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Background: Squamous cell lung cancer (SqCC) is the second most common type of lung cancer in the United States. Previous
studies have used gene-expression data to classify SqCC samples into four subtypes, including the primitive, classical, secretory
and basal subtypes. These subtypes have different survival outcomes, although it is unknown whether these molecular subtypes
predict response to therapy.

Methods: Here, we analysed RNAseq data of 178 SqCC tumour samples and characterised the features of the different SqCC
subtypes to define signature genes and pathway alterations specific to each subtype. Further, we compared the gene-expression
features of each molecular subtype to specific time points in models of airway development. We also classified SqCC-derived cell
lines and their reported therapeutic vulnerabilities.

Results: We found that the primitive subtype may come from a later stage of differentiation, whereas the basal subtype may be
from an early time. Most SqCC cell lines responded to one of five anticancer drugs (Panobinostat, 17-AAG, Irinotecan, Topotecan
and Paclitaxel), whereas the basal-type cell line EBC-1 was sensitive to three other drugs (PF2341066, AZD6244 and PD-0325901).

Conclusion: Compared with the other three subtypes of cell lines, the secretory-type cell lines were significantly less sensitive to
the five most effective drugs, possibly because of their low proliferation activity. We provide a bioinformatics framework to explore
drug repurposing for cancer subtypes based on the available genomic profiles of tumour samples, normal cell types, cancer cell
lines and data of drug sensitivity in cell lines.

Lung cancer now accounts for 13% of new cancer cases and 29% of
all cancer deaths each year in the United States. Lung cancer is the
leading cause of cancer-related mortality worldwide, leading to an
estimated 1.4 million deaths in 2010. Lung cancer is a
heterogeneous disease with multiple histological and molecular
subtypes. Lung cancers are usually classified according to the
histological types because the histopathological type of lung cancer
correlates with tumour behaviour and prognosis (Beadsmoore and
Screaton, 2003). The vast majority of lung cancer types are
carcinoma malignancies that arise from epithelial cells. The two

most common subtypes of lung cancer are adenocarcinoma and
squamous cell lung cancer types (SqCC).

Squamous cell lung cancer is the second most common
type of lung cancer, usually originating in the large airways in
the central part of the lungs. Even for patients with SqCCs,
outcomes are variable, suggesting that heterogeneity exists within
this subtype. Further classification of SqCC into subtypes may help
to understand the disease mechanism better, define the pathways
relevant in disease origin and pathogenesis, and help guide
treatment.

*Correspondence: Dr D Wu; E-mail: dwu@fas.harvard.edu or Dr JS Liu; E-mail: jliu@stat.harvard.edu

Received 17 March 2013; revised 6 July 2013; accepted 12 July 2013; published online 3 September 2013

& 2013 Cancer Research UK. All rights reserved 0007 – 0920/13

FULL PAPER

Keywords: squamous cell lung cancer subtypes; gene expression; RNAseq; microarray; signature genes; cells of
origin; representative cell line; drug sensitivity; classification

British Journal of Cancer (2013) 109, 1599–1608 | doi: 10.1038/bjc.2013.452

www.bjcancer.com | DOI:10.1038/bjc.2013.452 1599

mailto:dwu@fas.harvard.edu
mailto:jliu@stat.harvard.edu
http://www.bjcancer.com


Gene-expression-profiling studies have been undertaken in an
attempt to identify the cell-of-origin for a variety of malignancies,
including lung cancer, by comparing expression profiles of cancer
cells to those obtained from sorted cell populations or cell lines
obtained from non-neoplastic lung tissue. These studies have not
yet clearly identified a cell-of-origin for SqCCs but have correlated
lung SqCC expression subtypes with specific time points in lung
development in the mouse (Mariani et al, 2002; Chen et al, 2012).

In our study, we aim to characterise the features of the different
SqCC subtypes, gain deeper understanding about how subtypes are
correlated with the developmental stages of airways, and further
explore the subtypes within SqCCs and correlation with response
to therapeutic agents. We leveraged a large RNAseq data set
(Hammerman et al, 2012) of 178 SqCC individuals classified into
four previously defined dominant SqCC subtypes. We found the
primitive subtype to be related to differentiation stages of normal
bronchial epithelial cells and characterised SqCC cell lines by
identifying their similarities to the four SqCC subtypes. The cell
line response to anticancer therapies in vitro was generalised to
SqCC subtypes.

MATERIALS AND METHODS

SqCC subtype data and the analysis. The 178 samples include 43
basal, 65 classical, 27 primitive and 43 secretory samples
(Wilkerson et al, 2010). Raw count data of each gene were
obtained. There are 22 283 genes. R function calcNormFactors in
edgeR package (Robinson et al, 2010) was used on the raw count
data to calculate normalisation factors to scale the raw library size
in RNAseq. R function voom in limma package (Smyth, 2005),
using the above normalisation factor and the design matrix,
converted the read counts to log2 counts per million, with
associated weights ready for linear modelling.

The log2 scale data were fitted with a model that has the subtype
variable of four categories. Using ‘contrast.matrix’, one type of
comparison is the six pairwise comparisons of the four SqCC
subtypes, and another type is ‘1 vs other’. The function eBayes was
used. The false discovery rate (FDR) was controlled globally using
the Benjamini and Hochberg algorithm. Probes with FDR o0.05
and fold change 42 were judged to be differentially expressed.
These packages are from Bioconductor (Gentleman et al, 2004)
in R (R Core Team, 2012).

