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Abstract

Observational studies have confirmed that 25‐hydroxyvitamin D (25(OH)D) is

associated with pulmonary hypertension (PH), but the causal association

between each other is unclear. Therefore, Mendelian randomization (MR)

method was performed to validate the causal association between PH and

serum 25(OH)D levels. The summary data for 25(OH)D and PH were from the

National Human Genome Research Institute‐European Bioinformatics Insti-

tute. Catalog of human genome‐wide association studies and FinnGen

biobank consortium. MR analysis was utilized to explore the potential causal

association between PH and 25(OH)D. To evaluate this association, inverse

variance weighting was considered as the primary method. Cochran's Q test,

MR‐Egger intercept test, and “leave‐one‐out” sensitivity analyses were utilized
to control the pleiotropy and heterogeneity in the study. Two‐sample MR

analysis revealed an inverse causal relationship between 25(OH)D and PH

(odds ratio: 0.376, 95% confidence interval: 0.162–0.876, p= 2.334 × 10−2).

There was no significant heterogeneity and pleiotropy. The present study

confirmed the inverse causal relationship between 25(OH)D and PH. This

pathway may provide another treatment pathway in PH. Further studies to

elucidate this pathway is indicated.
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INTRODUCTION

Pulmonary hypertension (PH) is a serious and incurable
pulmonary vascular disease and ultimately leading to
right heart failure and death. Its pathological features are
progressive increase in pulmonary artery resistance and
obstructive vascular remodeling.1,2 At present, numerous
medications have received international approval for
managing PH, including prostacyclin pathway drugs,
nitric oxide pathway drugs, and endothelin pathway
drugs.3 Through PH‐specific treatment, the 5‐year
survival rate of PH patients increased from 34% to over
60%.4,5 However, PH remains progressive and fatal due to
the lack of effective cure methods. Therefore, accurately
controlling the PH risk factors is particularly important.

Vitamin D is a steroid hormone that is deficient in
humans and is associated with conditions such as
hypertension, cardiovascular events, myocardial infarc-
tion, stroke, and cancer.6 It is biologically inactive
and needs to function via two‐step hydroxylation to
1,25‐hydroxyvitamin D (25(OH)D). Furthermore, 25(OH)
D is an intermediate product, and the level of vitamin D
is typically assessed by measuring its concentration in the
human body.7 At present, observational studies have
indicated that individuals diagnosed with PH exhibited
lower levels of vitamin D in comparison to individuals
who are in good health and that vitamin D levels showed
a direct correlation with 6‐min walk distance.8 Supple-
menting vitamin D can ameliorate pathological right
ventricular hypertrophy and improve the survival in rats
with PH.9 It is unclear whether 25(OH)D levels are
associated with the incidence of PH. Previous studies
have mostly been observational and susceptible to
confounding factors. Therefore, further investigation is
required to determine if there exists a causal connection
between levels of 25(OH)D and PH.

Mendelian randomization (MR) is a method for
assessing the causal relationship between risk factors
and disease.10,11 Allele frequencies are known to have
been assigned from parents to offspring, and genotypes
that are fixed during the formation of spermatovum are
also unaffected by disease.12 MR utilizes genetic variation
as an instrumental variable (IV) and avoids interference
from confounding factors that are difficult to control for
in observational studies.13,14 Thus, MR analysis is similar
to a natural randomized controlled trial. This method of
analysis excludes the possibility of reverse causation by
assessing the causal relationship between exposure and
outcome at the genetic level.15,16 Genome‐wide associa-
tion studies (GWAS) have identified thousands of
variants associated with complex exposures, which opens
up the possibility of widespread use of MR.17,18 In the
present study, two‐sample MR was used to evaluate the

causal relationship between 25(OH)D levels and PH via
GWAS summary statistics.

