasing sample size (0.158, 0.143, 0.128, 0.122, 0.111).
Further, the fit criterion SPE produced better recovery
than chi2 (0.135 vs. 0.145). Finally, grid search was a
better start-value method than rand (0.126 vs. 0.154).

However, there were also several interactions. The
factor model interacted with start-value method. As
can be seen in Fig. 2, although all models benefitted
from grid search relative to the rand method (all differ-
ences were significant), the DSTP model benefitted
more (Δ 0.0462) than the other two models (DCM Δ
0.0222, SSP Δ 0.0150).

Model also interacted with sample size. However,
there was also a significant three-way interaction be-
tween model, sample size, and start-value method. As
can be seen in Fig. 2, for the rand method, the im-
provement with sample size was smaller for the DSTP
model (from N50 = 0.226 to N5000 = 0.190) than for the
other models (DCM: 0.175 to 0.091, SSP: 0.165 to
0.105). In contrast, for the grid-search method, the de-
crease was similar for the models (DSTP: 0.197 to
0.124, DCM: 0.159 to 0.064, SSP: 0.154 to 0.091).
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In addition, there was also a three-way interaction between
model, start-value method, and fit criterion (see Fig. 2).
Further analyses revealed that for the grid-search method the
advantage of SPE over chi2 (DMC:Δ 0.013, DSTP:Δ 0.009,
SSP: Δ 0.011) was significant for all models. For the rand
method, however, it was significant only for the DSTP model
(Δ 0.015) and the SSP model (Δ 0.010), but not for the DMC
model (Δ 0.005).

Finally, there was a significant three-way interaction
between model, sample size, and fit criterion. It indicates
that the advantage of the SPE over chi2 increased with
increasing sample size. The increase, however, was differ-
ent for the models. Further analyses revealed that the two-
way interaction between sample-size and fit criterion was
significant for DMC model, F(4.59, 2289.30) = 6.48, p <
.001, petasq (partial eta-squared) = .01, and for the SSP
model, F(4.55, 2272.66) = 13.70, p < .001, petasq = .03,
but not for the DSTP model, F(4.90, 2445.55) = 1.76, p =
.120, petasq < .01.

Recovery of individual parameters

The previous analysis concerned the performance of each
model averaged across the parameters. Figure 5 in Appendix
A shows the performance for the different conditions and
models separately for the individual parameters. As can be
seen, recovery performance differs to some extent between
the parameters. For the DSTP model, grid search improved
recovery for all parameters, whereas for the two other models
this was the case only for about half of the parameters.

Correlation between recovered and original
parameters

A further method for assessing recovery performance is
to consider the correlation between the recovered pa-
rameter va lues and the or ig inal ones . In th is
connection, White et al. (2018) observed that some pa-
rameters were not accurately recovered, because they
can trade-off with each other, at least to some extent.
For the SSP model, this concerns the parameters sda
and rd, and for the DSTP model the parameters μfl

and μRSS. This problem was resolved by taking the ratio
of the respective parameters (i.e., μfl/μRSS and sda/rd).
Here, we also considered these composite parameters.

Figure 3 shows the obtained correlations for the parame-
ters1 and composites. Like White et al., we categorized each
correlation (quality of recovery) r as poor, if r < .5, as fair if .5
< r < .75, as good if .75 < r < .9, and as excellent if r > .9. In
Fig. 3, the corresponding areas are indicated by the gray level
of the background. Moreover, the blue crosses show the cor-
relations observed by White et al. The red solid lines (rand,
chi2) are comparable to the results in that study. As can be
seen, for most models and parameters, the correlations are
similar to those in White et al. One striking exception is the
correlation for ter of the DSTP model, which is much smaller
in the present study.

Overall, the pattern of results is compatible to that in
Fig. 5. For most parameters the correlation increased

1 Scatterplots corresponding to the individual correlations are shown in
Figures A2 and A3 in the Appendix

Table 1 Result of the ANOVA. SVM: start-value method, NS: sample size, FitCrit: fit criterion