On the basis of the criterion for a DE gene in a comparison, the
signature gene set for a subtype was further defined. For one SqCC
subtype, when comparing with all other three subtypes, the genes
that are significantly upregulated in each of the three comparisons
are defined as positive-signature genes of this SqCC subtype. The
genes that are significantly downregulated in each of the three
comparisons are defined as negative-signature genes of this SqCC
subtype.

Time-course data of human bronchial epithelial cells. From
GEO website, the normalised data of GSE 5264 for human
bronchial epithelial cells were downloaded. Affymetrix Human
Genome U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA, USA)
was used with 54 675 probes. We used the GPL570 as the
annotation file for the platform. The data set contains 30 samples
at 11 time points of cell culture from 0 to 28 days. There are
biological duplicates or triplicates at each time point from two or
three different donors.

Data of the 28 SqCC cell lines. The microarray data of
the 28 SqCC cell line data (Table 2) were downloaded from
www.broadinstitute.org/ccle. The array platform was HG-
U133Plus2 with 54 675 probe sets. To just obtain SqCC data, we
restricted firstly filtered data sets by primary the site in lung and
then by ‘Hist.Subtype1’ as squamous cell carcinoma. 28 cell lines

were obtained. We also downloaded the annotation of samples.
Quality control using an affycoretool package (MacDonald, 2008)
has been carried out, including the examination of degradation
levels of each sample, boxplot of log-expression data, density plot
of the expression data and so on. To carry out log transformation
of the expression value, we replaced the value 0 by the minimum
non-zero value 0.000216. The R function gcrma (Wu et al, 2004)
was used for normalisation. The DE analysis was performed using
the limma package (Smyth, 2005).

Multidimensional scaling (MDS) plot and heatmap. The func-
tions in limma – for example, plotMDS – have been used to look at
the sample relationship as a step of quality control. In plotMDS,
the default 500 genes were used for each pair of samples. We
mostly present the dimension 1 and dimension 2 of the MDS plots.
The R function heatmap2 in the gplots (Warnes et al, 2012)
package has been used. In this function, both the sample and gene
dimensions were clustered. The top 500 probe sets with the largest
variability in the data were chosen.

Gene sets. The human gene sets in Category 2 (C2) were from
http://bioinf.wehi.edu.au/software/MSigDB, which is based on
MSigDB v3.0 (Subramanian et al, 2005) downloaded on 28
September 2010. C2 includes 3272 curated gene sets.

Correlation Adjusted MEan Rank (CAMERA). CAMERA (Wu
and Smyth, 2012) is a competitive gene set test. Here, we use the
default setting that allows negative gene–gene correlation and does
not use rank. The multiple testing adjusting method for P-values is
the Benjamini and Hochberg algorithm. It outputs P-values, set
sizes and the estimated average correlation.

After fitting the variable of four subtypes in the linear model, the
four contrasts were tested in CAMERA, including the basal
subtype vs the average of the other three subtypes and the primitive
subtype vs the average of the other three subtypes.

ROAST. The test statistic we have used in ROAST is the average
of moderated t statistics. The contrasts are among the three stages
in the time-course data. The donor information (three donors) was
considered as the block variable in the model. The correlation
within a subject was estimated using R function duplicateCorrela-
tion in limma package. For the bronchial epithelial cell data, the
highest expressed probe set was kept when there were multiple
probe sets for the same gene. Then the number of probe sets
dropped from 54 675 to 20 723 by keeping the unique gene name in
the data prepared for ROAST. Gene weights of 1 or � 1 have been
used to represent the direction of differential expression (DE) in
the SqCC subtypes.

ROAST is a self-contained gene set test for complex designed
microarray experiments. ROAST is usually used for the direct
testing of a few focused gene sets. Other genes in the platform are
not considered in self-contained tests.

Active genes in a gene set were defined as the moderated t
statistics from the empirical Bayesian model larger than

ffiffiffi
2
p

or
smaller than

ffiffiffi
2
p

(Wu et al, 2010).

Signature scores. The probe set with the largest average value was
kept when there were multiple probe sets for one gene. The detail
to calculate the signature scores for a time-course sample and
SqCC subtype was previously published as the Supplementary
Method in (Lim et al, 2009). Here, g is for all the signature genes of
the SqCC subtype. Signature score was calculated as

s ¼
P

g xgyg

� �
=
P

g jxg j
� �

. In this calculation, the sum is over

genes in the signature set, xg is the average log2-fold change while
comparing one SqCC subtype to others for that gene from SqCC
data, and yg is log2 expression for the same gene in a time-course
sample.
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ClaNC. Among the total 1463 signature probe sets, 53 probe sets
are in more than one subtype signatures. After removing the
duplicated probe sets, 1383 probe sets represent all the signature
genes of the SqCC subtypes corresponding to 1349 genes.

R code of ClaNC (Dabney, 2006) was obtained from the author.
ClaNC is to classify each of the samples into one of the subtypes,
whereas signature scores are to find the similarity of a group of
samples to the subtype.

For the 20 cell-line data, the probe set with the largest average
value was kept when there were multiple probe sets for one gene.
This resulted in with 20 027 unique genes. Then gene names were
matched with the 1349 subtype signature genes, which ended up
with 1176 matched gene names.

