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Abstract
Objectives: Predicting protein function from the proteineprotein interaction
network is challenging due to its complexity and huge scale of protein inter-
action process along with inconsistent pattern. Previously proposed methods
such as neighbor counting, network analysis, and graph pattern mining has
predicted functions by calculating the rules and probability of patterns inside
network. Although these methods have shown good prediction, difficulty still
exists in searching several functions that are exceptional from simple rules and
patterns as a result of not considering the inconsistent aspect of the interaction
network.
Methods: In this article, we propose a novel approach using the sequential
pattern mining method with gap-constraints. To overcome the inconsistency
problem, we suggest frequent functional patterns to include every possible
functional sequencedincluding patterns for which search is limited by the
structure of connection or level of neighborhood layer. We also constructed a
tree-graph with the most crucial interaction information of the target protein,
and generated candidate sets to assign by sequential pattern mining allowing
gaps.
Results: The parameters of pattern length, maximum gaps, and minimum
support were given to find the best setting for the most accurate prediction.
The highest accuracy rate was 0.972, which showed better results than the
simple neighbor counting approach and link-based approach.
ted under the terms of the Creative Commons Attribution Non-Commercial License (http://
) which permits unrestricted non-commercial use, distribution, and reproduction in any
operly cited.
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Conclusion: The results comparison with other approaches has confirmed that
the proposed approach could reach more function candidates that previous
methods could not obtain.
1. Introduction

Defining functional characteristics of newly found

protein or reassigning new functions to already-found

protein has been receiving attention from scientists.

Analyzing uncharacterized functions of proteins re-

quires a sophisticated computational method, because it

is impossible to manually annotate the large amount of

constantly uploaded data as proteins tend to carry bio-

logical function in more than one aspect.

Although the classic way of predicting a protein

function is to find the homology between the sequence

of annotated protein and unannotated proteins, the

question of being sensitive enough for diverse se-

quences still remains. Some studies have inferred the

function of a protein using its three-dimensional

structure [1] using the similarity of fold, but most

folds are associated with only a single function whereas

proteins can have multiple functions, and thus could be

confusing. Later, bioinformatics techniques to analyze

biological process [2,3], clustering, and classification to

categorize protein function from DNA data were

introduced [4e6]. After the proteineprotein interaction

network, which shows the functional association be-

tween proteins, was introduced, it was often used for

function prediction of proteins due to its rich infor-

mation [7]. The methods to exploit the network have

been developed in several different ways, including

majority voting method [8], global optimization

method [9], labeling and weight assign method [10,11],

etc. The protein network can be exploited in various

ways because it is packed with a vast amount of in-

formation and be easily combined with other informa-

tion in the form of annotation and weight. Interacting

proteins are composed of highly complex networks

referred to as proteineprotein interaction networks.

This successfully captures the feature of the condition

of protein relationships. Interacting proteins are likely

to share the same functions to serve a common purpose,

but predicting protein function solely on this feature has

generally demonstrated limited accuracy and efficiency

for several reasons. First, proteineprotein interaction

networks are typically structured on very complex

connectivity, therefore making the prediction procedure

more challenging if proteins have too many large

numbers of neighbors [19]. Second, most proteins have

multiple functions under different environmental con-

ditions, which creates more difficulty in predicting the

whole, complete set of functions that a single protein

may carry [7]. Finally, functional inconsistency exists

between interacting proteins.
In the study of Schwikowski et al [8], which features

