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Abstract
Rates of gain and feed efficiency are important traits in most breeding programs for growing farm animals. The rate of gain 
(GAIN) is usually expressed over a certain age period and feed efficiency is often expressed as residual feed intake (RFI), 
defined as observed feed intake (FI) minus expected feed intake based on live weight (WGT) and GAIN. However, the basic 
traits recorded are always WGT and FI and other traits are derived from these basic records. The aim of this study was to 
develop a procedure for simultaneous analysis of the basic records and then derive linear traits related to feed efficiency 
without retorting to any approximation. A bivariate longitudinal random regression model was employed on 13,791 
individual longitudinal records of WGT and FI from 2,827 bulls of six different beef breeds tested for their own performance 
in the period from 7 to 13 mo of age. Genetic and permanent environmental covariance functions for curves of WGT and 
FI were estimated using Gibbs sampling. Genetic and permanent covariance functions for curves of GAIN were estimated 
from the first derivative of the function for WGT and finally the covariance functions were extended to curves for RFI, based 
on the conditional distribution of FI given WGT and GAIN. Furthermore, the covariance functions were extended to include 
GAIN and RFI defined over different periods of the performance test. These periods included the whole test period as 
normally used when predicting breeding values for GAIN and RFI for beef bulls. Based on the presented method, breeding 
values and genetic parameters for derived traits such as GAIN and RFI defined longitudinally or integrated over (parts of) 
of the test period can be obtained from a joint analysis of the basic records. The resulting covariance functions for WGT, FI, 
GAIN, and RFI are usually singular but the method presented here does not suffer from the estimation problems associated 
with defining these traits individually before the genetic analysis. All the results are thus estimated simultaneously, and the 
set of parameters is consistent.
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Introduction
Traditionally breeding programs for beef cattle have focused 
on output traits such as weight, gain, meat content, and meat 

quality (Rolf et al., 2012). Increased focus on overall economic 
efficiency in the production system has increased the interest in 
input traits such as feed intake since feed comprises 60%–70% of 
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the production costs in a beef operation (Anderson et al., 2005). 
Selection for output traits such as weight and gain have had 
a positive effect on feed efficiency due to strong and positive 
phenotypic and genetic relationships between feed efficiency 
and these output traits (Arthur et  al., 2001). However, this 
indirect effect on feed efficiency is primarily due to reduced total 
maintenance requirements (Koch et al., 1963) that follows from 
faster growth (i.e., shorter time to slaughter weight) but probably 
only have a limited effect on the metabolic efficiency of growing 
cattle. Furthermore, selection for growth will lead to increased 
mature size and thus increased maintenance requirements for 
the cow herd (Archer et al., 1999).

Recent focus, therefore, has been on improving feed 
efficiency in growing beef cattle by focusing on the part of feed 
intake that is independent of weight and gain. This is usually 
called residual feed intake (RFI), which is defined as the feed 
intake expressed as a deviation from the expected feed intake 
based on weight and gain. This term was first introduced by 
Koch et al. (1963) and by definition it should be phenotypically 
independent of weight and gain. The trait is centered at zero 
and animals with lower RFI are the most efficient because their 
feed intake is lower than expected based on their production 
requirements. The use of RFI has advantages over the traditional 
use of feed efficiency as a ratio trait (feed intake over gain or its 
inverse) because it is a linear trait. Ratio traits are not easy to 
include in a breeding program due to poor statistical properties. 
In fact, genetic selection on a ratio trait may only affect one of 
the two parts of the ratio, and this part may not be constant over 
animals and time, which would reduce the selection efficiency 
(Gunsett, 1984; Campo and Rodríguez, 1990).

Several definitions of RFI can be derived as described 
in detail by Archer et  al. (1999), which all are based on the 
difference between observed feed intake and the expected feed 
requirements, given the maintenance and production of an 
animal. Differences in these definitions usually arise from the 
differences in recording periods and the method used to compute 
the expected intake. To compute the expected feed intake, either 
an approach using linear regression on (metabolic) body weight 
and gain (Koch et al., 1963) is used or the expected feed intake is 
computed from standard tables of feed requirement of growing 
cattle. The first approach will ensure that residual feed intake 
and the production traits body weight and gain is phenotypically 
independent of residual feed intake, whereas this might not be 
the case for the latter method because expected feed intake 
based on standard feeding tables often does not predict intake 
for individual animals very precisely. RFI is often defined as the 
residuals of a multiple regression model that accounts for weight 
and gain (Koch et al., 1963). As shown by Kennedy et al. (1993), 
joint selection on RFI and its component traits (e.g., weight 
and gain) based on selection index principles is equivalent to 
joint selection on feed intake and the component traits. As a 
result, computation of RFI, in a statistical sense, does not add 

extra information since it is a (linear) combination of other traits 
measured. However, it may lead to expressions of efficiency that 
are more easily understood and interpreted when comparing 
animals with different production potentials.

