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Circuit Depth Reduction for Gate-
Model Quantum Computers
Laszlo Gyongyosi1,2,3 ✉ & Sandor Imre2

Quantum computers utilize the fundamentals of quantum mechanics to solve computational problems 
more efficiently than traditional computers. Gate-model quantum computers are fundamental to 
implement near-term quantum computer architectures and quantum devices. Here, a quantum 
algorithm is defined for the circuit depth reduction of gate-model quantum computers. The proposed 
solution evaluates the reduced time complexity equivalent of a reference quantum circuit. We prove 
the complexity of the quantum algorithm and the achievable reduction in circuit depth. The method 
provides a tractable solution to reduce the time complexity and physical layer costs of quantum 
computers.

Gate-model quantum computers are realized by unitary operators (quantum gates) and quantum states1–29. As the 
technological limits of current semiconductor technologies will be reached within the next few years30–40, funda-
mentally different solutions provided by quantum technologies will be significant in the experimental realization 
of future computations15–18,31,32,41–72. A quantum computer is set up with a quantum gate structure, that is, via a set 
of unitary operators. These quantum gates can realize different quantum operations and can be defined on different 
numbers of input quantum states15–18,41–43,45,52,53. In a quantum computer environment, the depth of the quantum 
gate structure refers to the number of time steps (time complexity) required for the quantum operations making up 
the circuit to run on the quantum hardware15–18,41–43,45,52–59. A crucial problem here is the time complexity reduction 
of the quantum gate structure of the quantum computer. Practically, this problem is such that an equivalent quantum 
state of the output quantum state of the original the reference quantum circuit (e.g., non-reduced time complexity 
circuit) can be obtained using a reduced time complexity quantum gate structure. Particularly, currently there exists 
no plausible and implementable solution for the time complexity reduction of quantum computers. Gate-model 
quantum computer implementations are affected by the problem of high time complexities and a universal (i.e., 
platform independent) and tractable solution for the time complexity reduction is essential. Relevant implication of 
this problem is the high economic cost of the physical apparatuses required for experimentally implementing prac-
tical quantum computation: specifically, the high economic cost of the high-precision quantum hardware elements 
required in the implementation of high-performance quantum circuits.

The quantum circuit of the quantum computer is modeled as an arbitrary quantum circuit with an arbitrary 
circuit depth formulated via a unitary sequence of L unitary operators. Each unitary is set via a particular Pauli 
operator and gate parameter (see also Section 2 for a detailed description). The input problem fed into the quan-
tum computer is an arbitrary computational problem P with an objective function C. The C objective function is 
a subject of maximization via the quantum computer, i.e., via the unitaries of the circuit structure of the quantum 
computer. The objective function can model arbitrary combinatorial optimization problems9,10,42, large-scale pro-
gramming problems10 such as the graph coloring problem, molecular conformation problem, job-shop schedul-
ing problem, manufacturing cell formation problem, or the vehicle routing problem10. For a detailed description 
of input problems, we suggest2–4,8–10,42–45.

Another important application of gate-model quantum computations is the near-term quantum devices of the 
quantum Internet20,30,36–39,46–49,59,61,62,73–93.

Here, we define a quantum algorithm for the time complexity reduction of any quantum circuit of quantum 
computers set up with an arbitrary number of unitary gates. The aim of the proposed framework is to reduce the 
time complexity of an arbitrary reference quantum circuit and a maximization of the objective function of the 
computational problem fed into the quantum computer. The method defines the reduced time complexity equiv-
alent of the reference quantum circuit and recovers the reference output quantum state via the reduced time com-
plexity quantum circuit (Note: the terminology of quantum state refers to an input or output quantum system, 
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while the terminology of quantum gate refers to a unitary operator.). The reduced structures are determined via 
a pre-processing phase in the logical layer, and only the reduced time complexity quantum circuit and reduced 
quantum state are implemented in the physical layer. The pre-rocessing phase integrates a machine learning94–97 
unit for the parameter optimization. The high complexity reference quantum circuit and reference quantum input 
are characterized only in the pre-processing phase without any physical level implementation. The framework 
applies a quantum algorithm on the output of the reduced quantum gate structure to recover the equivalent quan-
tum state of the output quantum state of the non-reduced reference structure. In particular, the proposed frame-
work and the defined quantum algorithm are universal since they have no requirements for the structure of the 
reference (e.g., non-reduced) quantum circuit subject to be reduced, for the number of unitaries in the reference 
structure, for the size of the input quantum state of the reference quantum circuit, nor for the dimensions of the 
actual quantum state. The quantum algorithm is defined as a fixed, auxiliary hardware component for an arbitrary 
quantum computer environment, with a pre-determined constant computational complexity as an auxiliary cost 
of the application of the algorithm. Specifically, we prove that the auxiliary cost of the proposed quantum algo-
rithm is orders lower than the reachable amount of the reduction in time complexity, and the computational cost 
of the quantum algorithm becomes negligible in practice. The method also allows significantly reducing the eco-
nomic cost of physical layer implementations, since the required elements and high-cost hardware components 
can be reduced in an experimental setting.

