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Background: The tumor microenvironment (TME) consists of heterogeneous cell

populations, including malignant cells and nonmalignant cells that support tumor

proliferation, invasion, and metastasis through extensive cross talk. The intra-tumor

immune landscape is a critical factor influencing patient survival and response

to immunotherapy.

Methods: Gene expression data were downloaded from The Cancer Genome

Atlas (TCGA) and Gene Expression Omnibus databases. Immune cell infiltration was

determined by single-sample Gene Set Enrichment Analysis (ssGSEA) depending on the

integrated immune gene sets from published studies. Univariate analysis was used to

determine the prognostic value of the infiltrated immune cells. Least absolute shrinkage

and selection operator (LASSO) regression was performed to screen for the most

survival-relevant immune cells. An immune-cell characteristic score (ICCS) model was

constructed by using multivariate Cox regression analysis.

Results: The immune cell infiltration patterns across 32 cancer types were identified,

and patients in the high immune cell infiltration cluster had worse overall survival (OS) but

better progression-free interval (PFI) compared to the low immune cell infiltration cluster.

However, immune cell infiltration showed inconsistent prognostic value depending on

the cancer type. High immune cell infiltration (High CI) indicated a worse prognosis in

brain lower grade glioma (LGG), glioblastoma multiforme (GBM), and uveal melanoma

(UVM), and favorable prognosis in adrenocortical carcinoma (ACC), cervical squamous

cell carcinoma and endocervical adenocarcinoma (CESC), cholangiocarcinoma (CHOL),

head and neck squamous cell carcinoma (HNSC), liver hepatocellular carcinoma (LIHC),

lung adenocarcinoma (LUAD), sarcoma (SARC), and skin cutaneous melanoma (SKCM).

LUAD prognosis was significantly influenced by the infiltration of 13 immune cell types,

with high infiltration of all but Type 2 T helper (Th2) cells correlating with a favorable

prognosis. The ICCS model based on six most survival-relevant immune cell populations

was generated that classified patients into low- and high-ICCS groups with good and

poor prognoses, respectively. The multivariate and stratified analyses further revealed

that the ICCS was an independent prognostic factor for LUAD.
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Conclusions: The infiltration of immune cells in 32 cancer types was quantified, and

considerable heterogeneity was observed in the prognostic relevance of these cells

in different cancer types. An ICCS model was constructed for LUAD with competent

prognostic performance, which can further deepen our understanding of the TME of

LUAD and can have implications for immunotherapy.

Keywords: immune cell infiltration, tumor microenvironment, lung adenocarcinoma, single-sample Gene Set

Enrichment Analysis, prognosis

INTRODUCTION

Cancer is a highly heterogeneous disease involving complex
interactions between the malignant cells and the tumor
microenvironment (TME). The latter consists of various immune
cells, mesenchymal-origin cells, and the extracellular matrix
(ECM) (1, 2), which influence all stages of tumorigenesis
by directly interacting with the tumor cells (3, 4). The
immunological component of the TME acts as a two-edged sword
that can either suppress or promote tumor development (5). The
infiltrating immune cells in the TME are critical players affecting
tumor growth and progression, as well as therapeutic outcomes
and patient prognosis (6–8).

Lung cancer is the leading cause of cancer-related deaths
worldwide, with 2,093,876 newly diagnosed cases and 1,761,007
deaths recorded in 2018 alone (9). Lung adenocarcinoma (LUAD)
is the most common histological subtype (10). Studies show
the infiltration of multiple immune cells in the lung TME (4,
11), including that of T lymphocytes, B cells, dendritic cells
(DCs), macrophages, and natural killer (NK) cells (12). In fact,
the relative proportion of these tumor-infiltrating immune cells
creates the microenvironment of lung cancer (4). Therefore, it
is not surprising that immunological parameters of LUAD, such
as the infiltrating T cells, are important discriminants of tumor
stratification, clinical outcomes, and patient survival (13, 14). The
previous study has shown that the tumor-infiltrating immune
cells are correlated with the development and progression of
LUAD (11). The type and level of immune cells not only have a
prognostic value but also affect the response of immunotherapy.
However, there are few studies to analyze the correlation between
tumor-infiltrating immune cells and the prognosis of patients
with LUAD.