As indicated above, the primary records related to efficiency 
in growing beef cattle are feed intake (FI) and weight (WGT). 
From the weight records, average daily gain (ADG) in a period 
can be computed such that production can be expressed as 
WGT and ADG over a certain production period. Generally, ADG 
is defined as a function of WGT at different time points. Most 
studies on RFI have used a two-step procedure to compute RFI 
of individual animals. First, a regression procedure has been 
used to regress feed intake on weight and production (WGT 
and ADG) and the estimated regression coefficients are used 
to compute expected RFI as residuals from the regression 
model used.

In this study, a Bayesian analysis of records on WGT and FI is 
presented and the aim is to show that inference on derived traits 
such as ADG and different definitions of RFI can be obtained from 
analysis of the basic records. This avoids the analysis of derived 
traits as well as the use of a two-step procedure for computing 
RFI so that more consistent inference can be made. The method 
was previously applied for the estimation of genetic parameters 
for feed efficiency in pigs (Shirali et al., 2018), broiler chickens 
(Mebratie et al., 2019), and dairy cattle (Islam et al., 2020). Here, 
we illustrate the method with more theoretical background and 
apply it on data on growing beef bulls.

Material and Methods

Data

In Denmark, each of the individual beef breeds used to have 
their own breeding program (i.e., slightly different breeding 
goals per breed) and a central part of these programs was a 
common performance test station where potential breeding 
bulls were tested for growth and feed efficiency performance. 
Briefly, animals were brought to the test station around 6 mo 
of age and stayed on the test station until they reached the age 
of 13 mo. Animals were weighed at arrival to the test station 
and then weighed with intervals of approximately 28 d. Animals 
were fed with a total mixed ration and feed intake was measured 
daily using automatic feeding gates. Feed intake records were 
averaged over each weighing period so that each individual 
record consisted of average weight (WGT) and average daily feed 
intake in a period (DFI). In addition, age and day of test were 
known for each record. DFI were expressed in Scandinavian 
feed units (SFU) per day. One SFU is equivalent to the net energy 
content of 1 kg of barley (85% dry matter). The content of SFU per 
kg feed dry matter is calculated as

SFU = (1.43.DCP+ k.DCF+ 1.DCFi+ 1.DN)×
Å

V
0.75

ã

where DCP is the digestible crude protein percent of dry matter; 
DCF is the digestible crude fat percent of dry matter; DCFi is the 
digestible crude fiber percent of dry matter; DN is the digestible 
nitrogen-free extract, percent of dry matter, k being 2.41, 2.12, and 
1.91 for concentrates, grains, and roughages, respectively; and V is 
the value number (Refsgaard Andersen and Foldager, 1980).

Records were distributed on 2,827 animals that originated 
from six different breeds of beef cattle and were collected over 

Abbreviations

ADG  average daily gain
AWGT  average weight
DFI  daily feed intake
FI  feed intake
RFI  residual feed intake
TFI  total feed intake
TRFI  total residual feed intake
WGT  weight
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a period of 20 yr (1998–2017). After pre-processing of the raw 
dataset, a total of 13,791 periods remained for downstream 
analyses. On average, each animal had 5.6 periods recorded 
with a range from 3 for animals with records in progress to 9 
for animals having completed the test and no records edited. 
A summary of the data can be seen in Table 1. A total of 38,005 
animals from six different beef breeds were included in the 
pedigree file, with 12,914 sires and 22,314 dams. Pedigree records 
were available for up to nine generations.