The novel contributions of our manuscript are as follows:

	 1.	 We define a quantum algorithm for circuit depth reduction of quantum circuits of gate-model quantum 
computers.

	 2.	 We define the computational cost of the proposed quantum algorithm and prove that it is significantly 
lower than the gainable reduction in time complexity.

	 3.	 The algorithm provides a tractable solution to reduce circuit depth and the economic cost of implementing 
the physical layer quantum computer by reducing quantum hardware elements.

	 4.	 The results are useful for experimental gate-model quantum computations and near-term quantum devices 
of the quantum Internet.

This paper is organized as follows. Section 2 defines the system model. Section 3 proposes the quantum algo-
rithm and proves the computational complexity. Section 4 discusses the performance of the algorithm. Finally, 
Section 5 concludes the results. Supplemental material is included in the Appendix.

System Model
Let QG0 be a reference quantum circuit (quantum gate structure) with a sequence of L unitaries42, defined as

��
U U U U( ) ( ) ( ) ( ), (1)L L L L1 1 1 1θ θ θ θ= …− −

where θ
��

 is the L-dimensional vector of the gate parameters of the unitaries (gate parameter vector),

( , , ) , (2)L
T

1θ θ θ= …
��

and an i-th unitary gate Ui(θi) is evaluated as

θ θ= −U i P( ) exp( ), (3)i i i i

where Pi is a generalized Pauli operator acting on a few quantum states (qubits in an experimental setting) formu-
lated by the tensor product of Pauli operators {σx, σy, σz}42. Note, that 

��
θU( ) in (1) identifies a unitary resulted from 

the serial application of the L unitary operators UL(θL)UL−1(θL−1) … U1(θ1), and for an input quantum state |ϕ〉,

U U U U( ) ( ) ( ) ( ) (4)L L L L1 1 1 1
��
θ ϕ θ θ θ ϕ| = … | .− −

A qubit system example with a sequence of L unitaries is as follows. Let assume that the QG0 structure of the 
quantum computer consists of g single-qubit and m two-qubit unitaries, L = g + m, such that a j-th single-qubit 
gate realizes an σ=Xj x

j operator, while a two-qubit gate realizes a Z Zj k z
j

z
kσ σ=  operator (see also42). Then, at a 

particular objective function C of an arbitrary computational problem subject of a maximization via the quantum 
computer, the θU( )

��
 sequence from (1) can be rewritten as

U U B U C( ) ( , ) ( , ), (5)
�� �� ��θ β γ=

where

∏β β=
��

U B U B( , ) ( , ),
(6)j

j j

where 
��
β  is the gate parameter vector of the g single-qubit unitaries,

( , , ) , (7)g
T

1
��
β β β= …

while B is defined as
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∑=B X
(8)j

j

with

X , (9)j x
jσ=

and

β β= −U B i X( , ) exp( ), (10)j j j j

where Bj = Xj, while the two-qubit unitaries are defined as

∏γ γ=
∈

��U C U C( , ) ( , ),
(11)jk QG

jk jk
0

where 〈jk〉 ∈ QG0 is a physical connection between qubits j and k in the hardware-level of the QG0 structure of the 
quantum computer, γ�� is the gate parameter vector of the m two-qubit unitaries

�� ( , , ) , (12)m
T

1γ γ γ= …

while

∑=
∈

C C ,
(13)jk QG

jk
0

where Cjk is a component of the objective function, while unitary U(Cjk, γjk) for a given 〈jk〉 is defined as

U C U Z Z C i C Z Z( , ) ( , ) exp( ), (14)jk jk j k jk jk jk jk j kγ γ γ= = −

where

σ σ= .Z Z (15)j k z
j

z
k

At a particular physical connectivity of QG0, the objective function C therefore can be written as

∑=
∈

C z C z( ) ( ),
(16)jk QG

jk
0

where Cjk(z) is the objective function component evaluated for a given 〈jk〉, as

C z z z( ) 1
2

(1 ), (17)jk i j= −

while z is an N-length input bitstring,

= …z z z z , (18)N1 2

where zi identifies an i-th bit, zi ∈ {−1, 1}.
For a given z, a |z〉 computational basis state is defined as

| = | …z z z z , (19)N1 2

and the |φ〉 output system of QG0 is as
��

U z( ) , (20)φ θ| = |

that can be evaluated further via (6) and (11), as

∏ ∏

∏ ∏

φ β γ

β γ

β γ

| = |

= |

= − − | .
∈

∈

�� ��U B U C z
U B U C z z

i X i C z Z Z z

( , ) ( , )
( , ) ( ( ), )

exp( ) exp( ( ) )
(21)

j
j j

jk QG
jk jk

j
j j

jk QG
jk jk j k

0

0

To achieve the quantum parallelism, the input system |ϕ〉 = |X〉 of the quantum computer is set as an N-length 
d-dimensional (d = 2 for a qubit system) quantum state in the superposition of all possible dN states. For a qubit 
system, it means that input |X〉 is an N-qubit quantum state in a superposition of all possible 2N states |0〉 to 
|2N − 1〉, and the computations are performed on 2N states in parallel in the quantum computer.

