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ABSTRACT
Background: Previous literature suggests a U-shaped relation between hemoglobin concentration and adverse birth

outcomes. There is less evidence on associations between iron status and birth outcomes.

Objective: Our objective was to determine the associations of maternal hemoglobin concentration and iron status with

birth outcomes.

Methods We conducted a secondary data analysis of data from 2 cohorts of pregnant women receiving iron-containing

nutritional supplements (20–60 mg ferrous sulfate) in Ghana (n = 1137) and Malawi (n = 1243). Hemoglobin concentration

and 2 markers of iron status [zinc protoporphyrin and soluble transferrin receptor (sTfR)] were measured at ≤20 weeks

and 36 weeks of gestation. We used linear and Poisson regression models and birth outcomes included preterm birth

(PTB), newborn stunting, low birth weight (LBW), and small-for-gestational-age.

Results: Prevalence of iron deficiency (sTfR >6.0 mg/L) at enrollment was 9% in Ghana and 20% in Malawi. In early

pregnancy, iron deficiency was associated with PTB (9% compared with 17%, adjusted RR: 1.63; 95% CI: 1.14, 2.33)

and stunting (15% compared with 23%, adjusted RR: 1.44; 95% CI: 1.09, 1.94) in Malawi but not Ghana, and was not

associated with LBW in either country; replete iron status (sTfR <10th percentile) was associated with stunting (9%

compared with 15%, adjusted RR: 1.71; 95% CI: 1.06, 2.77) in Ghana, but not PTB or LBW, and was not associated with

any birth outcomes in Malawi. In late pregnancy, iron deficiency was not related to birth outcomes in either country and

iron-replete status was associated with higher risk of LBW (8% compared with 16%, adjusted RR: 1.90; 95% CI: 1.17,

3.09) and stunting (6% compared with 13%, adjusted RR: 2.14; 95% CI: 1.21, 3.77) in Ghana, but was not associated

with birth outcomes in Malawi.

Conclusions: The associations of low or replete iron status with birth outcomes are population specific. Research to

replicate and extend these findings would be beneficial. These trials were registered at clinicaltrials.gov as NCT00970866

(Ghana) and NCT01239693 (Malawi). J Nutr 2019;149:513–521.

Keywords: pregnancy, iron deficiency, preterm birth, low birth weight, newborn stunting, anemia, iron status,
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Introduction

The WHO currently recommends daily supplementation with
30–60 mg/d elemental iron (+400 μg folic acid) throughout
pregnancy, and in settings where anemia in pregnant women is
a severe public health problem (prevalence of ≥40%), the daily
dose of 60 mg is recommended over a lower dose (1). Although

this amount of supplementation clearly reduces maternal iron
deficiency and anemia, it is questionable whether there is a
beneficial impact on birth outcomes (2) and there is concern
that high maternal iron status may have a negative impact on
the newborn (3).

Numerous studies have reported a U-shaped relation
between maternal hemoglobin (Hb) concentrations during
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pregnancy and adverse birth outcomes, with both low and high
Hb concentrations associated with higher risks of low birth
weight (LBW) and preterm birth (PTB) (4–7), although it is
unclear whether these associations are due to maternal iron
status or other mechanisms. Research incorporating specific
biomarkers of iron status is comparatively limited and has been
conducted primarily in higher-income countries where women
typically take lower doses of iron during pregnancy: increased
risk of adverse birth outcomes has been observed with both low
(8, 9) and high (10–14) maternal iron status.

A recent review noted that in studies that have examined
maternal iron status and birth outcomes, serum ferritin
concentration is the most widely used biomarker of iron status
(15). Serum ferritin concentration is an indicator of iron stores,
but is affected by inflammation. Furthermore, maternal plasma
volume normally expands during pregnancy [mainly in the
second and third trimesters (16, 17)] which leads to lower
concentrations of Hb, ferritin, and other biomarkers. Thus,
relatively high concentrations of Hb or ferritin in the second and
third trimesters could be a marker of inadequate plasma volume
expansion, which is associated with adverse birth outcomes.
Soluble transferrin receptor (sTfR) and zinc protoporphyrin
(ZPP) are alternative markers of iron status that may also be
affected by inflammation, but because they respond to iron
deficiency in the opposite direction to ferritin, lower values of
sTfR or ZPP indicate higher iron status, which would not be
caused by failure of plasma volume expansion.

Little research has been conducted regarding maternal iron
status and birth outcomes in sub-Saharan Africa (15), despite
the high prevalence of maternal anemia and iron deficiency in
the region. The aim of this cross-country comparison was to
examine the associations of maternal Hb concentration and
iron status during pregnancy with birth outcomes in Ghana and
Malawi. In particular, we were interested in both low and high
Hb concentration and iron status, as well as whether the timing
of these measurements (early compared with late pregnancy)
had any influence on the aforementioned associations.