the analysis of a large protein interaction network,

function prediction relying on interacting proteins is

proved to be “highly effective”. Although counting the

frequency of function categories among neighbor pro-

teins works well for prediction, because of the

complexity of the relationship between proteins it has

encouraged applying a more sophisticated way to bring

better accuracy rates in predictions. One cannot simply

tell that a protein will definitely possess a function that

its neighbor hasdit is a matter of probability, as it is

affected by a tangled relationship of proteins with some

exceptions. The study by Vazquez et al [9] takes the

entire picture of the network to connect all possible

impact factors proteins give to each other, to decide

what function each will serve. Methods considering such

extra influence within networks are also well shown in

the study of Chatterjee et al [12], which uses the dis-

tance between proteins, for example, and Freschi et al

[13], applying rank or weight, or inserting labels as in

the study by Wang et al [11]. Although adding some

extra factors can better reflect the protein interaction

process, all of these comprise parts of all resources

gleaned from the interaction network. Combining the

strong characters of each local network of strongly

related proteins and the global connection flow of all

local networks, and additional information tagged into

the network are essential as every factor derived from

this interaction network are equally effective at guessing

the function of protein. Applying graph mining and

involving pattern mining can provide the answer to this

problem [14,15]. Even when mining a whole network,

both global aspects and local aspects of connection can

be easily spotted as a large or small pattern, or as in a

subpattern inside a larger pattern. Because the pattern

mining approach can be easily “equipped” with several

constraints and weight factors [16], it makes it possible

to return any good sample of how each well-known

functions of proteins can indicate the unknown func-

tion of their interaction neighbors. A study by Freschi

[17] suggests topology analysis that takes overlapping

neighbors into account, assigning different weight to

different neighboring node patterns in the end. In the

study by Cho and Zhang [18], such an approach is

attempted to be improved by applying a more advanced

pattern mining technique. During the labeled subgraph

mining for functional pattern, a priori pruning is applied

and triangular duplicated candidate patterns are elimi-

nated. Still, the question of inconsistency remains

because no prominent, single rule of patterns exists for

one particular function [21].
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In this paper, we propose a new approach of protein

function prediction by graph pattern mining, which ap-

plies gap-constraints sequential pattern mining and

frequent pattern mining together. In this way, we

attempted to use all advantages that the protein interaction

network can giveecovering all local and global characters

of protein relationship, summarizing the character into

patterns, and the high possibility of accurate function

assignment based on the frequency of functions appear in

particular part within the network. We use three-, four-,

and five-node functional patterns, discovering useful

frequent patterns for function prediction. We permit a gap

among the sets of function within a pattern to capture

inconsistent but highly possible functional pattern. Our

method proposed here consists of three main parts of

different processes. The first is to construct the pro-

teineprotein interaction network from existing protein

interaction data with annotation data. We figure out the

possible functional patterns made from the neighbors of

protein being the target of function prediction. At the

second stage, candidate patterns for prediction are

generated by applying the gap-constraint sequential

pattern mining method. Finally, the third stage creates an

output of function prediction by selecting the expected

function of a protein, using frequent pattern mining. The

experiment is conducted at this stage and the accuracy of

prediction is calculated. Several different parameters are

given during the experiment and results are compared to

find the parameter set most effective on prediction. The

workflow of our method is presented in Figure 1.
Figure 1. Workflow of t
This article is organized as follows. We first introduce

the related works regarding protein function protein

methods using the proteineprotein network. We then

present the detailed procedure of our method and explain

the proposed algorithm for discovering functional patterns

based on the gap-constraints sequential pattern mining

method. After the explanation, we perform an experiment

to verify the performance of our algorithmandevaluate the

results, comparing with previous related studies. Finally,

we summarize our work and discuss future studies.

2. Materials and methods

2.1. Preprocessing
The preprocessing of the method consists of three

stages. First, cleansing the raw data; second, constructing

a graph representing the protein relationship with func-

tions annotated; and third, generating candidate function

sets for proteins in which their functions are revealed.

2.1.1. Data cleansing
Before we transform the proteineprotein interaction

(PPI) interaction network into a graph, as proteins

become the nodes, the ones that show no proteinepro-

tein interaction are removed. Each protein is labeled

with the set of corresponding functions. Functional

categories used in this paper come from the MIPS

Mammalian ProteineProtein Interaction Database

(http://mips.helmholtz-muenchen.de/proj/ppi/). Another

filtering process is done by removing proteins that do

not appear in functional annotation reference.
he proposed approach.