To centralise subtype data of the 1176 genes, the expression
value of a gene minus average of that gene across samples was
calculated. The generated value was then divided by the square root
of variance of that gene. Twenty cell line data of the 1176 genes
were centralised using the same procedure.

To train, 1–100 genes were tried. With the selected genes, the
five-fold cross-validation error rate of subtypes is o0.1. These
selected genes were used to classify the cell-line samples into one of
the four SqCC subtypes. On the basis of the SqCC subtype
expression data of the signature genes, 40 genes for each subtype
were finally selected by ClaNC for classification.

Drug database. Pharmacological profiles for 24 anticancer
drugs across 504 cell lines were downloaded from

www.broadinstitute.org/ccle/data. Eight dosages are included. A
new score, the so-called activity area, was defined and presented in
this data set. Only 17 SqCC cell lines overlapped between the cell-
line expression data and the drug-sensitivity data.

The annotation of drug profiling can be found in the same
CCLE website.

Proliferation scores. Proliferation gene set includes BIRC5,
AURKB, CDC6, CKS2, TRAIP, CHEK1, PTTG1, DNMT1, NASP,
UNG, FEN1, MCM3, MCM4, MCM5, MCM6, ORC1L, PCNA,
PRIM1, RFC1, RRM1, RRM2, TOP2A, MAD2L1, CENPE, BUB1,
CTPS, DHFR, TYMS, CCNA1, CCNB1, CCNE1, CCNF, CDC20,
DDX11, E2F3MKI67, PKMYT1, PLK1, TIMP1, CDC25C, CENPF,
MAPK13, EXOSC9 and MYB. Proliferation score for a sample is
computed as the average log expression of these 43 genes in that
sample.

RESULTS

Signature genes for SqCC subtypes. The 178 samples include 43
basal, 65 classical, 27 primitive and 43 secretory samples with
robust separation among the subtypes. The sample relationship in
the SqCC subtype data is shown in the MDS plot (Figure 1A).

To define a specific gene signature for each subtype, we
performed the DE analysis of the RNAseq data (Smyth, 2004,
2005). We compare the gene-expression profiles among the
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Figure 1. Differential expression analysis results of the 178 SqCC tumour samples. (A) Multidimensional scaling plot of the normalised data for the
178 SqCC subtype samples. (B) Venn diagram of the DE analysis of the comparisons among six groups. The numbers represent the number of DE
genes in each comparison (red for up and blue for down). The total genes in each diagram is the number of DE genes including up and down in
any of the three comparisons involving that subtype. Regarding the subtypes, b for basal, c for classical, p for primitive and s for secretory.
The overlap of the three comparison results for that subtype defines the signature gene set for each of the four SqCC subtypes. (C) Heatmap to
shown the expression pattern of the signature gene sets (including up and down diretions) of the four SqCC subtypes in the 178 tumour samples.
No clustering method was used in this heatmap. Rows for genes, columns for samples.
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SqCC subtypes in the samples examined above. After normal-
isation, the data set was fitted to the linear model in which the
subtype is a covariate. Two types of comparisons were made,
the pairwise comparison among the four SqCC subtypes (six
pairwise comparisons among four subtypes, Figure 1B) and the
comparison of each single subtype to the average of the other three
subtypes termed as ‘1 vs others’ (four comparisons for four
subtypes). More detail of the DE results, including the heatmaps of
the significant DE genes in each of the six pairs, and these gene lists
in the pairwise comparisons are shown in Supplementary Figures
1–6 and Supplementary Tables 8–13. The significant DE gene sets
in the six comparisons (among four subtypes) may be overlapped.

On the basis of the DE results of the first type of six pairwise
comparisons, we defined a signature gene set for each of the
subtypes. A signature gene set of a subtype captures the uniqueness
of the subtype and has a very important role in relating different
data sets. In brief, signature genes were chosen if they were
consistently up- or downregulated in that subtype vs each of the
other subtypes (Figure 1B, Table 1). This procedure (Lim et al,
2009) selects a set of signature genes that strongly characterise each
subtype by their high or low transcriptional activity (heatmap in
Figure 1C). The signature genes in each of the four subtypes are
shown in Supplementary Tables 4–7. It is worth noting that there
are more positive-signature genes than negative-signature genes in
each of the subtypes. As shown in Figure 1C, the signature gene
sets are uniquely upregulated or downregulated in a subtype so that
the genes in signature gene sets are unique regarding regulation
directions.

For the second type of four comparisons, we identified
618 upregulated and 305 downregulated genes while comparing
the basal subtype to other three subtypes. There are 626
upregulated and 785 downregulated genes in the primitive subtype,
702 up- and 866 downregulated genes in the classical subtype,
and 1360 up- and 436 downregulated in the secretory subtype
(Table 1).

Pathway analysis for SqCC subtypes. To better understand the
four subtypes in terms of pathways, we performed a CAMERA
gene set test (Wu and Smyth, 2012), which considers the
expression of gene sets, such as pathways, instead of individual
genes. We used the curated gene sets in a publicly available gene set
database, the Category 2 in MsigDB (human version)
(Subramanian et al, 2005), which comprises 3272 sets. We aimed
to identify sets of genes that are differentially expressed among the
SqCC subtypes.