Methods
Participants and study design
Women included in this cohort study were from 2 randomized
controlled trials conducted in Malawi (NCT01239693) and Ghana
(NCT00970866), both malaria-endemic countries, as part of the
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International Lipid-Based Nutrient Supplements Project (www.ilins.
org). The primary objective of these trials was to determine the
efficacy of small-quantity lipid-based nutrient supplements (SQ-LNSs)
for preventing malnutrition in pregnant and lactating women and their
infants. Details of the study methods have been reported elsewhere
(18–20). Briefly, the trials were similar in design, but each trial
operated independently and there were some differences in inclusion
and exclusion criteria. In both trials, women ≤20 weeks of gestation
were randomly assigned to receive daily throughout pregnancy either:
1) a 60-mg Fe (ferrous sulfate) +400-μg folic acid capsule; 2) a
multiple micronutrient capsule (18 micronutrients); or 3) a sachet of
SQ-LNS (118 kcal, 22 micronutrients, essential fatty acids, and protein).
Both the multiple micronutrient capsule and SQ-LNS contained 20
mg Fe (ferrous sulfate) per daily supplement. Differences in inclusion
and exclusion criteria included maternal age (Ghana trial: ≥18 y
of age; Malawi trial: ≥15 y of age) and HIV status (Ghana trial:
excluded women if they were HIV positive; Malawi trial: did not
exclude women if they were HIV positive). Women received intermittent
preventive malaria treatment in accordance with standard antenatal
care recommendations in Ghana and Malawi. At both enrollment and
36 weeks of gestation, trained phlebotomists collected blood samples by
venipuncture with heparinized blood collection tubes. Blood samples
were typically collected in the morning, with the majority of samples
collected between 0800 and 1200. Previous studies suggest that time
of day does not affect the reliability of markers of iron status (21).
In Ghana, we referred any woman with Hb <70 g/L at baseline or
<100 g/L at 36 weeks of gestation to the hospital for treatment of
anemia, but allowed them to remain in the study. In Malawi, we
excluded women with Hb <50 g/L at baseline (<0.1% of women) and
referred them for treatment; women with Hb 50–69 g/L at baseline were
treated with iron supplements if found to be iron deficient according
to ZPP plasma concentration and were allowed to remain in the
study. Both trials collected sociodemographic information and trained
anthropometrists measured maternal weight and height at enrollment.

Women from these trials were included in this cohort study if they
had: 1) at least one measurement of Hb concentration or iron status,
at either enrollment or 36 weeks of gestation, and 2) any newborn
anthropometric measurement or an estimated pregnancy duration.
We have previously reported that supplementation with SQ-LNSs or
multiple micronutrients resulted in lower Hb and iron status at 36 weeks
of gestation than for the iron and folic acid trial arm (22, 23). Assigned
supplement group in the main trial was not the focus of the current
study and was controlled for in analyses of the 36-wk measurements.

Birth outcomes
In Ghana, newborn measurements were obtained by fieldworkers within
48 h after birth for 90.6% of infants and between 3 and 14 d for 9.4% of
infants. In Malawi, fieldworkers measured birth weight usually within
48 h after birth, with 10.9% of birth weights obtained between 3 and 14
d. All other newborn anthropometry for the Malawi trial was completed
at a clinic visit 1–2 wk after birth. All newborn anthropometric
measurements obtained 3–14 d after birth were back-calculated using
formulae described by the WHO (24). Fieldworkers measured birth
weight to the nearest 20 g (Seca 383; Seca GmbH & Co.), length to
the nearest 0.1 cm (Ghana: Seca 416; Seca GmbH & Co.; Malawi:
Harpenden Infantometer; Holtain Limited), and head circumference
to the nearest 0.1 cm (Shorrtape, Weight and Measure, LLC). We
determined gestational age at enrollment by ultrasound (Ghana: Aloka
SSD 500; Malawi: EDAN DUS 3 Digital Ultrasonic Diagnostic Imaging
System; EDAN Instruments Inc.) and date of birth was obtained by
interviewing the mother and confirmed with the infant’s hospital or
health card when available.

Laboratory analysis
Laboratory technicians assayed Hb (HemoCue) and malaria para-
sitemia with rapid tests (Ghana: Vision Biotech; Malawi: Clearview
Malaria Combo; British Biocell International Ltd.) in peripheral blood
and centrifuged the remaining blood samples at 1252 × g for 15 min
at room temperature to separate RBCs and plasma. RBCs were washed
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TABLE 1 Characteristics of 2 study cohorts of pregnant women in Ghana and Malawi at ≤20
weeks of gestation1

Ghana (n = 1137) Malawi (n = 1243) P

Maternal age, y 26.7 ± 5.5 25.3 ± 6.1 <0.001
Nulliparous women 33.8 19.7 <0.001
Male fetus2 48.4 48.7 0.88
Gestational age, wk 16.1 ± 3.3 16.8 ± 2.1 <0.001
BMI, kg/m2 24.7 ± 4.2 22.1 ± 2.8 <0.001
Overweight or obese (BMI ≥ 25 kg/m2) 42.3 12.0 <0.001
Low BMI (<18.5 kg/m2) 2.9 5.6 0.001
Positive HIV test —3 12.5 —3

Positive malaria test 10.2 22.7 <0.001
Household Food Insecurity Index4 2.6 ± 4.3 4.9 ± 4.5 <0.001

1Values are means ± SDs or percentages; P values are for chi-square tests (categorical variables) or t tests (continuous variables).
2Based on infant sex at birth.
3HIV+ women were not enrolled in the Ghana trial.
4Scale ranging from 0 (no food insecurity) to 27 (every food insecurity condition occurs often).