Statistical models

The longitudinal data were analyzed using bivariate random 
regression models by the use of the DMU software package 
(Madsen and Jensen, 2013). The analysis model used for each 
trait (WGT and DFI) was

yijkl = ysi + breedj + bj(agek) + lq1(t)
′rj + lq2(t)

′ak + lq2(t)
′pk + eijkl

 (1)

where yijkl is a record in period l, from animal k belonging to breed 
j which arrived to the test station in year-season i, at an age at 
arrival to the central test station of (agek). In the model, ysi is the 
effect of year season i, breedj is the effect of breed j, bj is the linear 
regression on age at arrival to the test station for breed j, lq1(t) is 
a vector-valued function that yields the vector of standardized 
Legendre polynomial coefficients of order q (i.e., the function 
returns q+ 1 elements), rj is the vector of regression coefficients 
on Legendre polynomials for breed j, ak is a vector of order q2 + 1 
of random additive genetic effects of animal k, pk is a vector of 
length q2 + 1 of random permanent environmental effects of 
animal k, and eijkl is a residual measurement error. Covariance 
parameters to be estimated were as follows: G, a matrix of genetic 
co-variances with dimension 2(q2 + 1); C, a matrix of permanent 
environmental co-variances of dimension 2(q2 + 1); and Et, a 
2× 2 co-variance matrix of residual measurement error which 
was assumed to be heterogeneous with a different variance for 
each month on test resulting in six classes of residual variance. 
Co-variances between additive genetic effects were considered 
using the relationship matrix A. In model (1), lq2(t) was a vector-
valued function of Legendre polynomials of order q evaluated 
at a standardized day of test t. If q = 0, the model reduced to a 
traditional linear repeatability model with no random regressions. 
A different order of fit was used in different parts of the model 
as indicated by q1 and q2. After initial univariate analysis using 
REML, q1 was chosen to be 5 and q2 was chosen to be 3 based 
on likelihood ratio tests with the proper degrees of freedom. 
The same order of fit (q2)was used for both the random effects 
of animal additive genetic and permanent environmental effects. 
All results presented were estimated in bivariate models with a 

Bayesian approach using Gibbs sampling. The model assumed 
flat priors for all dispersion parameters as well as location 
parameters associated with year-season, breed, and age at arrival 
to the station and breed-specific Legendre polynomials. The 
Gibbs sampler was run for 600,000 rounds, with the first 50,000 
rounds considered as burn-in and from the remaining, and every 
200th sample was saved for posterior analysis. The large number 
of samples was necessary due to the highly parameterized 
structure of the model. Convergence of the posterior distributions 
was assessed and confirmed by several diagnostic tests (e.g., 
Heidelberger and Welch’s convergence diagnostic) implemented 
in the R package CODA (Plummer et al., 2006).

Derivation of (co)variances for observed and 
derived traits

Since model (1) is a random regression model, the functions lq2(t) 
contain coefficients of Legendre polynomial for the test day t. 

Let at =

Ç
aWGT(t)

aDFI(t)

å
= l(t)

′
Ç
ak(WGT)

ak(DFI)

å
 be a 2× 1 vector of breeding 

values for WGT and DFI on test day t, where ak(WGT) and ak(DFI) are 
the vectors of additive genetic values for animal k from the sub-
models in (1) for the traits WGT and DFI, respectively. Note that 
aWGT(t) and aDFI(t) are scalars but dependent on t, whereas ak(WGT) 
and ak(DFI) are vectors of length (q2 + 1) that are not dependent on 
t. Then, the final matrix containing the genetic (co)variances of 
WGT and DFI for the test day t can be obtained as

var(at) = l(t)
′
Gl(t) (2)

where l(t) =

Ç
lq2(t) 0
0 lq2(t)

å
 is the covariance function for at, 

which is clearly a function of t. Similarly, the variance due to 

permanent environmental effects is var(pt) = l(t)′Cl(t) and the 
variances due to measurement errors were var(et) = Et. The 
phenotypic variance is thus var(yt) = Pt = var(at) + var(pt) + var(et).  
Standard population parameters such as heritability, 
repeatability, phenotypic, genetic, and residual correlations 
can be computed using the covariance functions and all these 
parameters are of course functions of t.

Based on the covariance functions defined by equation 2, we 
can derive new functions for other traits or aspects of the curves 
defined by model (1). Derivations are only shown for additive 
breeding value but the derivations of the other components 
of the phenotype (e.g., permanent environmental effect) are 
similar. The additive genetic value for deviation for gain on test 
day t can be computed as

Table 1. Summary statistics of the data per breed

Breed Animals Periods

WGT1 DFI2

Mean ± SD Min Max Mean ± SD Min Max

Simmental 573 3181 571.92 ± 98 292 874 10.33 ± 2.0 2.27 16.10
Angus 246 1367 512.23 ± 90 271 774 9.77 ± 1.8 2.01 13.90
Herford 287 1621 492.00 ± 85 206 745 9.00 ± 1.6 1.95 13.46
Blonde d’Aquitaine 179 1017 520.40 ± 94 267 800 8.40 ± 1.6 1.06 12.45
Charolais 209 1177 542.23 ± 92 300 792 9.00 ± 1.7 2.06 13.60
Limousin 983 5428 487.60 ± 82 266 778 8.23 ± 1.5 2.23 14.40
Total 2477 13791       