Let |X〉 be a superposed input system of the non-reduced QG0 gate structure:
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∑| = |
=

X
d

x1 ,
(22)N x

d

i
1i

N

where |xi〉 is an i-th input state (represented as an N-length bit string for a qubit system), i = 1, …, n, n = dN, of the 
QG0 structure of the quantum computer.

To describe the parallel processing of the n input vectors of |X〉 (see (22)), {|x1〉, …, |xn〉} of |X〉 (see (22)) in the 
quantum computer, let θi

��
 be the gate parameter vector associated with a given |xi〉 of |X〉:

( , , ) (23)i i i L
T

,1 ,
��
θ θ θ= … .

Let X be the classical representation of |X〉 in (22) to get

= …X
d

x x1 ( , , ) ,
(24)N n

T
1

where xi is the classical representation of |xi〉. (Note, that X and xi are not accessible in the quantum computer, 
since the quantum algorithm operates in the quantum regime on quantum states. The classical representation is 
used only as an abstracted auxiliary representation to describe the steps of the algorithm in a plausible manner).

Then, let 
��
θU ( )0  be the non-reduced gate structure matrix of QG0:

θ θ θ θ= …−

�� �� �� ��
U U U U( ) ( ( ) ( ) ( )), (25)n n0 0 0 1 0 1

where
�� �� ��

( , , ) (26)n1θ θ θ= …

and 
��
θU ( )i0  is the unitary sequence associated with |xi〉 in QG0, defined as

��
θ θ θ θ= … .− −U U U U( ) ( ) ( ) ( ) (27)i L i L L i L i0 , 1 , 1 1 ,1

At an n-dimensional output vector

Y
d

y y1 ( , , ) ,
(28)N n

T
1= …

and the |Y〉 output quantum state of the non-reduced QG0 structure is

�� ��
Y U X

d
y

d
U x( ) 1 1 ( )

(29)N y
i N x

d

i i0
1

0
i i

N

∑ ∑θ θ| = | = | = | .
=

To define the reduced gate structure, QG*, it is necessary to find a reduced θ ′��U( )i  with a reduced input xi| , for 
all i.

Then, let X∼ be the classical representation of the reduced quantum state X|∼  fed into QG*, as

X
n

x x1 ( , , )
(30)n

T
1⁎ ⁎
 = …

∼

and

∑| 〉 = |
∼

=




⁎

⁎

X
n

x1 ,
(31)x

d

i
1i

N

where N* is the number of d-dimensional (physical) quantum states that formulate |∼X , n* = dN*, while the unitar-
ies 

��
θ ′U( ) of QG* are

⁎ ⁎U U U U( ) ( ( ) ( ) ( )) (32)n n 1 1
�� �� �� ��
θ θ θ θ′ = … .′

−
′ ′

where

θ θ θ′ = …′ ′�� �� ��
( , , ) (33)n1 ⁎

and 
��
θ ′U( )i  is the reduced unitary sequence associated with |xi , defined as

�� � � �U U U U( ) ( ) ( ) ( ) (34)i L i L L i L i, 1 , 1 1 ,1θ θ θ θ= … .′
− −

The pre-processing phase determines output Z of QG* as a classical representation
��
θ= ′

∼Z U X( ) , (35)
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and the output quantum state |Z〉 of QG* therefore yields
��
θ| = ′ | .

∼Z U X( ) (36)

The notations of the system model are also summarized in Table A.1 of the Supplemental Information.

Problem statement.  Problems 1–3 summarize the problems to be solved.

Problem 1 Find a classical pre-processing P for calculating the X|∼  reduced input system and the gate parameters of 
the QG* reduced time complexity gate structure.

Problem 2 Find a universal (independent of the number L of the unitaries in QG0) unitary operator UR with a set R 
of quantum registers to recover output |Y〉 of the non-reduced QG0 structure from output |Z〉 of the QG* reduced 
time complexity gate structure.