3 times with normal saline and we used the original Aviv cover-slides
and 3-level control material for the ZPP measurements obtained using a
hematofluorometer (Aviv Biomedical, Inc.). Plasma samples were stored
at −20◦C and shipped to the USDA Agricultural Research Service
Western Human Nutrition Research Center, Davis, CA where sTfR
(mg/L), α-1-acid glycoprotein [AGP (g/L)], and C-reactive protein [CRP
(mg/L)] concentrations were determined using a Cobas Integra 400 plus
Automatic Analyzer (Roche Diagnostic Corp.). The inter- and intra-
assay CVs for these assays were: 1) sTfR intra-assay: <2.2%, interassay:
<1.1%; 2) AGP intra-assay: <2.9%, interassay: <2.0%; 3) CRP: intra-
assay: <3.5%, interassay: <1.3%.

Statistical analysis
We tested normality using the Shapiro–Wilk test. Hb was determined
to have a normal distribution and ZPP and sTfR concentrations were
log transformed. We also analyzed Hb, ZPP, and sTfR using categorical
variables. We defined anemia using a cutoff value of Hb <100 g/L,
based on research suggesting that this cutoff value is more accurate
when defining anemia in pregnant women of African descent (7, 25,
26). We defined high Hb as >130 g/L (2) and elevated sTfR (proxy for
tissue iron deficiency) as >6.0 mg/L. We derived the 6.0 mg/L cutoff
value for sTfR based on previous research reporting that sTfR values
obtained using the Automatic Analyzer assay (as used in this study) are
on average 30% lower than values obtained with the ELISA assay (27).
Therefore, we reduced by 30% the 8.5 mg/L cutoff value used when
sTfR is determined with ELISA (28) to obtain the cutoff of ∼6.0 mg/L
for our analysis. We defined iron deficiency anemia (IDA) as Hb <100
g/L and sTfR >6.0 mg/L. A study in an adult nonpregnant African

population indicated that sTfR concentration is inversely correlated
with tissue iron concentrations and is decreased in the presence of iron
overload (29), although there is no such evidence for ZPP. Due to the
lack of a published cutoff for low sTfR, we categorized women as iron
replete if sTfR was <10th percentile based on the distribution within
each cohort.

For each country, we used linear regression models to examine the
associations of Hb, ZPP, and sTfR with birth outcomes as continuous
variables [duration of gestation, birth weight, length-for-age z score
(LAZ), and head circumference z score (HCZ)]. Poisson regression
models were used to estimate RR for dichotomous birth outcomes,
including PTB (<37 weeks of gestation), LBW (<2.5 kg), small-for-
gestational-age (SGA) [birth weight <10th percentile by gestational
age and sex using the INTERGROWTH-21st standard (30, 31)], and
stunting (LAZ <−2), in association with the dichotomous predictors of
Hb and iron status defined previously. PTB was examined only with
respect to measurements of Hb and iron status taken at enrollment
because many PTBs occurred before the 36 wk blood draw. HCZ
was not analyzed as a categorical variable owing to a low number
of infants with HCZ <−2. We checked all models for U-shaped
relations using quadratic terms and found a lack of any U-shaped
relations except for 1 association (Hb concentration at 36 wk and
pregnancy duration). We considered covariates for inclusion in the
model if they were significantly (P < 0.1) associated with the outcome
in bivariate analyses. Based on previous literature, variables identified
a priori as potential confounding factors were gestational age at
enrollment, parity (nulliparous compared with parous), maternal age,
education level, household food insecurity, household asset index, AGP

TABLE 2 Prevalence of anemia and iron deficiency and mean concentrations of Hb, markers of iron status, and inflammation at ≤20
weeks and 36 weeks of gestation in pregnant women in Ghana and Malawi1

≤20 weeks of gestation 36 weeks of gestation

Ghana (n = 1137)2 Malawi (n = 1243)2 P Ghana (n = 1137)2 Malawi (n = 1243)2 P

CRP, mg/L 6.9 ± 11.6 8.7 ± 17.8 0.003 5.7 ± 15.8 6.5 ± 14.1 0.27
AGP, g/L 0.65 ± 0.21 0.73 ± 0.25 <0.001 0.48 ± 0.20 0.56 ± 0.23 <0.001
Hb, g/L 111 ± 12 112 ± 16 0.85 117 ± 12 111 ± 15 <0.001
Anemia (Hb <100 g/L) 14.0 18.6 <0.001 6.0 19.6 <0.001
sTfR, mg/L 4.1 ± 2.6 4.7 ± 2.7 <0.001 4.5 ± 1.7 5.6 ± 3.0 <0.001
ZPP, μmol/mol heme 45 ± 28 53 ± 40 <0.001 46 ± 23 60 ± 41 <0.001
Iron deficiency (sTfR >6.0 mg/L) 9.3 19.7 <0.001 14.6 33.5 <0.001
IDA (Hb <100 g/L and sTfR >6.0 mg/L) 4.3 6.7 0.001 2.9 10.1 <0.001