1Weight records per breed.
2Daily feed intake per breed.
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aG[t] =
∂lq2(t)
∂t

ak(WGT) (3)

Note that the derivative with respect to the measurement 
error is constant and is unity since the measurement errors 
in (1) do not depend on t. This means that heritability of G is 
not influenced by the day-specific measurement error variance 
corresponding to G being estimated by a function defined in the 
same class of residual variance. However, if gain is derived over 
a period involving different periods of residual variances, then 
the residuals are not constant.

Alternatively, the derivative expressing additive breeding 
value for gain on test day t can be approximated as

aG[t] ≈
(
lq2 (t+ 1)− lq2 (t)

)′

ak(WGT) (4)

The additive genetic value for average daily gain over a 
period (e.g., t1 to tn) can be computed as

aADG[t1,tn] =
1

(tn − t1)
(lq2(tn)− lq2(t1))

′
ak(WGT) (5)

Again, this is a linear function of model parameters and 
therefore phenotypic variance and all variance components 
can easily be computed using equation 2 as a quadratic in the 
linear form used to compute the additive breeding value. Note 
that using equation 4 for gain, phenotypic variance depends on 
the residual variance associated with the time steps considered, 
while in equation 3 that is not the case.

Residual feed intake was defined as the actual feed intake 
corrected for expenditure due to maintenance and gain. 
Following Kennedy et  al. (1993), this can be derived from 
parameters of the model for the basic recorded traits as

RFIt = DFIt − b1.WGTt − b2.GAINt (6)

where b1and b2 are partial phenotypic regression coefficients. 
Based on the derivations above, we can compute the phenotypic 
covariance matrix Pt for WGT, FI, and GAIN at time t. Based on 
this covariance matrix, the partial regression coefficients b1and 
b2 in equation 6 can be computed using standard multivariate 
theory as used in equation 2.  The regression coefficients in 
equation 6 therefore also become functions of time and thus 
can be denoted as b1(t) and b2(t).

Additive genetic values for RFI can be computed as 

aR(t) = aF(t) −
Ç
b1(t)
b2(t)

å′Ç
aWGT(t)

aDFI(t)

å
. This is again a linear function 

of model parameters and thus variance of ak(R) as well as all 
co-variances with any other model parameter can be computed 
in the usual way similar to equation 2.  Clearly aR(t) is the 
breeding value for feed intake corrected for additive genetic 
breeding values for weight and gain.

In the derivation above, RFI was defined on a per day basis. 
Alternatively, RFI can be defined as total residual feed intake 
(TRFI) over a longer period of the test period including the whole 
test period. In this case, the following model will be used:

TRFI = TFI− b1.AWGT− b2.ADG (7)

where TRFI is the residual feed intake, TFI is the total feed 
intake, AWGT is the average body weight, and ADG is the average 
daily gain over the chosen test period. This definition depends 
on the start and end of the chosen test period (e.g., t1 and tn), but 

these subscripts were dropped from equation 7 for simplicity. 
The regression coefficients in equation 7 therefore must be 
computed from the covariance matrix pertaining to the period 
chosen. Again, a linear function for the elements in equation 7 
and the computation of the corresponding covariance matrices 
are straightforward.

Feed intake was measured as average daily feed intake 
between consecutive weighing dates. Additive genetic values 
for total feed intake (TFI) over the test period (e.g., t1 to tn) can 
be computed as

aTFI[t1,tn]] =
tn∑
t1

lq2(t)ak(DFI) (8)

The additive genetic value for average weight (AWGT) in a 
period can be computed as

aAWGT[t1,tn] =
1
2
[lq2 (t1) + lq2(tn)]

′
ak(WGT)

and the gain in a period chosen can be computed using (5).
Based on this, we can compute phenotypic as well as all 

other covariances for AWGT, ADG, and TFI in a chosen period. 
Subsequently, we can define RFI for any part of the test period 
including the total test period in the same way as in equation 2.

In the results section, it is chosen to compute accumulated 
RFI for all periods starting from t1 = 1 and for each day until end 
of the test. In this way, TRFI becomes a function of t1 and final 
day of the chosen part of the test period. This then includes the 
whole test period and results accumulated to all possible parts 
of the test period when each part always starts with t1 = 1.