Here, we focused on the basal and primitive subtypes using the
‘1 vs others’ comparison. On the basis of the FDR cutoff 0.05 from
CAMERA in those four comparisons, the basal subtype has seven
significant gene sets in the up direction but no gene sets in the
down direction (Supplementary Table 1), and the primitive
subtype has 628 significant gene sets in the down direction but
no gene sets in the up direction (all these seven gene sets are also
among the 628 gene sets but in the reverse directions in the two
SqCC subtypes).

Next, for the 628 gene sets that are down in the primitive
subtype, we adjusted the multiple testing P-values generated by
CAMERA in the comparison of basal vs others. This is to focus on
the significance of the primitive signature gene set in the
comparison of basal vs others. On the basis of this procedure,
26 among the 628 are significant in basal vs others, and all of them
are upregulated in basal (Supplementary Table 2). The signi-
ficance of the gene set CHARAFE-BREAST-CANCER-BASAL-VS-
MESENCHYMAL-UP (adjusted P 0.01 in primitive down, 0.03
in basal up) with 115 genes suggests some shared genes in the
breast cancer basal subtype and the SqCC basal subtype.

Both of the gene sets RICKMAN-TUMOR-DIFFERENTIATED-
WELL-VS-POORLY-DN (with 361 genes) and RICKMAN-TUMOR-
DIFFERENTIATED-WELL-VS-MODERATELY-DN (with 108
genes) are significantly downregulated in primitive, and significantly
upregulated in basal at adjusted P 0.006 and 0.011, respectively. On the
other hand, the RICKMAN-TUMOR-DIFFERENTIATED-WELL-
VS-POORLY-UP gene set (with 226 genes) is the most upregulated
gene set in primitive, with nominal P-value 0.0015.

This gene set is also the second most downregulated gene set in
basal vs others, with the nominal P-value 0.0001. In brief, genes
overexpressed in the well-differentiated tumours are upregulated in
primitive and genes underexpressed in the well-differentiated
tumours are downregulated in primitive subtype. Therefore, the
primitive subtype may originate from a later differentiation stage
than the basal subtype.

Our pathway analysis results indicate that the basal and
primitive subtypes are very different subtypes, as they do not
share significant pathways in the same direction. The fact that the
basal SqCC subtype and the primitive subtype display the most
discordant overall survival in patients (Wilkerson et al, 2010) may
be explained by the differences in signature genes and signature
gene sets of the two subtypes.

Relationship between human bronchial epithelial normal cells at
different culture time points and SqCC subtypes. SqCC has been
considered to initiate in human bronchial epithelial cells but it is
not clear when, how and in which subpopulation of the cells
(Wilkerson et al, 2010). Investigators have compared the SqCC
subtypes to several model systems of normal lung cell compart-
ments. Here, we sought to evaluate this subtype to cell-type
relationship using the TCGA cohort and alternative statistical
methodology to that reported by Wilkerson et al (2010). We used a
previously reported gene-expression data set from the HBEC-ALIC
cell line in a time series of cultured normal, healthy, human
bronchial epithelial cells (Ross et al, 2007; Wilkerson et al, 2010).
The cells were collected at 11 different time points from day 0 to
day 28.

The order of the time points of the samples can almost be
recovered in the first dimension of the MDS plot (Figure 2). This
suggests that the samples can be clustered according to the time
points. The heatmap in this data set further confirms that there are
three clusters among the samples (Figure 2). To be convenient,
three clusters were defined by us as days 0, 1, 2, 4 for the early

Table 1. The number of signature/DE genes based on SqCC data

Signature genes from pairwise comparison DE genes from ‘1 vs others’ comparison

Direction Basal Classical Primitive Secretory Basal Classical Primitive Secretory

Up 164 278 217 378 618 702 626 1360

Down 18 145 160 39 305 866 785 436

Abbreviations: DE¼differential expression; FDR¼ false discovery rate. FDR o0.05, fold change 42.
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stage, days 8, 10, 12 for the middle stage and days 14, 17, 21, 28 for
the late stage.

We used the linear models and empirical Bayes methods
(Smyth, 2005) to perform the DE analysis of the bronchial time-
course data. In the linear model, the difference among time points
was considered. We also included the donor ID as a factor variable
in a random effect model, in which the correlation among samples
from the same donor was computed first before fitting the model.
In fact, the variable of time points can be either taken as a
continuous variable or as a categorical variable into three stages of
early, middle and late (Figure 2).

Here, we only showed the DE results from the three clusters of
samples as follows. The FDR was controlled globally using the
Benjamini and Hochberg algorithm. Probes with FDR o0.05 and
fold change 42 were judged to be differentially expressed.

Comparing the middle stage to the early stage, there are
605 upregulated probe sets and 302 downregulated probe sets.
Comparing the late stage to the middle stage, using the same
criteria, there are 843 upregulated probe sets and 534 down-
regulated probe sets.