The recent advances in genomic sequencing and
bioinformatics have enabled high throughput analysis and
interpretation of complex disease-related datasets, which are
ideal approaches to quantify the tumor-infiltrating immune cells
of various cancers (15). Single-sample Gene Set Enrichment
Analysis (ssGSEA) is an extension of Gene Set Enrichment
Analysis (GSEA), which calculates separate enrichment scores
for each pairing of a sample and gene set (16). In this manner,
ssGSEA transforms a single sample’s gene expression profile to
a gene set enrichment profile. By defining immune cell-related
gene sets, the enrichment score of the gene set can represent the
density of tumor-infiltrating immune cells. This transformation
allows researchers to characterize tumor-infiltrating immune
cells in the TME rather than through immunohistochemistry
and flow cytometry.

In the present study, we analyzed the immune cell infiltration
pattern of a pan-cancer cohort that includes 32 cancer types
using the ssGSEAmethod. Least absolute shrinkage and selection
operator (LASSO) regression was used to screen for the most
survival-relevant immune cells. Cox regression analysis was to
establish an ICCS model in both training and validation cohorts
of LUAD. We believe that the ICCS could assist in predicting
the survival of LUAD patients and can further deepen our
understanding of the TME of LUAD.

METHODS

Data Sources
Gene expression data and corresponding clinical annotations of
tumor samples were obtained from The Cancer Genome Atlas
(TCGA; https://www.cancer.gov/tcga) and Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) databases.
RNAseq data (RSEM gene-normalized) and clinical annotations
for the TCGA cohorts (10,150 tumors across 32 cancer
types) were obtained from the UCSC Xena browser (https://
xenabrowser.net; Table S1). After removing normal tissue and
non-primary tumor samples, 9,112 primary tumor samples were
selected. The gene expression levels were analyzed using the
Illumina HiSeq 2000 RNA Sequencing platform, and all Level-
3 data were downloaded. Microarray and clinical data of LUAD
patients were obtained from the GSE31210 (n = 226) (17, 18),
GSE37745 (n = 106) (19, 20), and GSE50081 (n = 128) (21)
datasets of the GEO database. All microarray data had been
generated using the Affymetrix HG-U133 Plus 2.0 platform. The
LUAD samples in the TCGA database were used as the training
set and those from GEO datasets as the validation sets.

Acquisition of the Immune Cell-Related
Gene Sets
Gene sets specific for immune cell populations were obtained
from the following studies: Bindea et al. (3), Zheng et al. (22),
Charoentong et al. (23), Racle et al. (24), Tirosh et al. (25), and
Angelova et al. (26). The expression data published by Zheng
et al. (22) and Tirosh et al. (25) were generated using single-cell
sequencing and measured in the other studies (3, 23, 24, 26) by
microarray profiling.

Single-Sample Gene Set Enrichment
Analysis
The infiltration level of the different immune cell populations was
determined by ssGSEA (27) in the R Bioconductor package Gene
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Set Variation Analysis (GSVA, v.3.5) using default parameters.
The ssGSEA algorithm is a rank-based method that defines
a score representing the degree of absolute enrichment of a
particular gene set in each sample. The gene sets from the
published studies were fed into the ssGSEA algorithm. Pearson’s
correlation coefficient was used to calculate the correlation
of the ssGSEA scores across the gene sets (Figure S1). The
ssGSEA scores for most immune cell populations obtained using
the gene sets from Angelova et al. (26) were either highly
correlated or mildly anti-correlated and therefore excluded. For
the gene sets that were included in no less than two published
studies (Table S2), those with ssGSEA scores consistent with
known immune cell markers were retained (Figure S2), as were
gene sets that were not duplicated across the different studies.
Finally, a total of 46 gene sets (Table S3) representing distinct
immune cell populations were selected, and the ssGSEA scores
of each were calculated across 9,112 samples in the pan-cancer
cohort. The correlation of the ssGSEA scores was calculated by
Pearson’s method.

Unsupervised Clustering
An unsupervised k-means clustering method was used for
patient classification based on the ssGSEA scores of infiltrated
immune cells. An fpc package (v2.2-2, https://CRAN.R-project.
org/package=fpc) was used to determine the optimal number
of clusters, followed by identification of the cluster information
through k-means function in the statsr package (v0.1-0, https://
CRAN.R-project.org/package=statsr).