Results

Observed daily traits

Estimates of heritability for WGT and DFI together with posterior 
standard deviations (PSDs) are shown in Figure 1. The estimates of 
heritability for WGT were fairly constant around 0.6 over the test 
period. For DFI, the heritability was low at around 0.3 early in the 
test and increased gradually to 0.4 at the middle of the test period. 
The low heritability of DFI early in the test is probably related to 
animals adapting to the feed and environment at the test station. 
The functions for heritability were not continuous due to the 
heterogeneous residual variance assumed in the model.

The genetic correlation (rg) between WGT and DFI on the first, 
middle, and end test days (i.e., 225, 300, and 391 d of age) with 
all other days on days for the same traits is shown in Figure 2. 
For weight, estimates of rg among all days on test were high. This 
is in part due to the part-whole relationships. As the animal is 
growing, earlier weight is also part of the weight of animal later in 
the test period. For DFI, the situation was quite different and the 
estimates of rg between DFI at the beginning of test and remaining 
days quickly dropped to zero and stayed at that level for the rest 
of the performance test period. This clearly shows that DFI early 
in the test cannot be used to predict genetic merit for feed intake 
later in the test period. The estimates of rgbetween DFI at the end 
test day with all other days on test was in opposite direction of 
trend of test day 1 (age = 225) as expected.

Derived daily traits

Computation of RFI involves the partial regression coefficients 
on WGT and gain (GAIN) for a particular test day. Gain was 
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computed as the first derivative of the regression function for 
WGT. Based on this derivative, then covariance among WGT, 
GAIN, and DFI was computed for each test day. This allowed 
computing the partial regression of DFI on WGT and GAIN. 
Note that it is possible to obtain both genetic and phenotypic 
partial regressions depending on which covariance matrix 
(phenotypic or genetic) is used; as a result, it is possible to 
compute genetic RFI as defined by Kennedy et  al. (1993) or 
RFI on the phenotypic level defined by Koch et  al. (1963). 
In estimation of breeding values, using genetic partial 
regressions makes most sense, but in the characterization of 
the derived traits, phenotypic partial regression coefficients 
are more relevant. In the results below, for both derived traits 
(daily and accumulated), phenotypic partial regressions were 
computed.

In Figure 3a, the phenotypic partial regressions of DFI on WGT 
and GAIN are shown as a function of age. The partial regression 
of DFI on WGT which indicates maintenance requirement per 
kg of body weight was almost constant at 0.012 SFU/kg WGT 
changes over the whole test period. This figure agrees well with 

table values of energy requirement for maintenance of growing 
bulls (Refsgaard Andersen and Foldager, 1980). Similarly, the 
partial regression of DFI on GAIN is also shown in Figure 3b. The 
amount of change in DFI due to 1-kg change in GAIN was low 
early in the test but increased close to 2 SFU/kg GAIN which 
gradually decreased for the remainder of the test.

RFI is often defined as the residuals of a multiple regression 
model that accounts for weight and gain (Koch et al., 1963). From 
this definition, variation in RFI is the part of variance in DFI that 
is not explained by variation in WGT and GAIN. Ratio of residual 
feed intake (RFI, SFU/d) variance to daily feed intake (DFI, SFU/d) 
variance over the test period (225–391 d of age) is shown in  
Figure 4. Very early in the test most variance in DFI was 
independent of variation in WGT and GAIN but after 
approximately 60 d on test (age of 285 d) about 0.60 of the 
variance in DFI could be explained by WGT and GAIN, and 
this level was maintained for the remainder of the test period. 
The variance not explained by WGT and GAIN is the variance 
in RFI, and the results clearly show that there is considerable 
phenotypic variation in RFI, i.e., in efficiency.

Figure 1. Posterior means (±PSD) of heritabilities (h2) of weight (WGT, kg) and daily feed intake (DFI, SFU/day) over the test period (225–391 d of age).

Figure 2. Posterior means (±PSD) of genetic correlations of weight (WGT, kg) and daily feed intake (DFI, SFU/d) at 225, 300, and 391 d of age with all other ages (225–391 

d of age).
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The genetic parameters for the derived traits GAIN and 
RFI (Figure 5) were computed based on equation 6 and using 
phenotypic partial regression coefficients. Heritability for GAIN 
was around 0.4 early in the test and gradually increased to 0.5 in 
middle of the test period (age of 300 d). For RFI, the heritability 
estimates were constant around 0.5 for the whole test period. 
Note that in this context heritability is for traits expressed on 
daily basis.