Following logic similar to that of prior work (Lim et al, 2009),
signature scores of the subtypes and the bronchial epithelial culture
time points were computed. The signature scores include two
pieces of information – the average logFC of signature genes in
SqCC subtypes and the expression level at bronchial epithelial
culture time points. A signature score is defined for each SqCC
subtype and each bronchial sample. The higher the scores the more
similar the subtype and the bronchial samples are. The signature
scores were plotted according to subtypes and bronchial culture
time points in Figure 3. A linear model was run to test the trend of
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Figure 2. Sample relationship in the normal airway time-course data. (A) Multidimensional scaling plot of the normal airway time-course data. The
first dimension represents the HBEC-ALIC time points well. It suggests that the samples can be clustered into three stages of early, middle and
late. (B) Heatmap of the bronchial time-course data based on the hierarchical clustering. Five hundred genes with the largest variability across
samples were used. Columns are for samples and rows are for genes. The label for x axis is the days in culture. This plot further supports to cluster
the 11 tHBEC-ALIC time points into three clusters. Days 0, 1, 2, 4 are the early stage; days 8, 10, 12 are the middle stage and days 14, 17, 21, 28
are the late stage.
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the signature scores with the corresponding actual time points. The
P-values obtained from the linear model are as follows: 4.13e-05
for basal with slope � 0.014, 0.205 for classical with slope � 0.001,
1.74e-05 for primitive with slope 0.010733 and 0.0519 for secretory
with slope 0.0017. This suggests that there is a significant
association between SqCC subtype signature scores and time
points in basal and primitive subtypes. There is marginal
significance in the secretory subtype and no significance in the
classical subtype. Regarding the slope, classical and secretory
subtypes also have much smaller slopes that are 10–20% of the
slopes of the other two subtypes. In general, our results confirm
what was previously published using different tumour cohorts
(Wilkerson et al, 2010). The basal signature scores are highest in
the early bronchial samples, whereas the primitive signature scores
are highest in the late stage. Therefore, the basal SqCC subtype is
most similar to early bronchial samples in which there are
predominantly basal cells, and the primitive subtype is most
similar to late bronchial samples in which there are many cell types
and greater proliferation. The classical signature score is highest at
2d and 4d but lower in other early and late time points. The
classical subtype may come from early time points, but later than
the stage from which the basal subtype comes. The secretory
subtype is similar to the middle stage and the late stage culture in
which there are more secretory cells, although this association is
not as extreme as the primitive trend in our signature score
approach. This analysis discriminated the primitive and secretory
subtypes clearly, further indicating that these subtypes have
distinct biological properties.

To statistically confirm the conclusion we draw from the
signature scores, we performed a self-contained gene set test called
Rotation gene set test (ROAST) (Wu et al, 2010) to each subtype
signature gene set in the comparisons between the middle and
early stages, and between the late and middle stages. A self-
contained gene set test has high power to relate the two data sets of
the subtype data and the bronchial time series data by giving the
significance level of P-values. We used the average of moderated
t value as the summary statistics in ROAST. The results (ROAST
P-values 0.001–0.004 in different comparisons, detail not shown
here) confirmed the above conclusion and further suggested that

the order of similarity to the early bronchial epithelial culture time
from high to low is basal, classical, secretory and primitive, whereas
the order of similarity to the late culture is reversed as being
highest in the primitive subtype and lowest in the basal subtype.

Relationship between 20 SqCC human cell lines and the SqCC
subtypes. To help direct efforts for the discovery of therapeutic
targets in lung SqCCs, we classified 28 lung SqCC lines by
expression subtypes. In our study, a microarray data set of
28 SqCC cell lines (Table 2) was obtained from the Broad-Novartis
Cancer Cell Line Encyclopedia (CCLE) downloaded from
www.broadinstitute.org/ccle in May 2013. In Wilkerson et al
(2010), four SqCC cell lines, HCC-15, HCC-95, HCC-2450 and
H-157, have been previously classified into one of the four SqCC
subtypes. Among the four cell lines, HCC-15 and HCC-95 are the
only two cell lines in the 28 SqCC cell lines in CCLE.

The signature scores of the four SqCC subtypes in each of the
cell lines were computed (Figure 4). Here, these signature scores
were calculated based on the general cutoff as fold-change 2 and
FDR 0.05 to obtain the signature gene sets. The cell line ranks
of the scores in the four subtypes remain similar even if a less
stringent cutoff (fold-change 1.5 and FDR 0.1, detail unpublished)
is used. Higher scores represent higher similarities between
cell lines and SqCC subtypes.

A procedure was developed to generate reproducible classifica-
tion results using signature scores. We rank the 28 cell lines based
on their signature scores in a subtype – for example the basal
subtype. The rank is from 1 to 28. If each row is for a cell line in a
data matrix, we have four columns (cell line rank per subtype)
of the ranks as seen in Supplementary Table 14 and the ranks are
plotted in Figure 3, shown per cell line. The top ranks have smaller
rank numbers. Therefore, for each cell line, the subtype with the
smallest rank number was considered as the ‘1st subtype’ of
that cell line, followed by the second smallest rank number for the
‘2nd subtype’ of that cell line as in ‘subtype rank’ as seen in
Supplementary Table 14 and the corresponding brief Table 2. Here,
we use this procedure to determine the most similar subtype to a
cell line based on signature scores. We also include the ‘2nd
subtype’ to represent variability.