Problem 3 Determine the time complexity of UR and the reduction in the overall time complexity of QG*.
Theorems 1–3 give the resolutions of Problems 1–3.
The non-reduced time complexity quantum circuit QG0 (reference circuit) with an input quantum state |X〉 is 

showed in Fig. 1(a). Figure 1(b) depicts the system model for the problem resolution. The method is realized via 
unitary UR and P pre-processing, such that UR is implemented in the physical layer, while P is only a logical-layer 
process. Only the reduced input quantum state X|∼  and the reduced quantum gate structure QG* must be built up 
in the physical layer to yield the reference output system |Y〉 of the reference circuit QG0 via |YR〉. In both cases, 
the output states are measured via a measurement M to get a classical bitring for the objective function evaluation. 
As a next step, the gate parameter values of the unitaries of the circuits are calibrated until an optimal objective 
function value is not reached. The calibration of the gate parameters is a separate optimization procedure and its 
aim is fundamentally differ from the aim of P, and therefore it is not part of the circuit depth reduction method. 
Note that existing algorithms can be utilized for this task (such as a the algorithms proposed in19 and20, or some 
gradient independent methods98).

Pre-processing.  Theorem 1 There exists a P pre-processing to determine the |∼X  input system and the U( )iθ ′��  gate 
parameters, i = , …, n, for the reduced QG* gate structure for an arbitrary non-reduced QG0 structure with 

��
θU( )i  and 

input |X〉.

Proof. The P pre-processing phase can be decomposed as P CL= , where C is a computational block, while L 
is a machine learning control block to calibrate the results of C. We first define block C, then discuss L. The P 
pre-processing is a procedure to stabilize the output of the reduced quantum circuit. P is defined between the 
components C and L to evaluate X|∼  and to set the gate parameters of the reduced quantum circuit structure QG* 

Figure 1.  (a) The non-reduced time complexity quantum circuit QG0 (reference circuit) with an input quantum 
state |X〉. The output of QG0 is |Y〉. The state |Y〉 is measured via a measurement M to get the classical string z to 
evaluate the objective function C(z). (b) System model of the time complexity reduction scheme. Pre-processing 
phase  : the Y classical representation of output |Y〉 of QG0 is pre-processed by the pre-processing unit P. Unit 
P contains a C computational block that outputs a vector κ, fed into an L machine learning control unit for the 
Δ error feedback. Unit P outputs ∼X  and the gate parameters of the reduced structure that defines QG*. 
Quantum phase: from X∼ and the gate parameters, X|∼  and QG* are set up. System X|∼  is fed into the reduced 
quantum circuit QG*. The output of QG* is |Z〉, which is fed into the UR recovery quantum algorithm. The UR 
quantum operation outputs the |YR〉 system, which is the reference output |Y〉 of the reference circuit QG0. The 
state |YR〉 is measured via a measurement M to get the classical string zR to evaluate objective function C(zR).

https://doi.org/10.1038/s41598-020-67014-5
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using the reference output |Y〉 of QG0. Note, as the output |YR〉 is fed into an M measurement block, the measure-
ment results provide a feedback to calibrate P in every subroutine of the protocol to produce a final saturated 
output. The Δ output of the L machine learning control unit is used as a feedback in unit C. For the definition of 
Δ, see (116) in Algorithm 1.

In the C computational block, the reduced U( )iθ ′��  and xi  are determined for ∀i, in the following manner. Note, 
since P outputs the parameters of the reduced quantum gate structure, the extra complexity of a quantum struc-
ture can be replaced with classical complexity in the form of machine learning in the proposed framework.

Operation C sets a one-dimensional discrete cosine transform99 in the reduction method, thus a matrix G is 
defined as a generator matrix to evaluate the output coefficients of C, see later (45). The definition of C (see later 
in (40)) comes from the fact that any U unitary operator can be rewritten via the cos and sin functions, and using 
cosine functions rather than sine functions is critical for a compression99. In our setting, this is because fewer 
cosine functions are needed to approximate a particular U unitary operator.

Let xi be the classical representation of |xi〉, and y U x( )i i i
��
θ=  be the classical representation of |yi〉. Using the 

sequences of the L unitaries in (29), define a matrix G with n coefficients ai, i = 1, …, n, as

θ
θ

θ

θ

θ

θ

=

=







Σ +
Σ +

Σ +







=







Σ +

Σ +

Σ +







=

=

=

�

� �

G a a

x
x

x

x

x

x

( )

( )
( )

( )

( )

( )

( )

,

(37)

n
T

n n

j
L

j

j
L

j

j
L

n j n

1

1 1

2 2

1 1, 1

1 2, 2

1 ,

where

θ θΣ = Σ
=

,
(38)i

j

L

i j
1

,

where θi,j identifies the gate parameter of a j-th unitary Ui,j(θ) associated to an i-th input xi, while unitary sequence ��
θU ( )i0  to an i-th input xi is

θ Σ θ=U i P( ) exp( ), (39)i i i0
��

where Pi is a generalized Pauli operator.