1Values are means ± SDs or percentages; P values are for chi-square tests (categorical variables) or t tests (continuous variables). AGP, α-1-acid glycoprotein; CRP, C-reactive
protein; Hb, hemoglobin; IDA, iron deficiency anemia; sTfR, soluble transferrin receptor; ZPP, zinc protoporphyrin.
2Missing data at enrollment for Ghana included CRP (n = 21), AGP (n = 21), sTfR (n = 21), ZPP (n = 2), and IDA (n = 21) and for Malawi included CRP (n = 7), AGP (n = 7), Hb
(n = 1), sTfR (n = 7), ZPP (n = 52), and IDA (n = 7). Missing data at week 36 for Ghana included CRP (n = 156), AGP (n = 156), Hb (n = 152), sTfR (n = 156), ZPP (n = 157), and
IDA (n = 159) and for Malawi included CRP (n = 140), AGP (n = 136), Hb (n = 165), sTfR (n = 136), ZPP (n = 187), and IDA (n = 183).
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TABLE 3 Standardized regression coefficients of Hb, sTfR, and ZPP with pregnancy duration and newborn anthropometric
indicators in Ghana and Malawi1

Hb sTfR ZPP

Adjusted β (95% CI)2 P Adjusted β (95% CI)2 P Adjusted β (95% CI)2 P

Early pregnancy: <20 wk
Pregnancy duration

Ghana 0.05 (−0.01, 0.12) 0.11 0.00 (−0.06, 0.06) 0.92 0.04 (−0.02, 0.10) 0.18
Malawi 0.09 (0.03, 0.14) 0.004 − 0.07, (−0.13, −0.02) 0.01 − 0.07 (−0.12, −0.01) 0.02

Birth weight
Ghana 0.03 (−0.03, 0.08) 0.39 0.02 (−0.04, 0.08) 0.48 0.01 (−0.04, 0.07) 0.68
Malawi 0.08 (0.02, 0.15) 0.006 − 0.10 (−0.16, −0.04) <0.001 − 0.03 (−0.09, 0.03) 0.35

Newborn LAZ
Ghana 0.01 (−0.05, 0.07) 0.66 0.06 (0.00, 0.12) 0.03 0.05 (0.00, 0.11) 0.07
Malawi 0.08 (0.02, 0.14) 0.007 − 0.10 (−0.16, −0.04) <0.001 − 0.06 (−0.12, −0.003) 0.04

Newborn HCZ
Ghana 0.03 (−0.03, 0.09) 0.35 0.03 (−0.03, 0.09) 0.37 0.04 (−0.02, 0.10) 0.21
Malawi 0.05 (−0.01, 0.11) 0.13 − 0.07, (−0.13, −0.01) 0.03 − 0.02 (−0.08, 0.04) 0.58

Late pregnancy: 36 wk
Pregnancy duration

Ghana —3 —3 0.05 (−0.01, 0.09) 0.10 0.00 (−0.05, 0.04) 0.88
Malawi − 0.02 (−0.05, 0.01) 0.27 − 0.03 (−0.07, 0.001) 0.055 − 0.03 (−0.06, 0.002) 0.07

Birth weight
Ghana − 0.04 (−0.10, 0.02) 0.18 0.10 (0.03, 0.15) 0.002 0.09 (0.02, 0.14) 0.01
Malawi − 0.03 (−0.08, 0.03) 0.32 0.001 (−0.06, 0.06) 0.96 0.04 (−0.02, 0.09) 0.24

Newborn LAZ
Ghana − 0.05 (−0.10, 0.01) 0.12 0.10 (0.03, 0.15) 0.002 0.07 (0.00, 0.12) 0.04
Malawi 0.001 (−0.05, 0.06) 0.97 0.01 (−0.05, 0.06) 0.85 0.01 (−0.04, 0.07) 0.69

Newborn HCZ
Ghana − 0.03 (−0.09, 0.03) 0.33 0.07 (0.01, 0.12) 0.03 0.04 (−0.02, 0.09) 0.18
Malawi − 0.05 (−0.10, 0.01) 0.14 0.04 (−0.02, 0.09) 0.21 0.07 (−0.0004, 0.12) 0.052

1Hb, hemoglobin; HCZ, head-circumference-for-age z score; LAZ, length-for-age z score; sTfR, soluble transferrin receptor; ZPP, zinc protoporphyrin.
2Standardized regression coefficients. Adjusted models included the following covariates if significantly (P < 0.1) associated with the outcome: gestational age at enrollment,
parity, maternal age, education level, household food insecurity, household asset index, α-1-acid glycoprotein at the time the blood sample was drawn, C-reactive protein at the
time the blood sample was drawn, infant sex, maternal BMI at enrollment, maternal malaria at enrollment, and HIV status (Malawi models only). All 36-wk models adjusted for
intervention group. Specifics regarding each adjusted model are provided in the Supplemental Methods.
3U-shaped relation; see Figure 1.

at the time the blood sample was drawn, CRP at the time the blood
sample was drawn, infant sex, baseline maternal BMI (in kg/m2), a
positive rapid test for malaria at enrollment, and HIV status (Malawi
models only). Household food insecurity was measured using a scale
ranging from 0 (no food insecurity) to 27 (every food insecurity
condition occurs often) (32). We created the household asset index
based on lighting source, drinking water supply, sanitation facilities,
flooring materials, radio, television, refrigerator, cell phone, and stove
using principal components analysis (33). Specific multivariable models
for each outcome are provided in the Supplemental Methods. All
multivariable models examining 36-wk measurements of Hb and iron
status were also adjusted for intervention group.

Interactions with maternal age, parity, and supplement group were
examined and determined to be significant at P < 0.1, and stratified
analyses were performed for significant interactions. All analyses were
performed using SAS version 9.4 (SAS Institute).