http://mips.helmholtz-muenchen.de/proj/ppi/


Application of Gap-Constraints 115
2.1.2. Constructing protein network graph
Proteineprotein interaction network can be repre-

sented as undirected, unweighted graph G(V,E ). Here,

V(v1. vk) is a set of nodes denoting proteins,whereas the

set of edges E(e1 . ek) denotes interactions between

proteins. Sets of functional categories are assigned in the

form of the label F(f1 . fk), as one protein can have

multiple functions. Thus, we obtain a graph of protein

interaction data including unannotated protein, ready to

be used for extracting functional patterns (Figure 2).
Figure 3. Constructing tree graph of target proteins and

neighbor proteins. (A) Network of unannotated target protein

A and its annotated neighbor proteins. (B) Tree graph con-

structed of neighbors of target protein T, T as root node

(partial).
2.1.3. Constructing a tree graph for a target protein
To figure out all possible patterns related to the target

protein more efficiently, the patterns are summarized

into a tree-structured graph (Figure 3). The target pro-

tein for function prediction becomes the root node of the

tree. The tree is expended as the search for the next

neighbors of target protein is continued and each newly

found neighbors become the internal nodes of the tree.

Notice these patterns are generated with the neighbors of

unannotated proteins only. For example, the three-node

pattern consists of three-node neighbors of a target

protein but not the target protein itself.

As we are determined to find the maximum five-node

patterns related to the target protein, themaximumdepth of

the tree also becomes the five-node depth. Arranging the

network-basedgraphdata in such awaycan save the timeof

scanning through the whole network. This helps to build

highly related candidate functional patterns and simulta-

neously avoid likely irrelevant functions of the target

proteins.

Extracting patterns from this graph can also prevent

generating redundant patterns created from nodes inside

a closed walk cycle, which returns duplicated neighbors

and patterns. Our algorithm excludes nodes which are

detected to be already discovered during the process of

building tree of target proteins network graph.
Figure 2. Avoiding duplicated neighbor search during the constru

its neighbor proteins. (B) Discarding duplicate node of neighbor p
2.2. Generating the candidate set of functions
When prediction is done by simply counting the

numbers of frequent function categories appearing among

the close neighbors of function-unknown protein, it

returns a reliable prediction result of 80% accuracy.
ction of tree graph. (A) Network of unannotated protein A and

rotein.
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However, this also indicates that there still exists incon-

sistency in the relationship between shared functions and

connection between proteins. The remaining unmatching

results contain these exceptional cases, as different func-

tions are triggered in a protein in a single state, in a pair or

more neighbors, undirect neighbors, etc. To overcome

such problems, which lower the rate of accuracy, gap

allowance is given while generating a functional pattern

closely associated with the target protein using the tree-

formed network graph. The purpose of this gap is to allow

the generation of more numbers of available functional

patterns regarding those outside of the limited collection

of functional patterns we are trying to search. These pat-

terns can cover the ones in the proteineprotein interaction

network under an inconsistent condition. In other words,

we obtain a much wider range of possibility of finding the

functional set most suitable for the target protein.

For example, suppose that {f1-f2}-{f1-f3-f4}-{f1-f2-

f3} is a three-node functional pattern of three different

proteins, found in the tree-formed network graph of the

neighbors of a target protein, this pattern is treated as a

sequence e [f1, f2, f1, f3, f4, f1, f2, f3]. From this

sequence, the functional patterns are mined and gaps are

allowed, and the candidate patterns do not only include a

subsequential pattern such as {f1, f2, f2} but also a

sequence such as {f2, f3, f4} (Figure 4).

To generate candidate patterns in such a manner, two

different parameters are set to guide the amount of

candidate sets. These are the minimum-support

threshold and the size of the maximum gap (max-gap)

allowed. The purpose of each parameter and the actual

use is explained in detail in experiment section.
Figure 4. Process of extraction, generation an
2.3. Function prediction
Once candidate patterns are extracted after gap-

constraint pattern mining, another frequent pattern

mining is carried out for extracting the most frequent set

of functions. The final sets derived from candidate sets

eventually get assumed as the most possible functions

that the target protein will possess.

From the candidate pattern generated by applying

gap-constraint pattern mining, we again apply another

frequent pattern mining. The result of this process

returns several sets of functions, each with a different

length and seemingly random joins of function annota-

tions, but all derived from the functions closely meeting

with the target proteins.