Survival Analysis
Univariate andmultivariate Cox proportional-hazards regression
models were analyzed using the Survival package in R. Kaplan–
Meier survival curves were plotted and compared using the log-
rank test. The ggplot2 package was used for data visualization.
The LASSO (28) was then used to screen variables that were
highly correlated with survival outcomes, and those with a
regression coefficient larger than zero were selected. Based on
themultivariate Cox proportional hazardsmodel, an ICCSmodel
was generated as follows:

ICCS =

n∑

i=1

Si∗βi

where n is the number of selected immune cells, Si is the ssGSEA
score of the immune cell population i, and βi is the coefficient of
i. Using the median ICCS as the cutoff value, the patients were
divided into low- and high-ICCS groups. The receiver operating
characteristic (ROC) curve was used to evaluate the accuracy of
the ICCS model by comparing the area under the curves (AUCs).
A P < 0.05 was considered statistically significant.

RESULTS

The Reliability of the Identified Gene Sets
for Single-Sample Gene Set Enrichment
Analysis
To determine the reliability of the 46 selected gene sets
(Table S3), a correlation analysis between the ssGSEA scores

which represent each immune cell population was performed
across all samples in the pan-cancer cohort. The ssGSEA scores
of most immune cell populations exhibited a positive correlation
without any anti-correlation, indicating the reliability of the gene
sets (Figure 1). In addition, the active, immature, and mature B
cells exhibited the highest mean ssGSEA scores in diffuse large
B-cell lymphoma (DLBC), and most T cells showed the highest
ssGSEA scores in thymoma (THYM) or DLBC. These results
are consistent with most published data and again underscore
the reliability of the gene sets representing distinct immune cell
populations (Figure S3).

Immune Cell Infiltration-Based
Classification in Different Cancers Shows
Prognostic Heterogeneity
Unsupervised clustering on the TCGA pan-cancer cohort
(32 cancer types) showed that the tumor samples were
predominantly separated into two clusters: low immune cell
infiltration (Low CI) and high immune cell infiltration (High
CI) (Figure 2A). In addition, patients in the High CI cluster
had a worse overall survival (OS) (HR = 1.16, 95% CI = 1.07–
1.25, Cox P = 1.76e−04, log-rank P = 1.74e−04) but a better
progression-free interval (PFI) (HR = 0.92, 95% CI = 0.86-0.99,
Cox P = 0.034, log-rank P = 0.034) compared to the Low CI
cluster (Figure 2B).

Given the contradictory outcomes between OS and PFI in the
pan-cancer cohort, we next performed unsupervised clustering
on the individual cancer types. We found that each of these 32
cancer types could be divided into two clusters: Low CI or High
CI cluster (Figure S4). Furthermore, immune cell infiltration
was highly correlated with OS, PFI, or disease-specific survival
(DSS) in 11 cancer types including adrenocortical carcinoma
(ACC), cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), cholangiocarcinoma (CHOL), head
and neck squamous cell carcinoma (HNSC), liver hepatocellular
carcinoma (LIHC), LUAD, sarcoma (SARC), skin cutaneous
melanoma (SKCM), glioblastoma multiforme (GBM), brain
lower grade glioma (LGG), and uveal melanoma (UVM)
(Figure S5). High CI indicated better prognosis in ACC, CESC,
CHOL, HNSC, LIHC, LUAD, SARC, and SKCM (Figure S5A)
but worse prognosis in GBM, LGG, and UVM (Figure S5B).
In the other 22 cancer types, immune cell infiltration has
no correlation with cancer prognosis (data not shown in
Figure S5). Taken together, these results showed that immune
cell infiltration results in heterogeneous prognostic outcomes in
different cancer types.

The Prognostic Relevance of Distinct
Immune Cells Is Heterogeneous Across
Different Cancer Types
To further understand the relationship between immune cell
infiltration and tumor prognosis, the survival correlation of the
46 immune cells were analyzed in each cancer type. Overall, the
correlation between infiltrating immune cells and the prognosis
of cancer patients is consistent in OS, DSS, PFI, and disease-free
interval (DFI). However, only a few immune cells are associated
with DFI compared to OS, DSS, and PFI. Consistent with
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FIGURE 1 | Correlation of the immune cells across the pan-cancer cohort. After calculating the single-sample Gene Set Enrichment Analysis (ssGSEA) score

representing the immune cells in the pan-cancer cohort (9,112 patients), a Pearson’s correlation analysis between each immune cell was performed. The result was

visualized using the R package “corrplot.” The size of the sector area and the gradient of colors represented the correlation coefficient R. “×” means no statistical

significance (P > 0.05).