Results

Of the 1320 and 1391 women enrolled in the trials in
Ghana and Malawi, respectively, 1137 and 1243 were included
in this set of analyses, respectively. Reasons for exclusion
included twin pregnancy (Ghana: n = 22, Malawi: n = 12),
miscarriage (Ghana: n = 37, Malawi: n = 10), stillbirth (Ghana:
n = 29, Malawi: n = 26), and loss-to-follow-up (Ghana:
n = 95, Malawi: n = 100) (Supplemental Figure 1). In Malawi,

included participants were more likely to be older (25 compared
with 24 y, P < 0.001); have a lower proxy SES (−0.04
compared with 0.18, P < 0.002); and be less often nulliparous
(19.7% compared with 28.8%, P < 0.001), HIV positive
(12.5% compared with 17.8%, P = 0.029), or anemic (18.6%
compared with 27.6%, P < 0.001) than excluded participants,
but they had similar BMI, years of education, and malaria
rates at enrollment to those excluded. In Ghana, excluded study
participants did not differ from included participants in any
of the aforementioned listed characteristics. Study participant
characteristics are provided in Table 1.

Prevalence of anemia (Hb <100 g/L), iron deficiency (sTfR
>6.0 mg/L), and IDA and mean concentrations of Hb, sTfR, and
ZPP at enrollment and 36 weeks of gestation are presented in
Table 2. Mean ± SD pregnancy duration was 39.3 ± 1.9 wk and
39.1 ± 2.9 wk in Ghana and Malawi, respectively. Newborn
mean ± SD birth weight was 2982 ± 432 g in Ghana and
2970 ± 447 g in Malawi. Adverse birth outcomes included PTB
(Ghana: 8.5%, Malawi: 10.0%), LBW (Ghana: 11.8%, Malawi:
12.8%), SGA (Ghana: 21.8%, Malawi: 29.5%), and stunting
(Ghana: 9.4%, Malawi: 16.0%).

Hb and iron status at enrollment—associations with
birth outcomes

At enrollment, Hb concentration in adjusted linear regression
analyses was not associated with any birth outcomes in
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TABLE 4 Risk of adverse birth outcomes for women with iron deficiency during early or late
pregnancy1

Without iron deficiency,
n/total n (%)2

With iron deficiency,
n/total n (%)3 Adjusted RR (95% CI)4 P

Early pregnancy: ≤20 wk
PTB

Ghana 77/924 (8.3) 10/102 (9.8) 1.13 (0.61, 2.11) 0.70
Malawi 82/912 (9.0) 41/248 (16.5) 1.63 (1.14, 2.33) 0.007

LBW
Ghana 110/923 (11.9) 7/102 (6.9) 0.51 (0.24, 1.05) 0.07
Malawi 100/813 (12.3) 35/210 (16.7) 1.24 (0.87, 1.75) 0.23

SGA
Ghana 194/889 (21.8) 19/100 (19.0) 0.87 (0.57, 1.33) 0.53
Malawi 195/788 (24.7) 58/205 (28.3) 1.15 (0.89, 1.49) 0.27

Newborn stunting
Ghana 78/918 (8.5) 7/102 (6.9) 0.81 (0.39, 1.68) 0.56
Malawi 114/762 (15.0) 48/205 (23.4) 1.44 (1.09, 1.94) 0.01

Late pregnancy: 36 wk
LBW

Ghana 58/753 (7.7) 10/141 (7.1) 0.78 (0.42, 1.44) 0.43
Malawi 53/560 (9.5) 34/327 (10.4) 0.97 (0.65, 1.46) 0.89

SGA
Ghana 161/735 (21.9) 28/138 (20.3) 0.82 (0.57, 1.18) 0.28
Malawi 137/546 (25.1) 84/321 (26.2) 1.03 (0.82, 1.29) 0.81

Newborn stunting
Ghana 42/750 (5.6) 6/141 (4.3) 0.64 (0.28, 1.45) 0.28
Malawi 76/536 (14.2) 38/317 (12.0) 0.76 (0.53, 1.08) 0.13

1PTB: <37 weeks of gestation; LBW: <2.5 kg; SGA: birth weight <10th percentile by gestational age and sex using the
INTERGROWTH-21st standard (30); stunting: length-for-age z score <−2. LBW, low birth weight; PTB, preterm birth; SGA, small-
for-gestational-age; sTfR, soluble transferrin receptor.
2Women with sTfR ≤6.0 mg/L. The reference group excluded women with iron-replete status (sTfR <10th percentile). At ≤20 wk,
this was <2.49 mg/L for Ghana and <2.65 mg/L for Malawi. At 36 wk, this was <2.86 mg/L for Ghana and <3.08 mg/L for Malawi.
3sTfR >6 mg/L.
4Adjusted models included the following covariates if significantly (P < 0.1) associated with the outcome: gestational age at
enrollment, parity, maternal age, education level, household food insecurity, household asset index, α-1-acid glycoprotein at the time
the blood sample was drawn, C-reactive protein at the time the blood sample was drawn, infant sex, maternal BMI at enrollment,
maternal malaria at enrollment, and HIV status (Malawi models only). All 36-wk models adjusted for intervention group. Specifics
regarding each adjusted model are provided in the Supplemental Methods.