As explained previously, the most frequent set of

functions mined from candidate set is assigned to the

target proteins as its function.
3. Results

3.1. Experimental data
We used Saccharomyces cerevisiae data from Data-

base of Interacting Protein (DIP) and MIPS funCat

catalog for our annotation for the experiment. The pro-

tein interaction data contains 1274 protein nodes and

3222 interactions. Seventeen functional categories were

derived for our experiment. During the preprocessing,

proteins without any interactions or the functions which

are not contained in the selected functional annotations

were removed. As a result, 1249 protein nodes and 2985

interactions remained for the experiment.
d assigning function set on target protein.
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3.2. Effectiveness of function prediction by

parameters
We analyzed the results of our method in three

different ways as we gave changes to three kinds of

parametersethe length of nodes set during the pattern

extraction from the tree graph, the minimum support

threshold, and the max-gap allowed during the process

of generating candidate patterns.

By setting different aspects of parameters, we have

tried to find the best condition of mining that returns the

most accurate results. For the length of nodes, the longer

the length, the more probable that prediction candidate

patterns would be generated, but this means we will

have many unwanted results requiring more space for

matching and analyzing. Thus, it is important to know

which length is just enough for the best result. If too

short, we may miss some information. If too long, there

will be too much waste of memory.

As for different minimum supports, this is the same

process done in any form of frequent pattern mining. By

raising minimum support, we get the most frequent

patterns only, which helps to ensure the association rule

of a pattern, while in the process of predicting function

prediction it is not recommended to discard all infre-

quent pattern. The reason is that it may contain rare

functional patterns still valid for function prediction.

Also, despite most frequent pattern mining process

preferring to set very high minimum support, we tested

various ranges of minimum supports.

Different max-gaps are used as a similar way as we

set the length of patterns. By allowing more gaps, we are

able to get more reliable candidates of unexpected but

important patterns, and also more unwanted patterns.
3.2.1. Parameter setting for function prediction

experiment
To evaluate our approach, the predicted sets of

functions were matched with the actual set of functions.

After candidate patterns are generated by our pattern

mining algorithm, function annotation is carried out. For

the method evaluation we used the pattern from the

graph created with DIP and MIPS data being annotated

and selected several proteins to be predicted, to see if

our method had indeed returned a set of predicted

function of the actual annotation. Let Ai be the set of

actual function of protein Vi and Pi be the set of pre-

dicted functions for Vi. When protein Vi is shown as

being Pi4Ai, it is counted as an accurate prediction. The

parameters were set by different lengths (3-, 4-, and 5-

node) and support (minimum support Z 50, minimum

support Z 100, minimum support Z 150). We also

applied different max-gaps to see the accuracy accord-

ing to more varying conditions (max-gap Z 3, max-

gap Z 5, and max-gap Z 7).

The accuracy was calculated for each different

parameter set, and results analyzed in terms of searching
for the best parameter set for prediction as previously

mentioned. The most promising result was compared

with other methods previously developed, using the

same prediction accuracy measurement.

3.2.2. Performance evaluation by different

parameter setting
By max-gap given 3, the rate of accuracy was clearly

divided by the length of pattern. As the number of nodes

increased the prediction became better. When max-gap

is set to 5, the overall accuracy of three-node pattern was

dropped while that of four-node pattern has surged, and

five-node pattern remained at the same level. At the

max-gap at 7, the result showed that accuracy gets much

higher as minimum support rises (Figure 5).

For most conditions, the five-node length of pattern

returned the highest accuracy than any other number of

nodes. It indicates that the prediction of function re-

quires the involvement of great levels of neighbor pro-

teins, and a complicated pattern with an increased

number of neighbors contributes to the prediction pro-

cess greatly (Figure 6).

Accuracy tends to mount or stay steady when the

support rises from 50 to 100 and drops at 150. However,

in the condition where max-gap is given as 7, the three-

node pattern accuracy shows a different result.

The highest accuracy was obtained when max-gap is

set as 7, minimum support at 150 in five-node pattern.