Figure S5, almost all the immune cell populations indicated a
good prognosis in ACC, BRCA, CESC, HNSC, LIHC, LUAD, and
SARC but a bad prognosis in GBM, LGG, and UVM (Figure 3).
Among those cancer types where immune cell infiltration is
associated with cancer prognosis, high B cell infiltration was
correlated with good prognosis in most cancer types, except
GBM, LGG, UVM, and kidney renal papillary cell carcinoma
(KIRP). In addition to LGG, UVM, KIRC, and KIRP, high
infiltration of T cells, CD8+ T cells, and active CD8+ T cells
(T.cell.CD8.a) indicated a favorable prognosis in other cancer
types. Infiltration of naive CD4+ T cells also led to a good
outcome in various cancers, whereas that of activated CD4+ T
cells (T.cell.CD4.a) indicated poor prognosis in most tumors.
High infiltration of Th17 cells was associated with good prognosis
in most cancer types, except for LGG and GBM, while that
of Th2 cells portended worse prognosis in almost all tumors.

In fact, the infiltration of all innate immunity-related cells,
such as NK cells, myeloid-derived suppressor cells (MDSCs),
macrophages, and DCs, was prognostically relevant in only a
few tumors and varied considerably. The infiltrating regulatory
T cells (Tregs) also showed a heterogeneous prognostic
performance across more than a dozen tumors. Neutrophils,
mast cells, and eosinophils were also related to the outcomes
of several tumors, and high neutrophil infiltration predicted
poor prognosis, whereas that of mast cells and eosinophils
indicated a good prognosis. Finally, a high density of cancer-
associated fibroblasts (CAFs) in the tumors was associated with
adverse clinical outcomes in most tumors, while endothelial cells
showed inconsistent prognostic performance across different
tumors. Taken together, the infiltration of immune cell
populations exhibited heterogeneous prognosis in different
cancer types.
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FIGURE 2 | Correlation between the immune cell infiltration and survival in the pan-cancer cohort. (A) Unsupervised clustering separates The Cancer Genome Atlas

(TCGA) pan-cancer cohort of 9,112 patients into two distinct immunophenotypes using the single-sample Gene Set Enrichment Analysis (ssGSEA) scores which

represent the 46-cell infiltration. “Red color cluster” represents “hot” tumors with more immune cell infiltration, “blue color cluster” represents “cold” tumors with less

immune cell infiltration. (B) Kaplan–Meier curves estimate the survival differences between the high cell infiltration cluster and the low cell infiltration cluster. Survival

differences between the two clusters were detected by both Cox regression and log-rank methods. OS, overall survival; DSS, disease-specific survival; PFI,

progression-free interval; DFI, disease-free interval.
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FIGURE 3 | The prognosis value of the infiltrating immune cells in each cancer type. The association between the infiltrating immune cells and the survival of tumor

patients was investigated using Cox regression and log-rank methods. The hazard ratio (HR) is <1.0, indicating a good effect on prognosis, and the HR value is

greater than 1.0, indicating an adverse effect on prognosis. Cox P is represented by the size of points, and log-rank P is represented by the gradient of colors. P <

0.05 was used as the cutoff for significance. OS, overall survival; DSS, disease-specific survival; PFI, progression-free interval; DFI, disease-free interval.

The Immune-Cell Characteristic Score
Model for Predicting Survival of Lung
Adenocarcinoma
Of the 46 tumor infiltration immune cell populations, 13 cell
populations including B cells (B.cells), activated B cells (B.cells.a),

immature B cells (B.cells.i), immature DCs (DCs.i), eosinophils,
mast cells (Mast.cells), granzyme K expressing CD4+ T cells
(T.cells.CD4.GZMK), granzyme K expressing CD8+ T cells
(T.cells.CD8.GZMK), mucosal-associated invariant CD8+ T cells
(T.cells.CD8.MAIT), naive CD8+ T cells (T.cells.CD8.naive),
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FIGURE 4 | Kaplan–Meier curves of the 13 infiltrating immune cells in LUAD. The association between the infiltrating immune cells and the overall survival of LUAD

patients was investigated using Cox regression and log-rank methods. Kaplan–Meier curves was drawn by the “survival” package based on R.