Ghana but was associated with a longer pregnancy duration,
higher birth weight, and higher newborn LAZ in Malawi
(Table 3). Higher sTfR, indicating a lower iron status, was
associated with a shorter pregnancy duration, lower birth
weight, lower newborn LAZ, and lower HCZ in Malawi, but
was associated with a higher newborn LAZ in Ghana. Higher
ZPP, also an indicator of lower iron status, was associated
with a shorter pregnancy duration and lower newborn LAZ
in Malawi but was not associated with any birth outcomes
in Ghana. Supplemental Table 1 provides a nonnumeric
visual overview of the associations presented in Table 3 and
unadjusted results are presented in Supplemental Table 2. There
were no significant interactions of Hb concentration or iron
status at enrollment with maternal age, parity, or supplement
group.

Anemia (Supplemental Table 3), iron deficiency (Table 4),
and IDA (Table 5) at enrollment were all associated with an
increased risk of PTB in Malawi; iron deficiency and IDA
were also associated with increased risk of newborn stunting.
In Ghana, anemia was not associated with adverse birth
outcomes; however, IDA was associated with a decreased risk
of LBW (P = 0.046) and iron deficiency showed a similar trend
(P = 0.07). High Hb (>130 g/L) was not associated with adverse
birth outcomes in either Ghana or Malawi (Supplemental Table
4), although replete iron status (sTfR <10th percentile) was

associated with an increased risk of newborn stunting in Ghana
(Table 6). Unadjusted results for anemia, iron deficiency, IDA,
high Hb, and iron-replete status are presented in Supplemental
Tables 5–9.

In unadjusted analyses, there was a significantly higher risk
of LBW for women with IDA in Malawi that was attenuated and
became nonsignificant in adjusted results. All other unadjusted
results were similar to adjusted results.

Hb and iron status at 36 weeks of
gestation—associations with birth outcomes

At 36 weeks of gestation, a U-shaped relation between Hb
concentration and pregnancy duration was evident in Ghana,
with both low and high Hb concentrations associated with a
shorter duration of gestation (Figure 1). Hb concentration was
not associated with any other birth outcomes. Higher sTfR
(indicator of lower iron status) was associated with a higher
birth weight, LAZ, and HCZ in Ghana but was not associated
with any birth outcomes in Malawi. Higher ZPP (indicator of
lower iron status) was associated with a greater birth weight
and LAZ in Ghana but was not associated with any birth
outcomes in Malawi (Table 3). Supplemental Table 1 provides
a nonnumeric visual overview of the associations presented in
Table 3. Unadjusted results were similar to adjusted results and
are presented in Supplemental Table 2. There were no significant
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TABLE 5 Risk of adverse birth outcomes for women with IDA during early or late pregnancy1

Without IDA, n/total n (%)2 With IDA, n/total n (%)3 Adjusted RR (95% CI)4 P

Early pregnancy: ≤20 wk
PTB

Ghana 92/1089 (8.5) 5/48 (10.4) 1.13 (0.52, 2.47) 0.75
Malawi 104/1181 (8.8) 25/106 (23.6) 2.23 (1.48, 3.37) <0.001

LBW
Ghana 132/1088 (12.1) 1/48 (2.1) 0.14 (0.02, 0.97) 0.046
Malawi 129/1051 (12.3) 17/86 (19.8) 1.45 (0.94, 2.25) 0.10

SGA
Ghana 234/1051 (21.3) 6/48 (12.5) 0.55 (0.26, 1.17) 0.12
Malawi 306/1051 (29.1) 26/83 (31.3) 1.38 (0.99, 1.91) 0.057

Newborn stunting
Ghana 101/1083 (9.3) 1/48 (2.1) 0.21 (0.03, 1.45) 0.11
Malawi 147/997 (14.7) 25/85 (29.4) 1.85 (1.30, 2.64) <0.001

Late pregnancy: 36 wk
LBW

Ghana 81/963 (8.4) 2/27 (7.4) 0.57 (0.18, 1.80) 0.34
Malawi 86/837 (10.3) 10/102 (9.8) 0.85 (0.46, 1.57) 0.60

SGA
Ghana 217/941 (23.1) 5/27 (18.5) 0.57 (0.22, 1.43) 0.23
Malawi 251/837 (30.0) 25/101 (24.8) 0.98 (0.70, 1.38) 0.92

Newborn stunting
Ghana 57/960 (5.9) 2/27 (7.4) 0.73 (0.18, 2.94) 0.66
Malawi 105/810 (13.0) 16/95 (16.8) 1.19 (0.76, 1.86) 0.45

1PTB: <37 weeks of gestation; LBW: <2.5 kg; SGA: birth weight <10th percentile by gestational age and sex using the
INTERGROWTH-21st standard (30); stunting: length-for-age z score <−2. Hb, hemoglobin; IDA, iron deficiency anemia; LBW, low
birth weight; PTB, preterm birth; SGA, small-for-gestational-age; sTfR, soluble transferrin receptor.
2Women with Hb ≥100 g/L and sTfR ≤6.0 mg/L.
3Defined as Hb <100 g/L and sTfR >6.0 mg/L.
4Adjusted models included the following covariates if significantly (P < 0.1) associated with the outcome: gestational age at
enrollment, parity, maternal age, education level, household food insecurity, household asset index, α-1-acid glycoprotein at the time
the blood sample was drawn, C-reactive protein at the time the blood sample was drawn, infant sex, maternal BMI at enrollment,
maternal malaria at enrollment, and HIV status (Malawi models only). All 36-wk models adjusted for intervention group. Specifics
regarding each adjusted model are provided in the Supplemental Methods.

interactions of Hb concentration or iron status at 36 wk with
maternal age, parity, or supplement group.

