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Psoriasis is a chronic inflammatory skin disease that affects millions of people
worldwide. There is still no effective approach for the clinical treatment of psoriasis.
This is largely due to the lack of understanding of the pathological mechanism.
Here, we comprehensively characterized the skin microbiome and plasma metabolome
alterations of psoriasis patients. We observed that some pathogenic bacteria,
including Vibrio, were significantly increased in psoriasis patients. The metabolomics
results showed alterations in some metabolic pathways, especially pathways for lipid
metabolism. In addition, microbiome-specific metabolites, including bile acids and
kynurenine, were significantly changed. Correlation analysis revealed the interplay
between the skin microbiota and plasma metabolites, especially between Vibrio
and several lipids. Our results provide new evidence for the interplay between
the skin microbiome and plasma metabolites, which is dramatically disrupted in
psoriasis patients. This study also revealed the mechanism underlying the pathogenesis
of psoriasis.
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INTRODUCTION

Psoriasis is one of the most common skin disorders worldwide, with approximately 2% of people
affected (Boehncke and Schön, 2015). It affects not only the skin but also other organs. The
molecular mechanism of psoriasis is not clear, which makes the discovery of new therapeutic drugs
difficult. Most patients have to suffer from the disease for their whole life (Dubertret et al., 2006;
Nestle et al., 2009).

The causes of psoriasis remain largely unknown but are reported to be related to many factors,
including environmental factors, genetic factors, and immunologic factors (Nestle et al., 2009).
In addition, the progression and even relapse after clinical treatment are all influenced by these
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factors, which act together and form the specific metabolic
characteristics of psoriasis. Glucose metabolism, amino acid
metabolism, and lipid metabolism have been shown to be
significantly changed in psoriasis patients (Zeng et al., 2017;
Zhu and Thompson, 2019). The roles of metabolic regulation
of cell proliferation and apoptosis are considered to be key to
unregulated keratinocyte pathogenesis in psoriasis (Luo et al.,
2020; Pohla et al., 2020). In addition, it is well known that
the chronic inflammatory features of psoriasis, the associated
characteristics of metabolic syndrome with psoriasis, and even
the diet-related pathogenesis mechanism of psoriasis all indicate
the importance of metabolism in the disease (Wolters, 2005;
Gisondi et al., 2018). These reports suggest that alterations in
global metabolism may contribute to the specific phenotype of
psoriasis patients. However, additional information is still needed
to answer these questions.

Microorganisms, which are located in many sites in our
body, play very important roles in system homeostasis. Most
studies have focused on the gut microbiome. The abundance
and composition of the gut microbiome can vary under different
conditions and are related to many human diseases (Chávez-
Talavera et al., 2017). Increasing evidence has suggested that the
activity of the microbiota is critical, especially in modulating
tissue metabolism (Liu et al., 2017; He et al., 2020). In recent
years, the role of the microbiome in maintaining healthy skin
status and regulating skin-related diseases has been reported
(Zeeuwen et al., 2013; Dréno et al., 2016; Byrd et al., 2018).
For psoriasis, the role of the gut microbiome in disease
pathogenesis and progression has been reported. In addition,
the gut microbiota can be a potential biomarker of the disease
(Thio, 2018; Myers et al., 2019). However, the organization of the
skin microbiome and its potential function in regulating global
metabolism in psoriasis patients remain unclear.

In this study, we collected skin microbiome samples and
plasma samples from patients with severe plaque psoriasis and
from healthy controls. We performed 16S sequencing of the
skin microbiome and plasma metabolomic analysis. Our results
revealed alterations in the skin microbiota in psoriasis patients,
including the accumulation of species of Gammaproteobacteria.
Functional prediction revealed changes in metabolic pathways.
In addition, our metabolomic data showed very obvious changes
in systemic metabolism in psoriasis patients. Furthermore, we
established a novel correlation map of the skin microbiome and
plasma metabolites. These results highlighted the role of the skin
microbiome in regulating global metabolism and provided new
insights regarding the pathological view of psoriasis.