central memory T cells (T.cells.cm), follicular helper T cells
(T.cells.fh), and Type 2 T helper (Th2) cells (T.cells.h2) were
correlated with the OS of LUAD patients (Figure 4). High
infiltration of 12 immune cell populations indicated a favorable
prognosis (HR < 1, P < 0.05) and only high infiltration of the
Th2 cells indicated an unfavorable prognosis (HR > 1, P <

0.05) of LUAD patients (Figure 4). By using LASSO regression
analysis, six-cell populations including B cells, immature DCs,

eosinophils, mast cells, granzyme K expressing CD8+ T cells,
and Th2 cells were selected (Figures 5A,B). An ICCS model
based on the selected cell populations was then constructed by
calculating the ICCS of the patients, and the patients in each
dataset were classified into low- and high-ICCS groups based on
the median ICCS (Figure 5C). Heat map of the infiltration of the
immune cells showed that high infiltration of the five cells (B cells,
immature DCs, eosinophils, mast cells, granzyme K expressing
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FIGURE 5 | Identification of the immune-cell characteristic score (ICCS) and investigation of its prognostic value in lung adenocarcinoma (LUAD). (A) Cross-validation

for tuning parameter selection in the least absolute shrinkage and selection operator (LASSO) model. (B) LASSO coefficient profiles of 13 prognosis-related immune

cell populations. Variables whose LASSO coefficient is not equal to zero were used as candidate variables to construct the ICCS model. (C) The ICCS model classifies

patients into low-ICCS and high-ICCS groups. (D) Kaplan–Meier curves and time-dependent receiver operating characteristic (ROC) curves of the prognostic ICCS

model in the training set [The Cancer Genome Atlas (TCGA)]. The association between the ICCS and the survival of patients was investigated using Cox regression

and log-rank methods. (E) Kaplan–Meier curves and time-dependent ROC curves of the prognostic ICCS model in the validating set [three Gene Expression Omnibus

(GEO) datasets].
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TABLE 1 | Cox regression analysis of the ICCS, clinicopathological features, and overall survival of LUAD patients.

Variables Group Patients (N) Univariate analysis Patients (N) Multivariate analysis

HR (95% CI) P HR (95% CI) P

TCGA

ICCS Low/High 249/249 1.99 (1.47–2.70) 7.98E-06 244/244 1.97 (1.44–2.69) 2.31E-05

Age ≤60/>60 153/335 1.13 (0.82–1.56) 4.60E-01 153/335 1.21 (0.88–1.68) 2.43E-01

Gender Female/Male 268/230 1.04 (0.78–1.40) 7.70E-01 264/224 0.97 (0.72–1.31) 8.39E-01

Pathologic stage I/II 271/120 2.42 (1.68–3.48) 1.95E-06 264/118 2.16 (1.49–3.13) 5.23E-05

Pathologic stage I/III 271/81 3.58 (2.45–5.24) 4.83E-11 264/80 3.37 (2.29–4.94) 5.91E-10

Pathologic stage I/IV 271/26 3.83 (2.21–6.64) 1.82E-06 264/26 3.04 (1.73–5.35) 1.10E-04

GSE31210

ICCS Low/High 113/113 3.51 (1.59–7.73) 1.85E-03 113/113 3.09 (1.4–6.85) 5.38E-03

Age ≤60/>60 108/118 1.27 (0.65–2.48) 4.86E-01 108/118 1.44 (0.74–2.82) 2.87E-01

Gender Female/Male 121/105 1.52 (0.78–2.96) 2.19E-01 121/105 1.25 (0.64–2.45) 5.13E-01

Pathologic stage I/II 168/58 4.23 (2.17–8.24) 2.17E-05 168/58 3.78 (1.93–7.41) 1.09E-04

GSE37745

ICCS Low/High 53/53 2.20 (1.38–3.49) 8.45E-04 53/53 2.32 (1.4–3.85) 1.14E-03

Age ≤60/>60 46/60 1.22 (0.77–1.93) 3.98E-01 46/60 1.39 (0.86–2.24) 1.81E-01

Gender Female/Male 60/46 1.26 (0.80–1.97) 3.16E-01 60/46 1.04 (0.64–1.69) 8.66E-01

Pathologic stage I/II 70/19 1.47 (0.83–2.60) 1.84E-01 70/19 1.46 (0.83–2.60) 1.92E-01