Anemia (Supplemental Table 3), iron deficiency (Table 4),
and IDA (Table 5) at 36 wk were not associated with any
adverse birth outcomes in Ghana or Malawi. There were also
no associations in either country between high Hb and adverse
birth outcomes (Supplemental Table 4). Replete iron status
was not associated with adverse birth outcomes in Malawi.
In Ghana, replete iron status was associated with an increased
risk of LBW, SGA, and newborn stunting (Table 6). Unadjusted
results for anemia, iron deficiency, IDA, high Hb, and iron-
replete status are presented in Supplemental Tables 5–9. All
unadjusted results were similar to adjusted results.

Discussion
This study examined associations of maternal Hb concentration
and iron status with birth outcomes in 2 cohorts of pregnant
women in Africa. In Malawi but not in Ghana, iron deficiency
and IDA in early pregnancy were related to PTB and newborn
stunting, and anemia in early pregnancy was also related to PTB.
By contrast, in Ghana iron-replete status in early pregnancy was
associated with newborn stunting, and iron deficiency and IDA
in early pregnancy were related to lower risk of LBW. Anemia,
iron deficiency, and IDA in late pregnancy were not significantly
related to birth outcomes in either country, although replete iron

status in late pregnancy was related to higher risk of LBW, SGA,
and newborn stunting in Ghana.

In populations at risk of anemia or iron deficiency, higher
maternal Hb concentrations and iron status have often been
associated with better birth outcomes (34, 35). Higher Hb
or higher iron status may improve the systemic response
to inflammation and infection, reduce the stress response
from chronic hypoxia, and lower oxidative stress via less
erythrocyte oxidation (36, 37). However, previous studies did
not distinguish anemia or iron deficiency by timing in pregnancy
(i.e., early compared with late pregnancy). Associations with
biomarkers in late pregnancy are complicated by the issue
of plasma volume expansion (PVE). Maternal plasma volume
expands during normal pregnancy, resulting in lower concentra-
tions of Hb and other biomarkers. In iron-replete populations,
higher Hb concentration and iron status have been associated
with adverse birth outcomes (15); however, inadequate PVE is
also associated with adverse birth outcomes, thus making it
difficult to interpret associations of adverse birth outcomes with
high Hb or ferritin (a marker of iron storage).

In Ghana and Malawi, we measured sTfR and ZPP
concentrations as biomarkers of iron status. Ferritin was not
included because its utility is limited during periods when
there is little iron storage because of high requirements, such
as the second and third trimesters of pregnancy. During such
times, iron storage may be low but iron concentrations for
physiological needs may still be adequate and may be more
accurately assessed using other markers (38). Unlike Hb or
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TABLE 6 Risk of adverse birth outcomes for women with iron-replete status during early or late
pregnancy1

Reference group (sTfR ≥10th
percentile), n/total n (%)2

With iron-replete status (sTfR
<10th percentile), n/total n (%)3 Adjusted RR (95% CI)4 P

Early pregnancy: ≤20 wk
PTB

Ghana 77/924 (8.3) 10/111 (9.0) 0.88 (0.44, 1.76) 0.71
Malawi 82/912 (9.0) 6/128 (4.7) 0.66 (0.29, 1.48) 0.31

LBW
Ghana 110/923 (11.9) 16/111 (14.4) 1.06 (0.66, 1.70) 0.81
Malawi 100/813 (12.3) 11/115 (9.6) 0.81 (0.46, 1.45) 0.80

SGA
Ghana 194/889 (21.8) 27/110 (24.6) 1.09 (0.76, 1.55) 0.64
Malawi 195/788 (24.7) 24/111 (21.6) 0.82 (0.57, 1.19) 0.30

Newborn stunting
Ghana 78/918 (8.5) 17/111 (15.3) 1.71 (1.06, 2.77) 0.03
Malawi 114/762 (15.0) 10/116 (8.6) 0.60 (0.33, 1.11) 0.10

Late pregnancy: 36 wk
LBW

Ghana 58/753 (7.7) 16/99 (16.2) 1.90 (1.17, 3.09) 0.01
Malawi 53/560 (9.5) 14/99 (14.1) 1.39 (0.81, 2.39) 0.23

SGA
Ghana 161/735 (21.9) 34/98 (34.7) 1.51 (1.12, 2.05) 0.01
Malawi 137/546 (25.1) 23/98 (23.5) 0.92 (0.62, 1.36) 0.67

Newborn stunting
Ghana 42/750 (5.6) 13/99 (13.1) 2.14 (1.21, 3.77) 0.01
Malawi 76/536 (14.2) 12/101 (11.9) 0.73 (0.42, 1.26) 0.26