The estimates of rg between derived traits expressed at start 
(age = 225 d), middle (age = 300 d), and end of the test (age = 391 
d) with all other days on test are shown in Figure 6. For GAIN, the 
estimates of rg of the first day of test dropped gradually to below 
zero at the end of the test period. Genetic correlation of the last 
day on test was in opposite direction and gradually increased 
over the test period. For the middle test day (age = 300 d), the 
genetic correlation was quite high (> 0.8) during the first and 

middle test periods and gradually decreases to 0.4 at the end of 
the test period.

For RFI, the estimate of rg of the first test day (age = 225 d) with 
all following days on test dropped to below zero in the middle of 
the test period and increased back to zero for the remainder of 
the test. The estimates of rg of the last test day (age = 391 d) and 
all other days gradually increased over the test period.

Derived accumulated traits

Based on the estimated covariance functions, many other 
derived traits can be defined as linear functions of the 
parameters in model (1). The choice here are the average weight 
(AWGT, equation 9), total feed intake (TFI, equation 8), average 
daily gain (ADG, equation 5), and total residual feed intake (TRFI, 
equation 7)  defined from start day on test and computed by 
using the same principles as for the daily derived traits. Note 
that derived accumulated traits were computed from start day 
of the test (age  =  225 d) and each subsequent test day up to 
the end of the test period (age = 391 d). This is different from 
daily derived traits that were defined on a per day basis. As an 
example, AWGT is defined as average weight from 225 d of age to 
the next day of age and up to the end age. For the results below, 
it was chosen to compute accumulated traits for all periods 
starting from t1 = 1 and each subsequent test day up to the end 
of the test.

Heritability of the derived accumulated traits AWGT and TFI 
is shown in Figure 7a and b. The heritability for AWGT was fairly 
constant around 0.6 either in short test interval (e.g., t1 = 1 to 
tn = 25) or extended days on test interval (e.g., t1 = 1 to tn = 157).  
The same trend was observed for TFI with heritability around 
0.4 early in the test and was constant by extending the length 
of the test interval to the end of the test period. Note that due 
to the definition of daily and accumulated traits, the starting 
points for the curves for heritability and genetic correlation are 
identical because an accumulated period of 1 d is the same as 
the first daily trait.

The estimates of rgbetween AWGT and TFI at the start, 
middle, and end days on test and all other days on test are 
shown in Figure 7c and d. For AWGT, the estimates of rg at the 
start and following days in the test period were very high and 
close to unity. For the middle and end test days, the estimate of 

Figure 4. Ratio of residual feed intake (RFI, SFU/d) variance to daily feed intake 

(DFI, SFU/d) variance over the test period (225–391 d of age).

Figure 3. Phenotypic partial regressions of daily feed intake (DFI) in Scandinavian feed unit (SFU) on weight (WGT, kg) and gain (GAIN, kg/d) as a function of age (225–391 

d of age).
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rg of AWGT and all other days on test were also quite high. The 
estimates of rg for TFI of the first test day and following days 
decreased gradually during the test period and the estimate of 
rg was around 0.4 at the end of the test.

The selected population parameters for derived accumulated 
traits of ADG and TRFI are shown in Figure 8. Heritability for 
ADG is around 0.4 in the whole period with a slight increase 
at the end of the test period. Similar to RFI in daily basis, the 
heritability estimates for TRFI were around 0.5 in the early part 
of the test period and when the test period was increased until 
1 yr of age.

The estimates of rg between ADG and TRFI at the start, 
middle, and end test days and all other days on the test are 
shown in Figure 8c and d. The estimate of rg between ADG early 
in the test and ADG in increasingly long test periods was high 
but gradually dropped around 0.4 considering cumulative all test 
period. For TRFI, the rg between the first test day and following 
days steadily dropped over the test period to an estimate of rg 
of 0.4 between very short test periods and the full length of the 
test period used.

Discussion
Feed represents the largest input cost in beef production. 
Several studies have confirmed that feed intake is a heritable 
and considerable genetic variation that exists in feed efficiency 
both within and across breeds of beef cattle (Fan et  al., 1995; 
Herd and Bishop, 2000; Arthur et al., 2001; Schenkel et al., 2004; 
Nkrumah et al., 2007; Rolfe et al., 2011; Retallick et al., 2017). All 
these studies have estimated the heritability of feed intake in 
the growing animal and estimates are in a moderate range of 
0.25 and 0.44. Heritability estimates for feed intake vary between 
studies depending upon breed, method used for measuring feed 
intake, population, and other environmental factors. In the 
current study, observed traits for FI (DFI) had lower heritabilities 
at early ages and moderate to high heritabilities in later ages, 
with a range from 0.28 to 0.41 (Figure 1). For derived traits of FI 
including RFI, TFI, and TRFI, the estimates of heritability were 
high (0.4–0.5) over the test period and the trend of heritability 
changes was similar for both derived daily and accumulated 
FI traits.