Pathologic stage I/III 70/13 2.10 (1.11–3.99) 2.34E-02 70/13 1.94 (1.01–3.74) 4.62E-02

Pathologic stage I/IV 70/4 1.53 (0.47–4.93) 4.79E-01 70/4 0.86 (0.25–2.90) 8.06E-01

GSE50081

ICCS Low/High 64/64 3.00 (1.64–5.47) 3.47E-04 64/64 3.37 (1.83–6.18) 9.10E-05

Age ≤60/>60 19/109 1.50 (0.64–3.51) 3.54E-01 19/109 1.76 (0.74–4.16) 2.00E-01

Gender Female/Male 63/65 1.35 (0.78–2.34) 2.85E-01 63/65 1.57 (0.89–2.75) 1.16E-01

Pathologic stage I/II 92/36 2.53 (1.45–4.44) 1.16E-03 92/36 2.72 (1.55–4.77) 5.14E-04

HR, hazard ratio; CI, confidence interval; ICCS, immune-cell characteristic score; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas.

CD8+ T cells) was involved in the low-ICCS group, whereas high
infiltration of Th2 cells was involved in the high-ICCS group.
Furthermore, there are more dead patients in the high-ICCS
groups than in those in the low-ICCS groups (Figure 5C).

In the TCGA cohort, patients in the high-ICCS group had
significantly shorter OS, DSS, and PFI compared to those in the
low-ICCS group (Figure 5D). For the prediction of OS and DSS,
the 1–5-year AUC values of the ROC curve were higher than 0.6,
which showed a good survival prediction performance. For the
prediction of PFI, all the 1–5-year AUC values of the ROC curve
were lower than 0.6, which showed a limited survival prediction
performance (Figure 5D). To investigate the reliability of the
ICCS for prediction of OS of LUAD patients, the survival
prediction performance of the ICCS was validated on three
independent LUAD datasets from GEO (GSE31210, GSE37745,
and GSE50081). As shown in Figure 5E, high-ICCS patients
presenting significantly worse OS than low-ICCS patients (HR
> 1, Cox P < 0.05, log-rank P < 0.05) in all the three
datasets. Except for 1-year AUC values in GSE31210, the 1–5-
year AUC values of the ROC curve were higher than 0.6 in all
the three datasets. The 5-year AUC values were 0.722, 0.689,
and 0.717 in the GSE31210, GSE37745, and GSE50081 datasets,
respectively (Figure 5E). These data indicated that the ICCS
effectively predicted the OS of LUAD patients and showed a
reliable prediction performance across different LUAD datasets.

The Immune-Cell Characteristic Score Is
an Independent Prognostic Factor
To investigate the prognostic factor for LUAD patients, both
univariate and multivariate Cox analyses were carried out based
on the variables including the ICCS, age, gender, and pathologic
stage. As shown in Table 1, age and gender were not associated
with the OS of LUAD patients in all cohorts (P > 0.05). In the
TCGA cohort, both high ICCS and the pathologic stages II–IV
were identified as independent unfavorable prognostic factors
(HR > 1, P < 0.05). The association between the ICCS and
the OS was also confirmed in three GEO cohorts (HR > 1, P
< 0.05). Stage II was confirmed as an independent unfavorable
prognostic factor in GSE31210 and GSE50081 (HR > 1, P <

0.05), and stage III was confirmed as an independent unfavorable
prognostic factor in GSE37745 (HR > 1, P < 0.05).

In TGCA cohort, Kaplan–Meier curve showed that LUAD
patients at pathologic stages II–IV (Figure 6A) had similar OS
and DSS (log-rank P > 0.05), which were significantly shorter
compared to that of the stage I patients (log-rank P < 0.05;
Figure 6A). The time-dependent ROC curve showed that the
pathological stage achieved 5-year AUC values of 0.671 and
0.678 for OS and DSS, respectively (Figure 6A), indicating a
competent predictive performance. Finally, the patients were
stratified based on their pathological stage (I and II–IV) and then
further classified into the low-ICCS and high-ICCS groups. The
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FIGURE 6 | Stratification analysis on The Cancer Genome Atlas (TCGA) cohort based on immune-cell characteristic score (ICCS) and pathologic stage.