First, the C operation (one-dimensional discrete cosine transform99) is applied to the input matrix G from (37),

{ }c f p i n: , , 0 , 1, (40)p i ≤ ≤ −C

where cp is the p-th coefficient of C,

c A f i p
n

cos (2 1)
2

,
(41)p

i

n

p i
0

1

∑ π
=

+

=

−

where

∑ π
=

+

=

−
f A c i p

n
cos (2 1)

2
,

(42)i
i

n

p p
0

1

and Ap is

=











=

< <
.A n

p

n
p n

1 , if 0

2 , if 1
(43)

p

The coefficients of C defines matrix γ as

G
G G G

c c c

( , , , )

( , , , ) , (44)
n

T

n
T

1 2

1 2

γ χ

ς ς ς

=

= ⋅ ⋅ … ⋅

= …

where · is the inner product,

https://doi.org/10.1038/s41598-020-67014-5


7Scientific Reports |        (2020) 10:11229  | https://doi.org/10.1038/s41598-020-67014-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

c G a ,
(45)i i

k

n

i k k
1

,∑ς ς= ⋅ = ×
=

where coefficients ak-s are given in (37), and χ is



χ

ς

ς

ς

=












−

( )

( )
( )

,

(46)

T

n
T

n
T

1

1

where ςi is an n-length vector

ς ς ς π π π
= … =





…
− 


 .A i

n
i
n

n i
n

( , , ) cos
2

, cos 3
2

, , cos (2 1)
2 (47)i i i n i

T

,1 ,

Then, the n-length output vector κ of C is defined as

κ= = Ω … ΩC Y
n

( ) 1 ( , , ) ,
(48)n

T
1

where Y is given in (28), while Ωi is as
��
�

� � � �
θ

θ θ θ

Ω =

= … .

′

− −

U x
U U U x

( )
( ) ( ) ( ) (49)

i i i

L i L L i L i i, 1 , 1 1 ,1

Then, using the coefficients (41), (42) and (43) of C, |xp  of the reduced state |∼X  from (31) can be evaluated via 
the 

xp components of ∼X  of (30). A p-th input |xp  for QG* is defined via (49) as

†x U A x i p
n

( ) cos (2 1)
2

,
(50)

p p p
i

n

p i
0

1��
� ∑θ π

= Ω =
+′

=

−

and the reduced quantum gate sequence 
��
θ ′U( )p  of |xp  in QG*, as

U i P( ) exp( ), (51)p p pθ θ= Σ′�� �

where Pp is a generalized Pauli operator, and θΣp is as

A i p
n

( )cos (2 1)
2 (52)p

i

n

p i
0

1
 ∑θ θ π

Σ = Σ
+

.
=

−

Therefore, the quantum state |Z〉 of QG* is

∑θ θ| = ′ | 〉 = | .
∼

=

′
⁎

⁎
�� ��

�
�

Z U X
d

U x( ) 1 ( )
(53)N x

d

i i
1i

N

The description of the L machine learning control unit is as follows. Unit L uses the results of C to provide feed-
back for the pre-processing via supervised machine learning control.

The L machine learning algorithm for the pre-processing control is defined in Algorithm 1.

The steps of the P pre-processing method is given in Procedure 1.

■

Quantum Algorithm

Theorem 2 The |Y〉 output of the non-reduced QG0 structure can be recovered from the output |Z〉 of the reduced 
structure QG* via a unitary operator UR.
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Proof. Let X|∼  be the input quantum state fed into the reduced structure QG*, and let |Z〉 (see (53)) be the output 
of the reduced gate structure. The task here is therefore to recover θ| = |

��
Y U X( )0  from |Z〉. The problem is solved 

via a unitary UR, as follows.

Without loss of generality, in an i-th step, i = 1, …, n, the goal of the UR operation is to calculate the quantum 
state as

ω κ|Φ = | ⋅ , (54)i i

where κ is as in (48), while ωi = (ωi,1, …, ωi,n)T is an n-length vector defined for a given j, as

 ω π π
=





…
− 




θ θ θ θΣ −Σ Σ −Σe A j
n

e A n j
n

cos
2

, , cos (2 1)
2

,
(55)j

i
j

i
j

T
( ) ( )n n1 1

where ∑θi is as given in

∑θ θ π
Σ = Σ

+

=

−
A i p

n
( )cos (2 1)

2
,

(56)i
i

n

p p
0

1

where θΣ p
  is given in (52).