The cell line LUDLU-1 is similar to both basal and classical
subtypes. The cell line LC-1/sq-SF is most similar to the classical
subtype, and the similarity was ranked quite low in all the other
three subtypes. HCC-95 is most similar to the classical subtype, the
same as suggested in Wilkerson et al (2010). Although Wilkerson
et al (2010) suggested HCC-15 to be a primitive subtype, it may
have some mixed features of other subtypes for two reasons. First,
the range of signature scores of the cell lines to the primitive
subtypes is small; therefore, the difference among cell lines may be
subtle. Second, the signatures of HCC-15 in other three subtypes
are not very low. The brief results are shown in Table 2.

We assigned cell lines by two methods. Signature scores using
signature genes of subtypes provide a general relationship between
cell lines and subtypes. Some cell lines do not fit easily into a
subtype – for example, sq-1, Calu-1 and LUDLU-1 (Figure 4).
The classification method we next used gave a more clear
indication of subtypes.

As a complementary subtype assignment, a classification
method to nearest centroids (ClaNC), classified the 28 cell lines
into the four SqCC subtypes, with seven basal, seven classical, five
primitive and nine secretory cell lines (first subtype of ClaNC in
Table 2).

As ClaNC uses distance between 28 cell lines and 4 subtype
centroids, we output the distance matrix of 28� 4. The nearest
distance is used to define the ‘1st subtype’ – that is, the
classification results. We also obtained the ‘2nd subtype’ for a
cell line – that is, the second nearest centroid. To evaluate the
uncertainty of this classification method, we first made an MDS
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plot (Supplementary Figure 7) with the centralised tumour samples
together with the centralised cell line samples. This shows that the
cell line samples tend to be on the centre of all samples. We
permute the subtype labels randomly to generate four random
centroids for 1000 times. The distance between cell lines and
centroids is mostly in a much smaller scale (data not shown)
compared with the observed distance. This is because of the fact
that the cell-line samples tend to be on the centre of all samples. To
correct this scaling bias, for each sample, we convert the distance to
percentage of the distance to the sum of the four distances. This
was carried out in both permutation-based samples and
the observed cell-line samples. P-values were computed, as the
probability of the observed percentage–distance is larger than the
percentage–distance from the permutations. Smaller P-value
represents how significant the distance from the cell-line sample
to the nearest centroid is. Same procedure was performed for the
‘2nd subtype’ that shares exactly the same permutation. Here we
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Table 2. Classification results of the 28 SqCC cell lines to SqCC subtypes

Subtype rank ClaNC

Cell line
First
subtype

Second
subtype

First
subtype

Permutaion
P

Second
subtype

Permutation
P Predicted

With drug
data

NCI-H226 Secretory Primitive Secretory 0.16 Basal 0.457 Secretory y

EBC-1 Secretory Basal Basal 0.426 Primitive 0.277 Basal y

VMRC-LCP Basal Classical Basal 0.033 Classical 0.32 Basal

HCC-1588 Basal Primitive Basal 0.082 Secretory 0.595 Basal

RERF-LC-AI Primitive Secretory Primitive 0.07 Secretory 0.311 Primitive y

SK-MES-1 Primitive Secretory Basal 0.293 Secretory 0.318 Secretory y

NCI-H520 Classical Primitive Primitive 0.076 Classical 0.678 Primitive y

HCC-15 Classical Secretory Classical 0.061 Basal 0.528 Classical y

SW 900 Primitive Basal Secretory 0.109 Basal 0.25 Secretory y

LUDLU-1 Basal Classical Classical 0.024 Basal 0.077 Classical y

HARA Secretory Classical Basal 0.308 Secretory 0.557 Secretory y

KNS-62 Basal Classical Basal 0.118 Classical 0.551 Basal y

EPLC-272H Basal Primitive Basal 0.114 Secretory 0.339 Basal

HCC-95 Classical Secretory Classical 0.009 Basal 0.667 Classical

LC-1/sq-SF Classical NA Classical 0.013 Basal 0.688 Classical y

SW 1573 Secretory Primitive Primitive 0.108 Secretory 0.277 Primitive y

LC-1F Classical Basal Classical 0.012 Primitive 0.539 Classical

LOU-NH91 Secretory Primitive Secretory 0.19 Primitive 0.231 Secretory y

LK-2 Classical Primitive Primitive 0.074 Classical 0.585 Primitive

RERF-LC-Sq-1 Primitive Classical Secretory 0.293 Primitive 0.209 Primitive

HLF-a Primitive Classical Secretory 0.063 Primitive 0.233 Secretory

Calu-1 Primitive Secretory Secretory 0.08 Basal 0.583 Secretory y

NCI-H2170 Basal Classical Classical 0.114 Primitive 0.085 Classical y

Sq-1 Primitive NA Secretory 0.129 Basal 0.166 Secretory y

HCC-2814 Classical Basal Classical 0.048 Basal 0.369 Classical

HCC-1897 Secretory Primitive Secretory 0.07 Basal 0.39 Secretory

NCI-H1385 Classical Primitive Primitive 0.069 Classical 0.352 Primitive

NCI-H1869 Basal NA Secretory 0.244 Basal 0.303 Basal y

Abbreviations: ClaNC¼ classification method to nearest centroids; SqCC¼ squamous cell lung cancer.
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explained how to access the uncertainty of the classification
method ClaNC.