(A) Kaplan–Meier analysis and time-dependent receiver operating characteristic (ROC) curves show the prognostic values of the pathologic stage using the TCGA

cohort. (B) Kaplan–Meier analysis and time-dependent ROC curves present the prognostic values for patients grouped by combining the stage and the ICCS.

ICCS predicted the DSS (log-rank P = 1.3e−03) but not the
OS (log-rank P = 0.078) for patients in stage I (Figure 6B). In
addition, there were no significant differences in the OS (log-rank
P= 0.151) and DSS (log-rank P= 0.366) between the high-ICCS

patients in stage I and the low-ICCS patients in stage II–IV.
However, among the patients in stages II–IV, the high-ICCS
group showed significantly shorter OS (log-rank P = 4.68e−04)
and DSS (log-rank P = 0.01) compared to the low-ICCS group
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(Figure 6B). Taken together, the ICCS is independent of the
pathological stage for predicting OS and DSS in LUAD patients.

DISCUSSION

The TME is a complex ecosystem composed of malignant,
stromal, and immune cells. The tumor-infiltrating immune cells
are a critical player in tumor progression and immunotherapeutic
response (29). The composition of the tumor-infiltrating
population reflects the mechanisms underlying anticancer
immune responses and can help identify novel prognostic
signatures. Commonly used methods for identifying tumor
immune cell infiltration mainly rely on immunohistochemistry
(IHC) and flow cytometry. These methods are limited by many
factors, including the amount of tumor tissue required and
the number of cell types that can be measured simultaneously
(30). The computational method applied to the gene expression
profile of bulk tumors provides another option for evaluating the
immune status within tumor tissues (3, 31). The computational
method can also integrate multiple gene expression datasets for
analysis, providing the analysis results of a larger number of
samples. There are currently two commonly used computational
methods, one is ssGSEA, and the other is the deconvolution
method, such as CIBERSORT (31). The ssGSEA method ranks
marker genes by integrating the differences between the empirical
cumulative distribution of those genes based on their absolute
expression in a single sample and is widely used for sample
level enrichment analysis (16). CIBERSORT was originally
developed and verified using microarray data (32). This method
requires that the input data are Gaussian distribution, while the
unnormalized RNA-seq count is negative binomial distribution
(32). Therefore, when analyzing RNA sequencing data, it must
be converted into “microarray-like” data before it can be used for
subsequent analysis (33). However, ssGSEA does not require data
conversion when analyzing RNA sequencing data. Furthermore,
CIBERSORT can only estimate the proportion of 22 cell types,
while ssGSEA can estimate more cell types which are determined
based on the number of gene sets.

In this study, we collected gene sets that can represent immune
cells from six published articles (3, 22–26). Through correlation
analysis between immune cells and consistency analysis with
traditional markers, 46-cell gene sets were finally screened.
Subsequently, we used the ssGSEA to characterize and quantify
the tumor-infiltrating immune cells from their gene expression
data across multiple cancers. Among the 32 types of cancer,
9,112 individual tumor samples can be divided into two clusters:
High CI and Low CI phenotypes, which can be interpreted as
“hot” and “cold” tumors (34). High CI was associated with better
prognosis in ACC, CESC, CHOL, HNSC, LIHC, LUAD, SARC,
and SKCM and worse prognosis in GBM, LGG, and UVM,
indicating a heterogeneous prognostic outcome depending on
the cancer type. Interestingly, for patients with different grades
of gliomas (LGG and GBM), High CI is always associated with
a poor prognosis, indicating that the treatment of gliomas by
promoting the infiltration of immune cells may have the opposite
effect. In contrast, for “cold” tumors with little or no immune

cell infiltration that are usually correlated with a bad prognosis,
modifying a “cold” tumor into a “hot” tumor may sensitize the
patient to immunotherapy.

The TME harbors both immune-suppressive and activating
cells, and the tumor infiltrates are highly heterogeneous
depending on the specific cancer type or the tumor model. T-cell
infiltration is a reliable predictor of patient outcome and has
been implemented in treating various cancers (35). Studies have
confirmed the positive impact of T cells in tumor progression
(7), and their exclusion from the TME leads to immune privilege
(36). In the present study, we found that exclusion of CD8+