Figure 5. Posterior means (±PSD) of heritabilities (h2) of gain (GAIN, kg/d) and residual feed intake (RFI, SFU/d) over the test period (225–391 d of age).

Figure 6. The posterior means (±PSD) of genetic correlations of gain (GAIN, kg/d) and residual feed intake (RFI, SFU/d) at 225, 300, and 391 d of age with all other ages 

(225–391 d of age).
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In this study, WGT was the basic record from which related 
derived traits such as GAIN, ADG, and AWGT could be obtained. 
Among weight traits, weight gain (e.g., GAIN and ADG) is of 
great interest owing to its economic importance which not 
only influences productive efficiency of desirable beef but also 
affects feed requirements in growing animals (Koch et al., 1963). 
Like feed intake, numerous studies have reported that growth is 
also a heritable trait in both dairy and beef cattle (Jensen et al., 
1992; Archer et  al., 1999; Herd and Bishop, 2000; Albuquerque 
and Meyer, 2001; Arango et al., 2004; Meyer, 2005; Bouquet et al., 
2010; Rolfe et  al., 2011; Baldi et  al., 2012). Our estimates for 
trends of changing in heritability of WGT, ADG, and AWGT were 
all similar and in a range of 0.4–0.6 over the test period. These 
estimates are in agreement with the reported values of 0.26 and 
0.62 by Rolfe et al. (2011) and Baldi et al. (2012), respectively.

Generally, the rg between weight traits early in the test and 
end of the test period was high in a range of 0.8–1. This positive 
and close to unity estimate of rg for weight traits at different 
ages suggests that animals with high body weight at early ages 
also tend to have higher than average body weight at the end of 
the growth trajectory. Similar results in terms of magnitude of 
genetic correlations have been reported in other studies (e.g., 
Nobre et al., 2003; Englishby et al., 2016).

Contrary to weight and growth traits, feed efficiency traits 
had a wide range of estimates of rg (−0.2–1.0) over the test 
period and the genetic correlations consistently decreased with 

increasing age intervals. From the breeding perspective, this 
clearly shows that DFI or RFI early in the test cannot be used 
to predict genetic merit for feed intake later in the test period. 
Furthermore, the estimate of rgbetween RFI in the middle 
of the test period (age  =  300 d) with the start and end of the 
test was also moderate, indicating that decreasing length of 
the test period is not beneficial. Derived cumulative traits for 
feed efficiency (i.e., TFI and TRFI) also had a decreasing trend 
in estimates of rg between early and late test periods. However, 
for these traits, the estimates of rg between 300 d of age (middle 
test) with other ages were relatively high, and the selection of 
animals based on the breeding value of cumulative feed intake 
traits up to this age may not render the overall genetic gain.

In the results section, the estimates of rg among days on 
test within each trait are presented. However, based on the 
covariance matrix and the partial regression coefficients in 
equations 6 and 7, obtaining the genetic correlations among 
observed and derived traits (e.g., rg between RFI and GAIN for 
different or same days on test) is straightforward. The rg among 
feed efficiency and production traits are among important 
genetic parameters being estimated in the literature (see review 
by Berry and Crowley, 2013; Kenny et al., 2018).

Since the proposal of RFI as a prominent trait of interest 
for assessment of feed efficiency by Koch et al. (1963), several 
studies have further developed the methodology of RFI or 
the relationships between its components. The conventional 

Figure 7. Posterior means (±PSD) of heritabilities for accumulated observed traits (AWGT, kg/d; TFI, SFU/d) over the test period (225–391 d of age) (a and b). Posterior 

means (±PSD) of genetic correlations for accumulated observed traits (AWGT, TFI) at 225, 300, and 391 d of age with all other ages (c and d). AWGT, average weight; TFI, 