With the results from signature scores (first and second
subtypes) and ClaNC (first and second subtypes and P-values),
we determine the predicted subtype of a cell line. The criteria are as
follows: the permutation-based P-value for ClaNC first subtype
o0.2. If not, the majority vote is used among four columns
regarding first and second subtypes, and the prediction of these
samples is highlighted as blue in Supplementary Table 14, with less
certainty (Table 2).

In the ClaNC results, both cell lines HCC-95 and HCC-15 were
classified as classical samples. Therefore, HCC-95 is highly likely to
be a classical cell line, being consistent with the previous
classification (Wilkerson et al, 2010) and the results of signature
scores. HCC-15 has a mixed background.

Drug target of cancer cell lines. To determine whether expression
subtype may predict drug response in SqCC cell lines, we obtained
publicly available drug-sensitivity data for SqCC cell lines
(www.broadinstitute.org/ccle/data).

In the context of the pharmacological profiles for 24 anticancer
drugs across 504 cancer cell lines (Barretina et al, 2012), we located
the drug sensitivities for the different SqCC subtypes. Only 17 cell
lines among the 28 SqCC cell lines were treated in this drug-
response experiment (Barretina et al, 2012) (Table 2), with 24
drugs at eight dosages. According to ClaNC, the 17 cell lines
comprise four basal, four classical, three primitive and six secretory
SqCC cell lines. In Barretina et al (2012), a novel score termed
‘activity area’ was created to combine the information of the half
maximal inhibitory concentration (IC50), the half maximal

effective concentration (EC50) and maximum inhibited percentage
(MIP). A large activity area comprising small IC50, small EC50 and
larger MIP indicates high sensitivity of a cell line to a drug
(Supplementary Table 3, previously published (Barretina et al,
2012)).

The response sensitivities, represented by activity area, for the
17 cell lines as shown in Figures 5A and B, are varied across drugs.
Most cell lines responded to five of the drugs (Panobinostat,
17-AAG, Irinotecan, Topotecan and Paclitaxel). The drug
targets of these five drugs are HDAC, HSP90, Topoisomerase-I,
Topoisomerase-I and beta-tubulin, respectively. A basal cell line
EBC-1 is also sensitive to three additional drugs (PF2341066 with
target c-MET, AZD6244 with target MEK and PD-0325901 with
target MEK).

Compared with most of the basal and classical cell lines, the
secretory cell line NCIH-226 is least sensitive to the drugs
Panobinostat, 17-AAG, Irinotecan, Topotecan, Paclitaxel,
AZD6244 and PF2341066. For each cell line, we can calculate an
average activity area across drugs by averaging the columns in the
heatmap. The global mean of the average activity areas across the
drugs for the 17 cell lines is 1.34 (s.d.¼ 0.41).

On the basis of Figure 5B, there is a trend that the secretory cell
lines (orange colour) have lower activity area scores across drugs.
Particularly, all cell lines have at least moderate response to
Paclitaxel, whereas secretory cell lines have lower drug response to
Paclitaxel. As the secretory SqCC tumours have lower proliferation
activity, we investigate a proliferation score for each tumour
sample. We used a proliferation signature set of 43 genes
(Whitfield et al, 2006) to get a proliferation score for a tumour
sample that is the average log expression of these 43 genes in that
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Figure 5. Drug sensitivity to SqCC subtypes through CCLE. (A) Heatmap of the activity area score for 17 SqCC cell lines (four basal, four classical,
three primitive, six secretory and SqCC cell lines based on ClaNC) and the 24 drugs. The white block in the plot is for missing data due to the lack of
some drug treatments to the cell lines. The rows are for the SqCC cell lines and the columns are for the 24 drugs. Both dimensions have been clustered
by hierarchical clustering. The ClaNC results of SqCC subtype classification were shown for each cell line. (B) Scatter plot of the activity area score for 17
cell lines and 24 drugs. Colours represent the four subtypes. (C) On the left panel, proliferation scores for secretory SqCC samples or other SqCC
samples (P-value 7.5e-05). On the right panel, the activity area score of all 24 drugs for secretory cell lines or others (P-value 0.014). Secretory SqCC
subtype has lower proliferation scores and lower activity area scores of drug treatment. Two-sided P-value was obtained by Wilcoxon Rank sum test
(P-value 7.5e-05 on the left, 0.068 on the right). (D) Focusing on the five drugs (Panobinostat, 17-AAG, Irinotecan, Topotecan and Paclitaxel), this shows
the area scores for secretory cell lines are significantly different to the scores in each of the other three SqCC types of cell lines. Two-sided Wilcoxon
mean rank test was used (secretory vs basal P-value 0.002, vs classical P-value 0.006 and vs primitive P-value 0.071).
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sample. Higher proliferation score represents higher proliferation
activity. Figure 5C (left) shows that the secretory SqCC samples
have significant (P 7.5e-05) lower proliferation scores than other
subtypes. This might explain why the cell lines of the secretory
SqCC subtype have lower activity area scores of drug treatment at
P-value 0.014 (Figure 5C-right). Focusing on the five drugs
(Panobinostat, 17-AAG, Irinotecan, Topotecan and Paclitaxel), we
used two-sided Wilcoxon mean rank test to test whether the
average area scores for secretory cell lines are significantly different
to the scores in each of the other three SqCC types of cell lines
(Figure 5D). The secretory cell lines have significant lower scores
than basal (P-value 0.002), classical (P-value 0.006) and primitive
cell lines (P-value 0.071).