Then let



ω

ω

ω

=












−

W

( )

( )
( )

,

(57)

T

n
T

n
T

1

1

such that

κ ω κ ω κ= ⋅ … ⋅ .W ( , , ) (58)n
T

1

Applying UR for all i, yields the recovered quantum state |YR〉 as

∑ ∑

∑

∑

ω κ

θ

θ

θ

| = |Φ = | ⋅

= ′ |

= |

= |

θ θ

= =

=

Σ −Σ

=

Y

n
e U x

d
U x

U X

1 ( )

1 ( )

( ) , (59)

R
i

n

i
i

n

i

x

n
i

i i

N x

d

i i

1 1

1

( )

1
0

0

i

i i

i

N

��

��

��

�

where an i-th |xi〉 is as

∑ π
| =

+

=

−
x A x i p

n
cos (2 1)

2
,

(60)
i

i

n

p p
0

1

where i ≤ n − 1, and p ≥ 0, and 
xp is as given in (50); while the 

��
U ( )i0 θ  gate parameters (see (39)) of the L unitaries 

for a given i are evaluated as
�� ���

� �

θ θ=

=
= .

θ θ

θ θ θ

θ

Σ −Σ ′

Σ −Σ Σ

Σ

U e U

e e
e

( ) ( )

(61)

i
i

i
i i P

i P

0
( )

( )

i i

i i i i

i i

The unitary UR is defined via a set R of quantum registers as

= | … |U R R: { , , }, (62)R 1 7R

where |Ri〉 is the i-th quantum register. The registers are initialized via set R0 as

R R R i R
R R R

, , , ,
0 , 0 , 0

,
(63)

0
1 2 3 4

5 6 7
R

η κ
=







| = |∂ | = | | = | | = |
| = | | = | | = |






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where κ is given in (48), while ∂ and η are initial parameters defined as

κ
∂ =

n
, (64)

2

and

η κ= , (65)2

where

∑κ κ κ= ⋅ = Ω × Ω
=

−

n
1 ( )

(66)i

n

i i
2

0

1

where 
��
�θΩ = ′U x( )i i i, and

η∂ ≤ × ≤
n

y y1 ( ) , (67)i i

where y U x( )i i i
��
θ= .

Then, unitary UR is defined as

ψ ψ= | | −U I U(2 ) , (68)R S

where

∑ψ| = |
=

−

n
i1 ,

(69)i

n

0

1

and US is a unitary defined as

U U O O O U( ) ( ) , (70)S f0
1 1

0i i i
= −

Φ
−

Φ

with eigenstate

i 0 0 0 ; (71)S η κ|Ψ = |∂ | | | | | |

where U0 is an initial unitary operator that prepares state |R5〉 = |ωi〉 for a given index state |R4〉 = |i〉, where ωi is 
given in (55); from an initial |R4〉|R5〉 = |i〉|0〉 as

ω| | = | ⊕U i( 0 ) 0 (72)i0

in the register set 0R  (see (63)), where ⊕ is the CNOT operation, while ΦO
i
 is an oracle applied on R0 to compute 

Φi (54), defined as

R R

η κ

ω

= ′







| = |∂ | = | | = | | = |

| = | | = | | = | Φ







ΦO

R R R i R

R R R

( )

:
, , , ,

, 0 , ( )
,

(73)i i

0

1 2 3 4

5 6 7
2

i

where ′R  is the resulting register set, while O fi
 is an oracle that outputs function fi, as

O f n
y: 1, if 1

0, otherwise (74)
f i

i

2

i

η=










∂ ≤






 ≤ .

Specifically, note that (70) changes only the phase of the state as −( 1) fi, where fi is given in (74), while

= .−
Φ

−
Φ

−U O O U( ) ( ) ( ) (75)0
1 1

0
1

i i

Applying (74) on (63) yields a register state RO ( )f 0i
 as

= −R RO ( ) ( 1) , (76)f
f

0 0i
i

where −( 1) fi is the eigenvalue of US in (70).

Then, using the register set (63), let |φ0〉 be the input state for UR as
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∑φ η κ| = |∂ | | | | | | .
=

−

n
i1 0 0 0

(77)i

n

0
0

1

Applying (68) k-times on (77) yields

U( ) (78)k R
k

0φ φ| = | .

The k iteration number in (78) is a random number, k < c, where c m nmin{1 2 , }= . ⋅ , and m is initialized as 
m = 199.

Then let OZ be an oracle defined on ′R  as
⁎O

R R R i R
R R R

( )

:
, , , ,
, , 0 (79)

Z

i i

1 2 3 4

5 6 7

R R

η κ
ω Φ

′ =






| = |∂ | = | | = | | = |
| = | | = | | = |






.

Applying OZU0 on (78), outputs system state
⁎ O U ( ) (80)Z k0φ φ| = | .

In particular, in system state (80), the state of register |R6〉 is

∑| = |Φ = |
=

R Y ,
(81)i

n

i R6
1

therefore yields (59), such that

( ) (82)i
2 η∂ ≤ Φ ≤

holds for all i of |YR〉, due to the conditions set in the pre-processing procedure P (see (67)).