(Intercept) F(1, 1497) = 26016.46, p < .001, petasq = .95

Model F(2, 1497) = 569.34, p < .001, petasq = .43

NS F(4.34, 6494.18) = 629.85, p < .001, petasq = .30

FitCrit F(1, 1497) = 155.79, p < .001, petasq = .09

SVM F(1, 1497) = 1026.58, p < .001, petasq = .41

Model × NS F(8.68, 6494.18) = 14.98, p < .001, petasq = .02

Model × FitCrit F(2, 1497) = 1.51, p = .221, petasq < .01

Model× SVM F(2, 1497) = 118.08, p < .001, petasq = .14

NS × FitCrit F(4.77, 7141.41) = 16.28, p < .001, petasq = .01

NS × SVM F(5, 7485) = 19.73, p < .001, petasq = .01

FitCrit× SVM F(1, 1497) = 0.83, p = .362, petasq < .01

Model × NS × FitCrit F(9.54, 7141.41) = 3.77, p < .001, petasq < .01

Model × NS × SVM F(10, 7485) = 6.45, p < .001, petasq < .01

Model × FitCrit × SVM F(2, 1497) = 7.63, p < .001, petasq = .01

NS × FitCrit × SVM F(5, 7485) = 0.43, p = .826, petasq < .01

Model × NS × FitCrit × SVM F(10, 7485) = 0.93, p = .500, petasq < .01
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Fig. 3 Correlations between the original and recovered parameter values
for the threemodels. The colored graphs represent different combinations
of start-value condition and fit criteria. The shaded areas reflect the

evaluation boundaries for the recovery performance after White et al.
(2018). The blue crosses represent the correlations found in that study
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more or less with sample size. Moreover, grid search
produced higher correlations, compared to the rand
method. This holds especially for the DSTP model.
Also, the SPE goodness-of-fit measure led to higher
correlations for most parameters and almost never to
smaller ones. Especially successful was the combination
of grid search and SPE. For the DSTP model, the cor-
relations for parameters μRS2 and μt increased substan-
tially. But also those for parameters μSS and μfl profited,
so that it seems no longer necessary to use their com-
bination. For the SSP model, the correlations for param-
eter rd profited most, but still remains in the category
“poor” of recovery performance. Therefore, it still
makes sense to combine this parameter with sda. The
corresponding composite parameter did not improve by
grid search, which, however, is due to a ceiling effect.

Relation between goodness of fit and parameter
recovery

We have seen that the considered fit procedures pro-
duced different recovery performance. An interesting
question is to what extent this performance was related
to the fit performance. Because there were some out-
liers, we trimmed the goodness-of-fit data. In a first step
we discarded very extreme outliers (112), and in a sec-
ond step all values more than two standard deviations
above the mean. In all, 3.88% of the data were
discarded. The trimmed means of the chi2 and SPE
values for the different models and conditions are listed
in Tables 2 and 3, respectively. As can be seen, for the
DSTP model grid search also led, on average, to a bet-
ter fit for each sample size than the rand procedure.
With one exception, this was also the case for the
SSP model. Merely for the DCM model the result was
different. Here, grid search improved the fit only in
combination with the SPE measure. For chi2, there
was an improvement only for the largest sample size.

If poor recovery is systematically due to a poor fit,
then the two corresponding measures should also be
correlated. To test whether this was indeed the case,
we correlated the goodness-of-fit values with the corre-
sponding goodness-of-recovery values across the 500
populations for each model and condition. The results
are shown in Fig. 4. As can be seen, substantial corre-
lations are practically absent. For the DSTP and SSP
models the small correlations are mostly negative and
close to zero. For the DMC model they vary closely
around zero. Merely for the largest sample size the cor-
relation increased to some extent.

Discussion

One aim of the present study was to examine whether
the results of White et al.’s (2018) parameter-recovery
study can be replicated. For this objective we simulated
flanker-task data for the three conflict-task models
DSTP, DMC, and SSP in the same way as White
et al. (2018). In addition, we repeated the simulations
four times. Our results show that the replication was by
and large successful. One noticeable exception is the
DSTP model, for which recovery performance was
worse than in White et al.’s study, but mainly for two
of the seven model parameters. It should be noted that
these conclusions are based on the comparison of White
et al.’s data, which comprise 100 populations, with our
data, which represent 500 populations. By increasing the
number of populations from 100 to 500 we largely re-
duced the variance of the recovery performance. Had
we also simulated only 100 populations, the replication
would likely have been worse. This demonstrates that
even for 100 populations, there is considerable variabil-
ity in the data.

In any case, despite some variation, the relations be-
tween the different models could be confirmed.
Recovery performance was best for the DMC and SSP
models and somewhat worse for the DSTP model.
Importantly, the difference in recovery performance be-
tween the models could be reduced by applying a more
sophisticated fit procedure. Improving the fit procedure
was the main goal of our study, because parameter re-
covery strongly depends on the effectivity of this pro-
cedure. The task of a fit procedure is to find the set of
parameter values that produces the best fit to the ob-
served data. For this objective, fit routines minimize a
function that maps parameter values and observed data
to a fit criterion (see Eq. 4). The parameters that min-
imize the fit criterion are then considered as estimate of
the population parameters. A problem with applying
minimization algorithms is to find the global minimum,
because they often get trapped in a local minimum. To
circumvent this problem, White et al. (2018) run 20 fit
processes for each conditions, each of which started
with a different and randomly selected set of parameter
values. Twenty start values are more than usually ap-
plied in modeling studies. However, as our results show,
even this number does not guarantee good parameter
recovery.