Overall, the SqCC cell lines are not sensitive to any drug with
EGFR or FGFR as the target. We reported what we observed and
the results seem reasonable in terms of the prior knowledge that
EGFR-targeted drugs are not for SqCC patients. Our results may be
generalised without the current limitation of the number of cell
lines and number of drugs. Generally speaking, a larger number of
SqCC cell lines and an increased number of profiled compounds
may be required to make more robust conclusions about the drug
repurpose for SqCC subtypes.

DISCUSSION

In this study, we describe the comprehensive data integration of
the relevant four data sets. They are the SqCC subtype data,
the human bronchial epithelial cell air–liquid interface culture
time-course data, the CCLE data and the drug-sensitivity data of
SqCC cell lines. This article not only shows a pipeline from
hypothesis-generating, DE data analysis to relating data sets across
experiments but also finds the difference of primitive and secretory
subtypes in terms of cells of origin and reveals a fundamental
question of the available representative cell lines for each of the
SqCC molecular subtypes. To be relevant to the clinic, drug
repurposing of SqCC has been explored based on the CCLE data
and is shown to have promising results.

Four SqCC subtypes have been identified (Wilkerson et al,
2010), including basal, primitive, classical and secretory subtypes.
Among them, the primitive subtype has the worst prognosis and
the basal subtype has better prognosis than the other subtypes.
We checked the sample relationship in the SqCC-subtype gene-
expression data and the four subtypes were roughly clustered by
themselves. To characterise functionally the different subtypes,
particularly the basal and the primitive subtypes, a competitive
gene set test that takes care of the gene–gene correlation
(CAMERA) has been used against the C2 gene sets in MsigDB.
We found that 26 significant gene sets overlap in the basal vs others
and the primitive vs others, but in opposite directions (upregulated
in the basal subtype and downregulated in the primitive subtype).

We defined signature gene sets for each SqCC subtype based on
the DE analysis of array data and calculated the signature scores for
each subtype and each bronchial epithelial sample. Signature scores
were used to represent the similarities between the subtype data
with the bronchial epithelial sample data. We have used the
signature scores to show that the early-stage bronchial epithelial
cells are most similar to the basal subtype, and the late-stage
bronchial epithelial cells are most similar to the primitive subtype.
Compared with the results in Wilkerson et al (2010), we have
clearly shown the difference between primitive and secretory
subtypes regarding the similarities to the bronchial epithelial cells
at different culturing days, as well as the stage of cells that needs to
be targeted. Potentially, we also aim to integrate the data of the
available cell types, stem cells among others, from normal lungs to
find which normal cell type tends to be the cell-of-origin of which
of the SqCC subtypes.

Lung cancer has been classified into two large categories and a
few smaller categories. New molecularly targeted therapies for lung
cancer (Sun et al, 2007) are of great interest. One piece of evidence
is that Gefitinib (IRESSA)-sensitive lung cancer cell lines show
phosphorylation of Akt without ligand stimulation (Noro et al,
2006). Perez-Moreno et al (2012) has reviewed the therapeutic
opportunities to SqCC based on known genetic alternations.
Hammerman et al (2011) among others investigated the novel
therapeutic target in SqCC. Wilkerson et al (2010) provided lists of
2—8 genes for the different SqCC subtypes.

The ultimate goal to study SqCC subtypes is to find a better
treatment for the patients who carry these subtypes. To potentially
use the genomic findings to guide drug repurposing (Collins,
2011), we also integrate publicly available drug-titration data with
the classification results of SqCC tumour cell lines to the SqCC
subtypes. Ideally, drug repurposing can be performed by knowing
the drug target (or a critical causal gene) of a disease and the drug-
targeted gene of a drug. Overlapping between the two targets
indicates that the drug can be repurposed as treatment of the
disease (Sanseau et al, 2012). Subtype-specific sensitivity in breast
cancer subtypes has been investigated (Heiser et al, 2012). For lung
cancer, previously Wistuba et al (1999) compared the features
of human NSCLC cell lines and their parental tumours using
immunohistochemical expression of 37 biomarkers and microsatel-
lite markers, and confirmed that the NSCLC cell lines generally retain
the properties of their parental tumours for quite long culture
periods. Very recently, Barretina et al (2012) have investigated the
possibility to predict anticancer drug sensitivity for hundreds of cell
lines in the CCLE project, including lung cancer cell lines. To
investigate the drug sensitivity in different SqCC subtypes, we have
used the drug-titration data for SqCC cell lines in CCLE.

Among this data set, 28 cell lines are annotated as SqCC cell lines.
Using ClaNC (Dabney, 2006), a novel classification method, we were
able to assign each of the 17 cell lines that have drug-titration data to
one of the SqCC subtypes. Although the primitive SqCC subtype tends
to have worse prognosis results and requires effective drugs, it is not
clear which drug can be proposed to be for this subtype, as there is only
one primitive SqCC cell line in the drug data. To fully study the
aggressive primitive subtype, more primitive SqCC cell lines need to be
developed. We also have investigated the association between the
proliferation activity in secretory tumour samples and the activity score
of drugs in secretory cell lines, which suggests that the lower drug
activity may be because of the lower proliferation activity in the
secretory subtype.

With more and more available data, our data-integration
procedure can be extended to many other heterogeneous cancer types.
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