Overall, the results show that the length of node affects

the accuracy most greatly, but it is also seen that larger

gap allowance pushes the accuracy even better. This

shows the wider size of gap also increases the possibility

to detect correct function of a protein by generating

powerful candidate patterns.

3.3. Result comparison with previous nongraph

mining approaches
We compared our method with other previous

methods which use a non-graph mining approach,

including neighbor counting [8] and link based [21]. The

aforementioned measurement of accuracy was used

again to evaluate the results of each method, with the

same dataset (Table 1). Although the accuracy rate of

the neighbor counting method is 0.532 and link-based

method is 0.762, our method proposed has shown

0.972 of accuracy. The best result of our prediction

clearly shows how our method works better on the

complexity and inconsistency of a protein interaction

network. This result indicates that using the frequency

of a functional category that appears among the neigh-

bors of target protein should be counted regarding the

pattern of connectivity between function, but should not

be limited by the levels of layers or any sequence order

at the same time. Rather, the results show that allowing

a much looser structural rule of protein interaction

network should be explored for better prediction.



Figure 5. Evaluation result by different length of node setting. (A) Length of three-nodes. (B) Length of four-nodes. (C) Length

of five-nodes.
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4. Discussion

In this article we presented a new approach to predict

protein functions by applying two kinds of mining

method on protein interaction network: pattern mining

method with gap-constraints and another frequent
Figure 6. Evaluation by different maximum gap (max-gap) settin
pattern mining. Also, instead of using a whole regular

graph of protein identification and its function annota-

tion label, we attempted to use a tree-structured graph on

one target protein when looking for its function. Within

the tree graph we tried to extract possible variations of

the frequent pattern as much as possible by allowing a
gs. (A) Max gap Z 3. (B) Max gap Z 5. (C) Max gap Z 7.



Table 1. Prediction accuracy of neighbor counting approach, link-based approach, and gap-constraint pattern mining

approach.

Approach Description Accuracy (%)

Neighbor counting [8] Count most frequent function category appear among neighbor

proteins and assign to the target protein

0.532

Link-based [20] Use small world property of protein interaction network and

Bayesian framework

0.762

Pattern miming with gap-constraint Use graph pattern mining and frequent sequential pattern mining

with gap constraints

0.972
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certain length of gaps and length of the pattern itself. By

this we gained the most possible function set to be an-

notated onto the target protein, although it might not

have been directly connected to its neighbor or not

appear as a pattern or rule in a regular order. We

compared several outputs of our experiment controlled

under various conditions, and searched for the most

promising parameter set to get accurate prediction. The

result comparison with other approaches has confirmed

that the proposed approach could reach more function

candidates that previous methods could not obtain.

During the process of our application we have seen

several progresses with the approach of using the graph

mining method on the protein interaction network for

function prediction. First, we suggested creating and

using a tree-structured graph as the target protein at the

root node. This has not only been useful in reducing

redundant scanning of the whole network and dupli-

cated count of functions, but also ensures that we can

secure the most highly related functions of a target

protein. Second, generating candidate function sets to

assign as target proteins function with gap-constraint

pattern mining has allowed us to find various candi-

dates, including the ones that could appear with

inconsistency within a certain area around the target

protein. Applying frequent pattern mining after such

candidate generations returned the result of what pre-

vious frequent graph pattern mining method could not

find. In this way, we could secure more accuracy from

prediction evaluation. These aspects can be especially

useful when trying to learn about whether there are

strong characteristics appearing among a protein

network in terms of relationship between several of

different functions and their combination. This strategy

could easily apply to any type of protein interaction

network regardless of its size, whether full network or

partial.

To guarantee more accuracy during protein function

prediction, it is essential to understand the complexity of

the interaction network and developing sophisticated

prediction rules is required. It is clear that the limitation

of prediction is triggered by the fact that the simple

picture of connection between proteins with only close

neighbors is not enough to represent the relationship of

proteins and their functions. If more effective details can
be found to add to our method, it will be a promising

method to predict undiscovered functions of a protein.

The future study will be conducted for more discoveries

of important parameters and setting an experiment in

another condition to adjust better to the complexity of

the PPI network.
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