In the present study, we were able to improve recovery
performance by adding a grid-search procedure. That is,
instead of relying on a random selection of 20 parameter
sets, we systematically chose start values based on a grid
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search. For this objective, we defined an equally spaced
grid as subset extending across the whole parameter space.
Then data were simulated for all points in the grid and
matched to the to-be-modeled data. The 20 parameter sets
that produced the best match were used as start values. As
a result, grid search improved recovery performance sub-
stantially for all models. However, the improvement was
especially pronounced for the DSTP model. Thus, it seems,
that the more complex a model is and the more parameters
it has, the more it benefits from the grid-search method.

Based on preliminary simulations, we chose a grid size of
six. Recovery performance could presumably have been im-
proved by a denser grid. Whether such an effort is worthwhile,
however, depends on several conditions such as the model
type and the availability of time and/or computational power.
Moreover, there is certainly an uncanny valley, because the
grid serves to minimize errors of the subsequent simplex
method. However, if a grid is extremely dense, then subse-
quent simplex calculations would be worthless. In the present
study we also used the same number of sample points for all
parameters in the grid. It might be advantageous, though, to
adapt the number of points for each parameter to its range or
importance. Thus, the concrete representation of a grid has to
be decided from case to case. This decision process should

generally be beneficial for DDMmodeling, because it leads to
a better understanding of reasonable parameter values for a
given problem.

In addition to chi2, we also applied the SPE (squared
percentage error) as goodness-of-fit measure (see Eq. 6).
Instead of merely comparing observed and predicted
proportions of correct responses related to CDF RTs
and of accuracies in CAF intervals, the SPE uses all
available data in the summary statistics, which increased
the number of values for comparison for each data sam-
ple from 20 to 30. This approach not only reduced the
storage and computational resources required for the
grid search, it also improved recovery performance.
This was the case if combined with randomly chosen
start values, but in particular, if combined with grid-
search, at least for the DMC and DSTP models.

Thus, our results demonstrate that parameter recovery
in DDM modeling not only depends on the model, but
also on details of the fit procedure. The success of
down-hill minimization algorithms such as the Simplex
largely depends on the starting values. As we have
shown, even running 20 processes with different ran-
domly selected values does not necessarily produce an
optimal performance. Models with more parameters and/

Fig. 4 Correlation between goodness of recovery (η) and goodness of fit (chi2 or SPE) for the different models and fit conditions
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or a more complex structure might require more sophis-
ticated procedures. Grid search, i.e., quickly sampling
the whole parameter space, seems to be a good method.
Although pre-computing the grid takes some time, it can
be used for multiple fits as long as the model structure
remains the same. For instance, the same grid can be
used for estimating parameter values for individuals in a
group of persons. Because data fitting is not only supe-
rior but also much faster with start values selected by
grid search, the effort and time spent for computing the
grid quickly pays off.

Grid search also improved the goodness of fit, at least for
two of the three models. However, it also became clear by our
results that the relation between parameter recovery and good-
ness of fit is not straight forward. To our surprise, there were
no systematic correlations between the two criteria. Although
it is obvious that a good fit does not guarantee good recovery,
we had expected that good recovery produces a good fit, and
thereby a moderate correlation. Our results show that this is
not the case.

There are at least three possible reasons for the low or
absent correlation between fit and recovery. First, the data
samples might be a poor representation of the corresponding
population, i.e. of R (see Eq. 1). This is especially likely for
a sample of small size, which is usually rather noisy, i.e., e
in Eq. 2 is large. If the fit procedure then estimates param-
eters for the data sample by simulating a large number of
trials, which leads to a small e, then it is highly probable that
the obtained parameter set differs from that used for gener-
ating the data sample. The larger the difference between
sample size trial size, the bigger this problem is. A solution
could be to use a larger sample size so that the population is
better represented, which should reduce the variance of re-
covery. However, as our results show, this is not the case.
The variance hardly decreases with sample size (see Fig. 1),
which could be a result of the still present difference be-
tween the n in observed and simulated data. Nevertheless,
a large sample might be favorable, because it increases the
correlation between fit and recovery, even if only to a small
extent and mainly for the DSTP and DMC models (see Fig.
4). If increasing the sample size is not possible, then one
might fit the model with a trial size similar to the sample
size. Whether this really helps, however, has to be shown in
later studies.

Second, even if the data samples are good represen-
tations of the population, there is the possibility that
different parameter sets relate to the same data sample,
i.e., different p map to the same r (Eq. 1). One measure
to prevent this problem is to choose the smallest possi-
ble number of parameters so that Eq. 2 approximates a
one-to-one mapping. Such an endeavor, however, is

counteracted by small n, because the resulting large
noise produces overlapping solutions spaces for different
parameter sets.