total feed intake.
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method for the calculation of RFI faces some limitations. 
For instance, the calculation methods are based on linear 
regression, which may not account for all environmental 
factors affecting RFI. Moreover, RFI are calculated based on 
summarized energy sink traits (e.g., ADG), which cannot 
explain the possible variances of calculated RFI over time 
periods. As a result, it has been suggested to analyze RFI 
as a longitudinal trait in the context of random regression 
models which have the advantages such as better definition of 
contemporary groups and better adjustment for environmental 
effects (Jensen, 2001). The first applications of this model for 
feed intake and growth were made by Andersen and Pedersen 
(1996). They used polynomial models with random regression 
coefficients to describe cumulated feed intake and gain as 
a function of number of days on test for gilts and castrated 
male pigs. More recently, Strathe et al. (2014) proposed a RFI 
derived from a bivariate random regression model for body 
weight and cumulative feed intake in pigs. Lu et  al. (2015) 
used a multi-trait modeling strategy that exploits a Cholesky 
decomposition to provide a potentially more robust measure 
of feed efficiency when data on some of the feed efficiency 
component traits are missing. Shirali et al. (2017) presented a 
Horizontal model for multi-trait random regression analysis 
of longitudinal traits (feed intake) with single recorded traits 
of average daily gain and lean meat percentage. The one-step 
method presented here is an additional step on the way to 

improve modeling of feed efficiency in different livestock 
species.

In this study, a Bayesian analysis of records on WGT and 
DFI was presented, and the aim was to show that inference 
on derived traits such as ADG and different definitions of RFI 
can be obtained from analysis of the basic records. This avoids 
the analysis of derived traits and avoids the use of a two-step 
procedure for computing derived traits such as RFI so that more 
consistent inference can be made. In the classical two-step 
procedure, first feed intake and production traits (or any other 
energy sink trait) are analyzed in a multiple linear regression 
analysis and regression coefficients are obtained before genetic 
analysis of the derived RFI. In the next step, RFI for each 
animal is computed using regression coefficients from the 
first step and then genetic analysis is performed together with 
production or body composition traits. In these procedures, 
the resulting covariance functions of RFI and production traits 
are usually singular because RFI is defined before genetic 
analysis as a linear combination of the other traits. However, in 
the proposed one-step procedure, the partial phenotypic and 
genetic regression coefficients are estimated from co(variance) 
matrices of feed intake and production traits in a multi-trait 
analysis, and then derived traits (e.g., phenotypic and genetic 
RFI) could be derived within the model simultaneously. In 
addition, the one-step approach properly accounts for errors 
in the estimation of regression coefficients as compared to 

Figure 8. Posterior means (±PSD) of heritabilities for derived accumulated traits (ADG, kg/d; TRFI, SFU/d) over the test period (225–391 d of age) (a and b). Posterior 

means (±PSD) of genetic correlations for derived accumulated traits (ADG, TRFI) at 225, 300, and 391 d of age with all other ages (c and d). ADG, average daily gain; TRFI, 

total residual feed intake.
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the classical two-step approach of Kennedy et al. (1993), which 
assumes co(variance) matrices of component traits of RFI to be 
known without error and that of Koch et  al. (1963). Also, the 
one-step procedure in the Bayesian analysis avoids singularity 
of the co(variance) matrices by simultaneously estimating 
the co(variance) functions of RFI based on the conditional 
distribution of feed intake, given the production and other 
energy sink traits. Furthermore, estimation of the parameters in 
the regression analysis by the proposed one-step procedure is 
not biased by including fixed effects in the model, or by effects 
due to genetic trends for component traits in the population 
under investigation.

The method presented here has been applied for the 
estimation of genetic parameters and prediction of response to 
selection for linear or ratio expressions of feed efficiency in pigs 
by Shirali et al. (2018). Mebratie et al. (2019) used this approach 
for the simultaneous estimation of genetic parameters for 
production and feed efficiency traits for male and female 
broiler chickens using a multi-trait Bayesian analysis. In dairy 
cattle, Islam et al. (2020) used a Bayesian multivariate random 
regression to analyze dry matter intake, energy-corrected milk, 
body weight, and body condition score and derived a genetic RFI 
from it.

Conclusions
A one-step method for the simultaneous analysis of the basic 
records and derived traits related to weight and feed intake in 
growing bulls was presented. We showed that breeding values 
and genetic parameters for derived traits (e.g., RFI) defined either 
longitudinally or integrated over (parts of) of the test period can 
be obtained from a joint analysis of the basic records using a 
Bayesian framework. The method avoids the use of a two-step 
procedure to obtain the regression coefficients needed for 
computing RFI so that more consistent inference can be made. 
For the beef dataset analyzed, estimates of heritabilities for both 
weight and feed efficiency traits indicated ample potential for 
improvement by selecting bulls that are genetically superior.
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