MATERIALS AND METHODS

Study design and data source

In this study, two‐sample MR method was utilized to
explore the causal connection between levels of 25(OH)D
and PH (Table 1). MR analyses are based on the premise
that IVs must fulfill three prerequisites: (1) be reliably
associated with the risk factor studied (relevance assump-
tion); (2) not be associated with any known or unknown
confounders (independence assumption); and (3) affect
outcomes only through the risk factor and not through
any other direct causal pathway (exclusionary restriction
assumption). Based on these criteria, MR was conducted
to explore the causal relationship between 25(OH)D and
PH. The whole process of the study consisted of five main
steps: (1) obtaining exposure factor GWAS data, (2)
screening for appropriate IVs, (3) inputting the outcome
GWAS data and mapping the single‐nucleotide polymor-
phisms (SNPs) of the above IVs, (4) preprocessing the
exposure factor and the outcome GWAS data to ensure the
consistency of the format, and (5) performing MR and
sensitivity analyses.

The GWAS summary data for genetic variants linked
to levels of 25(OH)D were obtained from 496,946
European participants.19 The Diasorin assay was used
to determine 25(OH)D levels. In the UKB, 25(OH)D
concentrations below or above the assay validation range
(10–375 nmol L‐1) were excluded. The average within‐
laboratory coefficient of variation (and standard devia-
tion) ranged from 5.04 (4.73) to 6.14 (2.21). The
distribution of 25(OH)D concentrations was right skewed
and showed the seasonal fluctuations.

The summary‐level genetics information for PH was
obtained from the FinnGen biobank (Finn) consortium
that included 208 PH patients and 243,756 controls from
European20 ancestry database (https://r8.finngen.fi/
pheno/I9_HYPTENSPUL). The FinnGen database
mainly includes people within the Nordic healthcare

TABLE 1 Characteristics of data sources.

Traits Data sources
Sample
size Ancestry

25‐hydroxy
vitamin D

PMID: 32242144 496,946 European

Pulmonary
hypertension

FinnGen 208/243,756 European
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system. All PH is primary PH according to ICD 8th–10th
edition disease coding.

IV

The eligible SNPs were regarded as IVs based on the
following standards (Figure 1): (1) SNPs were strongly
associated with 25(OH)D, (2) SNPs were unaffected by
interfering variables, and (3) SNPs did not affect the
outcome.21 To meet these standards, the following
operations were implemented. First, SNPs significantly
associated with 25(OH)D (p< 5 × 10−8) and instrument
strengths (F) of >10 were screened.22,23 Second, SNPs in
potential linkage disequilibrium (LD) with r2 ≥ 0.001 and
LD distance of <10,000 kb were removed. Third, the
PhenoScanner website (http://www.phenoscanner.
medschl.cam.ac.uk/) was used to look up and exclude
the SNPs directly associated with PH.24 Finally, MR
pleiotropy residual and outlier (MR PRESSO) test was
used to screen and delete outlier SNPs.25 According to
the above criteria, multiple eligible SNPs closely related
to exposure factors were screened as IVs.

Statistical analysis

In the present study, all MR methods were carried out
through “TwoSampleMR”26 and “MR‐PRESSO”25 pack-
age in R software (version 4.2.3, USA).

Inverse‐variance weighting (IVW) method was
mainly utilized to evaluate the causal relationship
between 25(OH)D and PH, and weighted median, MR‐
Egger regression, simple mode, and weighted mode
methods were also utilized to assist in the evaluation.25,27

Among them, IVW is the most commonly used and the
most important method. It utilized meta‐analysis to

obtain the overall estimate by combining the Wald
estimates for each SNP, followed by forced intercept of
zero in weighted linear regression. The final MR results
were represented as odds ratio (OR) and 95% confidence
interval (CI).

MR‐Egger and IVW were employed in Cochran's Q
statistics to evaluate the heterogeneity of IVs in the
GWAS database outcomes, where p> 0.05 showed no
significant heterogeneity.28 The pleiotropy test was
carried out by MR‐Egger intercept, where p> 0.05
indicated that the IV had no significant pleiotropy in
the GWAS data set outcomes.29 The MR‐PRESSO
methods were used to detect the outlier SNPs and
horizontal pleiotropy. To ensure the stability of MR
results, the leave‐one‐out method was utilized to avoid
SNP bias.

RESULTS

According to the screening criteria for IVs, 106 SNPs
significantly associated with 25(OH)D were considered
IVs with no linkage imbalances and outliers, and all
F‐statistic values were >30 (Supporting Information S1:
Table S1). The rs2511279, rs57601828, and rs7955128
were removed for incompatible alleles or being palin-
dromic with intermediate allele frequencies.