Third, it is possible that the fit procedure does not
find the optimal parameter set, because the solution
space of the fit criterion is rather shallow (Eq. 3), i.e.,
many parameter sets lead to the same value of g. It is
important to note that this possibility is different from
the previous one. There, we considered the mapping of
a multidimensional value p to another multidimensional
value r. Here, we focus on the mapping of two multi-
dimensional values to a scalar (see Eq. 3). To make the
occurrence of this third possibility less likely, one might
use an extended summary statistic for representing the
data sample, because this should make the solution
space of the fit criterion more complex and, consequent-
ly, less shallow.

Taken together, our study shows that grid search al-
lows to apply a sophisticated fit procedure for conflict
DDMs that improves model fitting as well as parameter
recovery, relative to current standard procedures. The
advantage is the greater the more complex a model is.
Accordingly, by applying grid search, the difference be-
tween models of different complexity with respect to fit
quality and parameter recovery can be reduced.
However, our simulations also show that an improved
model fit and parameter recovery does not necessarily
increase the correlation between these two quality fea-
tures. Does the observed low correlation mean that grid
search is useless? Certainly not. Grid search is still
highly recommended. The missing correlation between
fit and recovery merely means that the parameter set
resulting from the best fit is not necessarily the best
representation of the parameters in the population. The
obtained representation is nevertheless relatively good,
compared to those produced by the standard method.
An appropriate strategy for parameter selection after
grid search might be to choose the parameter set among
the best fitting ones that is most plausible with respect
to the situation in which the behavior was observed. It
is not unlikely that these parameters represent the pop-
ulation better than the best fitting ones.

Availability To make the grid search for different DDMs con-
venient for researchers, we provide a corresponding R pack-
age on GitHub: https://github.com/Pelzer402/DDModeling.
git.
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Appendix A

Fig. 5 Recovery performance for all parameters regarding the three models. The colored lines show the results for different start-value methods (SVM).
The line style distinguishes the used fit criterion. Blue crosses represent the results from White et al. (2018)
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Fig. 6 Recovery performance of DSTP model for the individual
parameters and the two start-value methods (SVM). Fit criterion was
SPE. Simulated population values are plotted against the recovered values

for each parameter. Values along the diagonal indicate good recovery. See
also the corresponding correlations in the colored boxes
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Fig. 7 Recovery performance of DMC model for the individual
parameters and the two start-value methods (SVM). Fit criterion was
SPE. Simulated population values are plotted against the recovered values

for each parameter. Values along the diagonal indicate good recovery. See
also the corresponding correlations in the colored boxes
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Fig. 8 Recovery performance of SSPmodel for the individual parameters
and the two start-value methods (SVM). Fit criterion was SPE. Simulated
population values are plotted against the recovered values for each

parameter. Values along the diagonal indicate good recovery. See also
the corresponding correlations in the colored boxes
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Table 2. Chi2 goodness-of-fit value averaged across the trimmed data
of the 500 populations. The values in parentheses are the number of
values out of 500 that were used for calculating the average

DSTP DMC SSP

Rand Grid Rand Grid Rand Grid

50 8.11
(497)

6.94
(477)

4.57
(488)

7.88
(479)

9.13
(470)

9.20
(469)

100 7.55
(499)

6.06
(468)

4.87
(490)

7.25
(443)

9.09
(471)

7.66
(473)

200 7.22
(475)

6.07
(475)

5.43
(493)

7.16
(462)

9.41
(477)

8.30
(476)

500 9.05
(486)

6.16
(482)

6.34
(497)

8.42
(474)

10.3
(467)

8.43
(474)

1000 11.6
(484)

6.59
(480)

9.15
(498)

9.90
(480)

12.7
(476)

9.62
(471)

5000 34.5
(484)

9.61
(483)

29.0
(496)

22.9
(481)

30.5
(479)

14.0
(484)

Table 3. SPE goodness-of-fit values averaged across the trimmed data
of the 500 populations. The values in parentheses are the number of
values out of 500 that were used for calculating the average

DSTP DMC SSP

Rand Grid Rand Grid Rand Grid

50 0.0174
(482)

0.0157
(482)

0.0328
(470)

0.0313
(469)

0.0433
(449)

0.0431
(447)

100 0.0090
(483)

0.0076
(481)

0.0170
(471)

0.0161
(473)

0.0235
(478)

0.0226
(474)

200 0.0054
(489)

0.0042
(490)

0.0084
(477)

0.0076
(476)

0.0132
(484)

0.0125
(483)

500 0.0032
(492)

0.0019
(491)

0.0038
(467)

0.0031
(474)

0.0065
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