and CD4+ T cells were only associated with the prognosis of a
few tumors and showed inconsistent performance. Nevertheless,
the high infiltration of CD8+ T cells and active CD8+ T cells
indicated a good prognosis, suggesting a therapeutic advantage
of activating these cells in the TME. Immunosuppressive cells,
such as tumor-associated macrophages (TAMs) and MDSCs,
have a significant bearing on the survival of LUAD patients
(37, 38). We found that the infiltration of macrophages was
correlated to the survival of a few tumors, with an inconsistent
predictive performance for OS, DSS, and PFI. Th2 cells have
an immunoregulatory role in tumor growth and can induce
tumor cell necrosis by secreting type 2 cytokines within the TME
(39, 40). Furthermore, the Th2 inflammatory cytokine IL-33 is
associated with poor prognosis in lung cancer patients (41). In
this study, we found that although Th2 is only associated with the
prognosis of patients with ACC, kidney chromophobe (KICH),
KIRP, LUAD, and pancreatic adenocarcinoma (PAAD), it showed
an adverse prognostic factor in all these cancer types. B cells are
key players in the immune system that modulate T-cell responses
by providing antigens and secreting cytokines (42). In the
present study, high B-cell infiltration indicated a good prognosis
in most cancer types, except GBM, LGG, UVM, and KIRP.
Our results are consistent with previous evidence supporting
the role of tumor-infiltrating lymphocytes in mediating
immunotherapeutic responses.

Non-small-cell lung cancer (NSCLC) and melanoma are two
cancer types that respond to immunotherapy largely due to
the high mutation burden of these tumors (43), which have
been proposed to associate with tumor immune infiltration
(44). In the present study, we investigated the ssGSEA score
which represents the infiltrating immune cells in different
cancer types and found that most immune cells can obtain a
relatively high ssGSEA score in LUAD, indicating that LUAD
may be a “hot” tumor type. We also found that High CI
was associated with better OS and DSS in LUAD patients but
had no significant effect on PFI compared to Low CI. We
speculate that this is mainly because not all the cells show
a consistent prognostic correlation in the same cluster. Thus,
classifying patients into two immunophenotypic clusters may
not be the optimal prognostic tool. For instance, high Th2
cell infiltration was correlated with poor prognosis in LUAD
patients. This study is consistent with previously reported
results that high levels of Th2 cells are associated with poor
prognosis of clear cell renal cell carcinoma (30). In order to
better display the survival difference of patients with different
immune cell infiltration status, we established an ICCS model
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based on six survival-related immune cells. In the ICCS model,
high infiltration of B cells, immature DCs, eosinophils, mast
cells, granzyme K expressing CD8+ T cells were involved in
the low-ICCS group, corresponding to a favorable prognosis,
whereas high infiltration of Th2 cells was involved in the
high-ICCS group, corresponding to an unfavorable prognosis.
When regrouping with the ICCS, all of the OS, DSS, and PFI
showed differences between the low- and high-ICCS groups,
suggesting that ICCS is a better classification method than
unsupervised clustering. Because high infiltration of Th2 cells is
related to unfavorable prognosis, we suspect that blocking the
activation of Th2 cells might prolong the survival of high-ICCS
LUAD patients.

The pathological stage of the tumor is a traditional prognostic
factor for LUAD patients (45). In this study, we confirmed that
the advanced pathologic stages II, III, and IV were adverse
prognostic factors. However, patients with stages II, III, and
IV have no significant difference in survival, indicating that
the pathological stage has certain defects in predicting the
survival of LUAD patients. Due to the heterogeneity of TME,
the survival rate of tumor patients at the same pathologic stage
may be significantly different (46). By using the ICCS model,
patients divided into the high-ICCS group showed worse survival
compared to the low-ICCS group regardless of the tumor stage.
This could overcome the prognostic limitations of pathologic
stage and further stratified the stage I and stage II–IV patients
into the low- and high-ICCS groups. Furthermore, since the
ICCS is based on the infiltration of immune cells, the high-
ICCS patients may also benefit from treatments targeting certain
immune cells.

CONCLUSIONS

This study evaluated the landscape of intra-tumoral immune
cells in 32 cancer types and observed considerable heterogeneity
in the prognostic relevance of these tumor-infiltrating immune
cells in different cancer types. In LUAD, the infiltration of 12

immune cells was associated with a favorable prognosis and
that of Th2 cells with unfavorable outcomes. An ICCS model
was constructed, and the ICCS is an independent prognostic
factor of LUAD. The intra-tumoral immune cells can deepen our
understanding of the TME of LUAD and can have implications
for immunotherapy.
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