In IVW, SNPs associated to serum 25(OH)D levels
were inversely correlated with incidence of PH and the
relative risk of PH was reduced by 62.4% for every one
standard deviation increase in 25(OH)D level (OR: 0.376,
95% Cl: 0.162–0.876, p= 2.334 × 10−2). Therefore, a
decrease in abnormal serum 25(OH)D levels increases
the risk of developing PH. Other MR estimates showed
similar results but with larger CIs due to lower statistical
power (Table 2). A scatter plot also demonstrated that
elevated serum 25(OH)D levels reduced the risk of PH

FIGURE 1 Study design flowchart of the
Mendelian randomization study. The
Mendelian randomization method is based
on three hypotheses: (1) the instrumental
variables are closely related to exposure;
(2) instrumental variables are independent of
any confounding factor; (3) instrumental
variables affect the results only through
exposure but not through other ways.
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(Figure 2). The effect size and 95% CI of each SNP related
to 25(OH)D levels were represented in the form of forest
plots, and the overall effect evaluation of the MR‐Egger
and IVW models was also included (Figure 3).

Subsequently, sensitivity analysis was used to assess
the pleiotropy and heterogeneity of the MR results. The
Cochran's Q test results showed that there was no
significant heterogeneity (PMR‐Egger = 0.576, PIVW =
0.571, Table 3). Using MR‐Egger intercept test, no
significant gene directional pleiotropy was observed
(p= 0.280). The outlier SNPs and horizontal pleiotropy
were not noted by the MR‐PRESSO test. The approximate
symmetric funnel plot also confirmed this result
(Figure 4). The results remained unchanged after
removing one SNP in the sequence and evaluating the
total effect of the remaining SNPs on PH (Figure 5).

DISCUSSION

The present study is the first genetic research to evaluate
the causal relationship between levels of serum 25(OH)D
land PH using two‐sample MR analysis. The final results
demonstrated that the relative risk of PH decreased with
genetically predicted increasing serum 25(OH)D levels.
The role of vitamin D may be a key factor in the
occurrence and development of PH.

Recently, more and more researches have explored
the relationship between 25(OH)D and PH. The present
study further validated the conclusions of prior observa-
tional studies, where the levels of serum vitamin D were
lower in patients with PH compared to healthy indivi-
duals and approximately 68% of PH patients were
diagnosed with vitamin D deficiency.8,30 In addition,
lower serum 25(OH)D levels can predict poor prognosis
for patients with PH.31 The present investigation
supplemented and confirmed the findings regarding the
harm of vitamin D deficiency in PH. In a family‐based
study, Bai et al. have reported that there was causal

association between vitamin D deficiency and hyper-
tension.32 An MR study has also shown that increasing
plasma 25(OH)D levels reduced the relative risk of
hypertension.33 These results suggest that vitamin D may
be associated with altered vascular tone. A recent meta‐
analysis has confirmed that supplementation with
vitamin D did not effect on cardiovascular disease or
type 2 diabetes risk.34 There also has been no clear
conclusion on the clinical significance of vitamin D
supplementation in PH treatment.35 A clinical observa-
tion has suggested that vitamin D deficiency affected the
effectiveness of sildenafil in treating PH, and restoring
vitamin D levels improved this symptom.28 Callejo et al.
have explained that the lack of vitamin D may reduce
nitric oxide‐dependent cGMP production,36 which also
suggested that there is a benefit of vitamin D supple-
mentation in patients with PH. MR analysis estimates the
lifetime effects of exposure, which is not possible in
randomized clinical trials. Therefore, MR analysis would
be a good choice to answer the question of whether
vitamin D supplementation is beneficial in preventing
PH.37 Based on existing literature, there may be multiple
potential mechanisms between vitamin D and PH. In a
rat model, vitamin D deficiency did not increase
pulmonary artery pressure in normal oxygen conditions,
and the same conclusion was reached in vitamin D
receptor knockout mice.38,39 However, vitamin D defi-
ciency can lead to characteristic changes similar to those
of PH in experimental animals, such as smooth muscle
cell and endothelial dysfunction, increased musculariza-
tion, increased KCNE4 and survivin expression,
increased sensitivity to Kv7 channels, downregulated
TASK−1 channels, and reduced potassium two‐pore
domain channel subfamily K member 3 (KCNK3)
expression.38,40,41 Research has found that dietary
supplementation with vitamin D significantly improved
prognosis in rats with PH, which may be regulated by the
eNOS signaling pathway. Increasing vitamin D levels can
promote the expression of KCNK3 and the activity of

TABLE 2 MR of serum 25(OH)D levels and the risk of PH.