1PTB: <37 weeks of gestation; LBW: <2.5 kg; SGA: birth weight <10th percentile by gestational age and sex using the
INTERGROWTH-21st standard (30); stunting: length-for-age z score <−2. LBW, low birth weight; PTB, preterm birth; SGA, small-
for-gestational-age; sTfR, soluble transferrin receptor.
2The reference group excluded women with iron deficiency (sTfR >6.0 mg/L).
3sTfR <10th percentile; at ≤20 wk, this was <2.49 mg/L for Ghana and <2.65 mg/L for Malawi. At 36 wk, this was <2.86 mg/L for
Ghana and <3.08 mg/L for Malawi.
4Adjusted models included the following covariates if significantly (P < 0.1) associated with the outcome: gestational age at
enrollment, parity, maternal age, education level, household food insecurity, household asset index, α-1-acid glycoprotein at the time
the blood sample was drawn, C-reactive protein at the time the blood sample was drawn, infant sex, maternal BMI at enrollment,
maternal malaria at enrollment, and HIV status (Malawi models only). All 36-wk models adjusted for intervention group. Specifics
regarding each adjusted model are provided in the Supplemental Methods.

ferritin, lower sTfR and ZPP concentrations indicate higher
iron status. We did not measure PVE in our cohorts and it is
possible that some women were experiencing inadequate PVE,
which would have concentrated the biomarkers. As we did not
have any significant associations with Hb >130 g/dL, and PVE
would have biased the associations of sTfR and ZPP towards
the null, we find it unlikely that inadequate PVE explains the
associations between higher iron status (lower sTfR and ZPP
concentrations) and poorer birth outcomes in Ghana. Lower
sTfR concentration can be a sign of impaired RBC production
(which is linked to inadequate PVE) (39) and possibly would
have biased the results away from the null. However, we
find it unlikely that impaired RBC production would occur
more often in the Ghanaian cohort than in the Malawian
cohort.

One potential biological mechanism that could explain why
higher iron status may be detrimental to the fetus is non–
transferrin bound iron. Iron is typically carefully chaperoned
around the body, predominately by transferrin. Unbound iron
can result when the rate of iron influx into plasma exceeds
the rate of iron acquisition by transferrin (40). It is therefore
possible that higher iron status may lead to oxidative stress
via unbound iron, which may result in lipid peroxidation
and DNA damage of placental cells (41, 42) and impair the
systemic response to infection (36), compromising the growth

of the fetus. There is some evidence that a modest increase
in plasma non–transferrin bound iron can occur after iron
supplementation in nonpregnant women (40), although it is
unclear whether this is relevant in our study population. It is
unclear why IDA at enrollment in Ghana was associated with a
lower risk of LBW, with iron deficiency at enrollment showing
a similar nonsignificant trend.

Associations between iron status and birth outcomes
may have differed by country owing to differences between
Ghanaian and Malawian women in iron status at enrollment.
Ghanaian women had higher iron status (mean sTfR: 4.1
compared with 5.6 mg/L; mean ZPP: 44.8 compared with
54.5 μmol/mol heme) than Malawian women at enrollment,
and a lower proportion of Ghanaian women were identified as
iron deficient (9.3% compared with 19.7%, sTfR >6 mg/L).
All women in these 2 cohorts received iron supplementation,
with approximately two-thirds receiving 20 mg and one-third
receiving 60 mg Fe/d. Thus there was a larger number of
iron-replete women in Ghana than in Malawi who received
an amount of iron supplementation that may have been
unnecessary, and plausibly had negative effects on the fetus. We
previously demonstrated that birth weight was higher among
infants born to women receiving SQ-LNSs (which contained
20 mg Fe) than among infants of women receiving iron and
folic acid capsules (which contained 60 mg Fe), even though the
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FIGURE 1 Association between pregnancy duration and maternal
Hb concentration measured at 36 weeks of gestation in Ghanaian
pregnant women (n = 985). Hb, hemoglobin.

iron and folic acid group had higher mean Hb concentration,
higher iron status, and a lower prevalence of anemia at 36
weeks of gestation (18, 22). It is possible that there are
other differences between the countries that might explain the
different associations between iron status and birth outcomes.

Strengths of this study include the use of ultrasound to
estimate gestational age at enrollment; the availability of a
large number of covariates to test and control for confounding,
including 2 markers of inflammation; and analysis of 2 cohorts
from different regions in Africa where similar study methods
were used. Including markers of inflammation is important,
because inflammation can lead to elevated sTfR concentrations
(43). In addition, we measured iron status during both early and
late pregnancy. Concentrations of sTfR tend to be similar to
nonpregnant concentrations during the first trimester, gradually
increase during the second trimester, and peak in the third
trimester (44).

We are limited in the interpretation of our results, because
it is unclear whether low sTfR can be used as an indicator
of iron-replete status. There is evidence that sTfR is lower
during impaired erythropoiesis (39), which complicates the use
of it as a marker of iron status. Further research to identify
an accurate marker of iron-replete status during pregnancy
is urgently needed. Other limitations include a delay in birth
anthropometry for some infants, although back-calculations
were performed according to WHO guidelines in such cases,
as well as a possible limited generalizability of the findings in
Malawi due to differences in some characteristics of included
compared with excluded participants. However, differences
between included and excluded participants were minimal. We
tested multiple hypotheses but did not perform a statistical
correction for multiple hypothesis testing because the birth
outcomes are closely related to each other (45). Therefore,
there is an increased risk that some findings could be due to
chance. Measurements at 36 weeks of gestation do not include
women who experienced a miscarriage or gave birth before 36
weeks, therefore survivor bias may affect the interpretation of
associations with these measurements.

In conclusion, this research provides evidence that the
associations between low or replete maternal iron status and
birth outcomes are population specific. Future research to
replicate and extend these findings would be beneficial.
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