Assuming that the input system (77) for UR is prepared for R-times and the output register (81) is measured for 
R-times, i.e., UR is applied for R times in overall, in an r-th repetition, r = 1, …, R, the parameters of the procedure 
can be valuated as

n q
,

(83)
r

r

r
( )

( )

( )
η

∂ =
−

where

( ), (84)r r
i
r

i
r( ) ( ) 2 ( ) ( )η κ= − Φ × Φ

where Φi
r( ) is the measured value of |Φi〉 in the r-th repetition of UR, while q(r) is the number of coefficients have 

been already found99.

The actual value of r requires no increment if the relation

1 ,
(85)

r r( )
2

( )τ
κ

η>

holds, where τ(r) is a threshold value in the r-th iteration. Otherwise, the value of r can be increased, r = r + 1, as 
r < R.

The steps of the quantum algorithm UR are given in Algorithm 2.
Distortion measure.  As (81) is prepared in Step 4 of UR, the state |YR〉 can be measured to get the classical 
string zR to evaluate objective function C(zR), as follows. Measure register |R6〉 of R via a measurement operator 
M to evaluate objective function C(zR), where zR is a classical string resulted from the measurement of |YR〉, while 
C is an objective function of an arbitrary computational problem fed into the quantum computer.

The D distortion coefficient associated with the |YR〉 recovered quantum state (59) can be evaluated at a par-
ticular objective function C, associated to the computational problem fed into the quantum computer as

C z C z( ) ( ) , (86)RD = | − |
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where z is a classical string resulting from the M measurement of |Y〉, while zR is a classical string resulting from 
the M measurement of |YR〉.

Precisely, assuming R measurement rounds, an average of distortion yields

D
R

C z C z1 ( ) ( ) ,
(87)

R

r

R
r r

R
( )

1

( ) ( )∑= | − |
=

where C(r)(z) and C(r)(zR) are the objective function values respectively associated with z and zR in the r-th round, 
r = 1, …, R.

Computational Complexity.  Theorem 3 Quantum algorithm UR can be implemented with time complexity 
n( )O  for the time complexity reduction of any non-reduced QG0 with an arbitrary number of L unitaries.

Proof. Let

G | | |i b c{ } (88)

be a global space spanned by |i〉, an n-dimensional vector |b〉, and by |c〉, which represents the inner product state.

Particularly, the UR unitary in (68) applied on an input |ϕ〉 formulated via set R of quantum registers gives

n

n
i

1

1 0 0 0 ,
(89)

i

n

i

i

n
0

1

0

1

∑

∑

ϕ

η κ

| = |Ψ

= |∂ | | | | | |

=

−

=

−

where

i 0 0 0 ; (90)i η κ|Ψ = |∂ | | | | | |

thus UR can be interpreted as a rotation on an n-dimensional subspace S |i{ }, 0 ≤ i < n, i.e., on a span of all |i〉.

Let ∏ be the solution set with conditions (82) for all i of ∏,

η κΠ = |∂ | | | | | |i 0 0 0 , (91)

and let |ϒ〉 ∈ | 〉S i{ } be the superposition of all solutions:

∑

∑ ∑

ξ

η κ

|ϒ =
|Π|

|

=
|Π|

|∂ | | | | | | .

ξ

ξ

∈Π

∈Π Π
i

1

1 0 0 0
(92)

The operation UR on |ϕ〉 yields the state ⁎φ| 〉 ∈ | 〉i{ }S  (see (80)):
⁎

∑

∑

∑

φ ϕ

η ψ ψ κ

α

η κ

| = |

= |∂ |




 | | − − |





 | | | |

=
− |Π|

|

=
− |Π|

|∂ | | 〉 | 〉| | |

α

=

−

| ∉Π

−Π

U

I
n

i

n

n
j

( )

(2 ) ( 1) 1 0 0 0

1

1 ( ) 0 0 0 ,
(93)

R

i

n
f

I

0

1
i

thus, UR is a rotation on the subspace φ| 〉 |ϒ〉⁎S{ , } by angle UR
θ  towards (92), as

θ =
|Π|
n

2arcsin ,
(94)UR

where |∏| is the number of solutions (cardinality of solution set ∏).

UR can be implemented as a rotation of θUR
 on subspace | 〉S i{ } (instead of a rotation on global space (88)) via a 

generalized quantum searching100 that yields time complexity O n( ) for an arbitrarily large quantum circuit QG0. 
■
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Performance Evaluation
Assuming that the initial time complexity of the QG0 non-reduced gate structure is

NL( ), (95)O

where N is the number of d-dimensional (physical) quantum states in the superposed input system, and L is the 
number of unitaries in QG0, the time complexity of the reduced QG* structure is

N L( ), (96)⁎ ⁎O

where N* is the number of d-dimensional (physical) quantum states in the reduced superposed input system, and 
L* is the number of unitaries in the reduced gate structure QG*.