Exposure Outcome MR method SNP (n) OR (95% CI) p Value

25(OH)D PH MR Egger 106 0.655 (0.177, 2.424) 0.527

Weighted median 106 0.911 (0.234, 3.419) 0.890

Inverse variance weighted 106 0.376 (0.162, 0.876) 0.023

Simple mode 106 0.020 (0.001, 0.328) 0.007

Weighted mode 106 0.769 (0.228, 2.586) 0.672

Abbreviations: 25(OH)D, 25‐hydroxyvitamin D; CI, confidence interval; MR, Mendelian randomization; OR, odds ratio; PH, pulmonary hypertension;
SNP, single‐nucleotide polymorphism.
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TASK‐1 channels, which may be targets for the treatment
of PH.39,41,42 Although restoring vitamin D levels cannot
reduce the pulmonary artery pressure, it can improve the
prognosis and some pathological changes in PH.41,43

Therefore, supplementing with vitamin D has clinical
benefits for PH patients. However, more clinical studies
are needed to verify this statement.

The main advantage of the present study was the use
of two‐sample MR to avoid selection bias while using

SNPs as IVs to exclude other confounding factors.
However, the study has several limitations. First, all
cohorts were from the European population, and it is
unclear whether this conclusion applied to other
populations and individuals. Second, there was only
one measurement of serum 25(OH)D levels and the effect
of the use of vitamin D supplements is not yet clear.
Third, this study ignored the moderating effects of factors
such as age, gender, and environment due to the fact that

FIGURE 2 Scatterplot of 25‐hydroxyvitamin D (25(OH)D)‐pulmonary hypertension (PH) risk in Mendelian randomization study.
X‐axis, the single‐nucleotide polymorphism (SNP) effect and standard errors (SEs) on each of the selected SNPs from vitamin D 25(OH)D
genome‐wide summary association study (GWAS) data set. Y‐axis, the SNP effect and SEs on PH from PH GWAS data sets. The dark blue
vertical line represents the Mendelian randomization‐Egger method‐derived causal effect estimate, while the light blue line signifies the
equivalent estimate derived via the inverse‐variance weighting method.
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FIGURE 3 Forest plot of 25‐hydroxyvitamin D‐pulmonary hypertension risk in Mendelian randomization study.
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25(OH)D expression levels in population data are
influenced by age and seasonal factors. Fourth, PhenoS-
canner identifies disease‐associated SNPs based on
available data. Most of these data are from European
populations. Therefore, some bias is unavoidable.
Finally, MR analysis has some inherent shortcomings
and is unable to eliminate the effects of confounding
factors and horizontal pleiotropy.

CONCLUSION

In conclusion, the present study confirmed the causal
association between serum 25(OH)D levels and PH from
a genetic perspective. Higher levels of serum 25(OH)D
levels reduced the relative risk of PH. Supplementing
with Vitamin D may show clinical benefits to PH
patients.

TABLE 3 Sensitivity analysis of the causal association between 25(OH)D and the risk of pulmonary hypertension.

Pleiotropy test Heterogeneity test

MR‐Egger MR‐PRESSO MR‐Egger Inverse‐variance weighted

Intercept SE p Value p Value Q Q_df Q_pval Q Q_df Q_pval

−0.020 0.018 0.280 0.563 100.59 104 0.576 101.77 105 0.571

Abbreviations: 25(OH)D, 25‐hydroxyvitamin D; df, degrees of freedom; MR, Mendelian randomization; PRESSO, pleiotropy residual and outlier.

FIGURE 4 Funnel plot of 25‐hydroxyvitamin D‐pulmonary hypertension risk in Mendelian randomization study.
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FIGURE 5 Mendelian randomization leave‐one‐out sensitivity analysis for 25‐hydroxyvitamin D on pulmonary hypertension.
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