Since the complexity of the proposed scheme is

O n( ), (97)

the result of (96) is a reduced time complexity with respect to (95), as the relation

< −N L NL n , (98)⁎ ⁎

holds; thus

⁎ ⁎ < − .N L NL d (99)N /2

The overall complexity of the QG* reduced structure at the application of UR is therefore

+ = + .N L n N L d( ) ( ) (100)N /2⁎ ⁎ ⁎ ⁎O O

Figure 2 depicts the resulting time complexities for a qubit implementation (N-qubit superposed input system, 
and qubit gate structure with L unitaries).

To achieve time complexity reduction using X|∼  and QG* instead of |X〉 and QG0, the relation 
< = −O O ON L NL n( ) ( ) ( )⁎ ⁎  must be straightforwardly satisfied, i.e., the initial complexity NL( )O  has to be 

reduced by more than n( )O . Since the complexity of the procedure is independent from the actual size of the 
gate structure, the cost remains constant n( )O  for an arbitrarily large L.

Conclusions
Gate-model quantum computers are equipped with a collection of quantum states and unitary quantum gates. 
The realization of the quantum circuit of a quantum computer requires high fidelity, high precision, and high-level 
control. Since both the timecomplexity (depth of the circuits) and the economic costs of these implementations 
are high in practical scenarios, a reduction of these costs is essential. Here, we defined a quantum algorithm for 
reducing the circuit depth of gate-model quantum computers. The method achieves a reduction in the physical 
layer allowing significantly reducing implementation costs. The framework is flexible and can be used for arbi-
trary circuit depths.

Submission note.  Parts of this work were presented in conference proceedings101.

Ethics statement.  This work did not involve any active collection of human data.

Figure 2.  The time complexities (number of operations) for an N-qubit system, d = 2, n = 2N, with an initial 
non-reduced gate structure QG0 with L unitaries, L = {10, 100, 1000, 10000}. The time complexity of QG0 is 

NL( )O , while O( ) is an upper a bound on O N L( )⁎ ⁎  of QG*, O O NL n( ) ( ) = − .
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Appendix

Algorithm 1
L supervised machine learning control of C
Input: The Ωi coefficients from block C.
Output: Classification of the Ωi coefficients, error Θ of P; error Δ of C, updated Ωi coefficients.
Step 1. Let TS  be the training set of L as κ κ= …S l l( , ), , ( , )T m m1 1 , where κi is an i-th instance and an n-length 
vector (see (48)) drawn from the input space X, while 



∈ Sli  is the class label associated with κi, where 


S  is the 
set of labels 



= …S k{1, , }.
Step 2. For i = 1, …, m, set the initial D0(i) distribution of the i-th instance of TS  as D i( ) =

m0
1 .

Step 3. Set the R iteration number. For an r-th iteration, r = 1, …, R, let Dr be distribution. Define hypothesis 
(implementable via a weak learning algorithm102–105) using the input distribution Dr as

→h : (101)r X S


such that the εr training error (error of hr) of L is

h l D iPr [ ( ) ] ( ) (102)r i r i i i h l r: ( )r i i
∑ε κ= ≠ = κ ≠

is minimized with respect to the distribution Dr.
Step 4. If εr ≤ 0.5 goto Step 5, otherwise set R = r − 1, and stop.
Step 5. If hr(κi) = li, set Dr+1(i) as

D i W D i( ) ( ) ,
(103)

r r
r

r
1 χ

=+

where χr is a normalization term, while Wr is a weighting coefficient, as

ε
ε

=
−

.W
1 (104)r

r

r

If hr(κi) ≠ li, set

χ
= .+D i D i( ) ( )

(105)
r

r

r
1

Step 6. Repeat steps 3–5 for R times.
Step 7. From the R hypotheses h1, …, hR, set the final hypothesis H to classify the Ωi coefficients and the input 
system Y as

S
∑=

κ∈ =

H
W

argmax log 1 ,
(106)l r h l r: ( )r

and calculate the ε(H) error of H as

∑ε =
κ ≠

H D i( ) ( ),
(107)i H l

H
: ( )i i

where DH is the distribution associated to H.
Step 8. Initialize ∂C and η

C
 parameters as

η
∂ =

n
, (108)C

C

where

Y Y Y
n

y y1 ( ),
(109)i

n

i i
2

1
C ∑η = = ⋅ = ×

=

where Y is defined in (28), y U x( )i i iθ=
→ , and

n
1 ( ) ,

(110)i iC C
η∂ ≤



 Ω × Ω



 ≤

where 
θΩ =

→
′U x( )i i i.

Step 9. For an i-th coefficient Ωi, set

η∂ = −


 Ω × Ω



.C C n

1 ( )
(111)i i i,

Step 10. Set σi threshold for an i-th coefficient as
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��
 (33) of QG*.

Step 3. Fed | 〉
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