MATERIALS AND METHODS

Patient Information
A total of 32 patients diagnosed with severe plaque psoriasis
were recruited at the General Hospital of Ningxia Medical
University (Ningxia Province, China) for this study from
December 2018 to May 2019. At the same time, 29 healthy
volunteers were recruited. The average age of the patients
was 38.16 years, with a range of 17–74 years. For healthy

controls, the average age was 35.53 years, with a range of 23–
54 years. The severity of psoriasis was quantified by using the
Psoriasis Area and Severity Index (PASI) score (38.96 ± 2.64,
mean ± SE), the Psoriasis Global Assessment score (4.41 ± 0.13,
mean ± SE), and the body surface area score (24.85 ± 2.82,
mean ± SE). Patients who met the following criteria at the
same time were included: patients with severe plaque psoriasis
(PASI score ≥12) (Mrowietz et al., 2011), patients with at
least half a year of disease duration, and patients who had
previously received at least one course of systemic treatment
without obvious improvement. The exclusion criteria were
as follows: volunteers with severe liver or kidney damage,
mental illness, hematopoietic dysfunction, or other serious
organic disease; patients who received immunosuppressive
treatment or high doses of glucocorticoids or retinoid treatment
in the previous 2 months; and all participants, including
healthy controls and psoriasis patients, who had used any
skin care product or lotion in the previous week. None of
the healthy volunteers had a history of any immune diseases,
and none of them had any skin disorders. All samples and
clinical information were obtained under the condition of
informed consent. This study was conducted with the approval
of the institutional review board of the General Hospital
of Ningxia Medical University and in accordance with the
Declaration of Helsinki.

Sample Collection
Skin microbiome samples were collected according to a
previous report (Oh et al., 2014). Briefly, a swab was rinsed
with phosphate-buffered saline, and a defined skin area of
approximately 2 × 2 cm2 was swabbed at least 20 times to
maximize the amount of microbiome DNA collected. All samples
were stored at −80◦C until extraction.

The plasma samples were collected on the same day after
overnight fasting with a heparin sodium anticoagulant tube. The
samples were then centrifuged at 3,000 rpm for 10 min at room
temperature. The supernatants were collected and aliquoted into
different tubes and stored at −80◦C.

Microbiome DNA Extraction and 16S
Sequencing
Genomic DNA from skin microbiome samples was extracted by
using the Mobio Powersoil DNA Isolation Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. The
V3 and V4 regions of the 16S rRNA genes were amplified by
using Phusion R© High-Fidelity PCR Master Mix with GC Buffer
(New England Biolabs, MA, United States) and the primers 341F
and 806R. After purification of the polymerase chain reaction
product by using AMPure XP magnetic beads (Beckman Coulter,
IN, United States), the samples were analyzed by the Illumina
NovaSeq 6000 platform (Illumina, CA, United States) through a
paired-end sequencing strategy.

16S Sequencing Data Analysis
After Illumina sequencing, barcode and primer sequences
were removed. Specific tags were generated by FLASH
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software1 according to the overlap information of the
reads. Then, we applied Trimmomatic software (v0.33) to
remove the low-quality tags and obtained clean tags. Clean
tags were further filtered to exclude the chimeric sequences
by using UCHIME software (v4.2). Next, the remaining
sequences with an identity >97% were classified as operational
taxonomic units (OTUs) by using Uparse software2. Taxonomic
information was annotated by searching against the SSU
rRNA database3. OTUs were then assigned to different
phylogenetic levels (kingdom, phylum, class, order, family,
genus, and species). Alpha diversity and beta diversity were
analyzed by QIIME software (v1.9.1) based on the effective
tags. The relative abundance and the difference in diversity
were compared by Student t-test and the Wilcoxon rank-sum
test. Furthermore, linear discriminant analysis coupled with
effect size (LEfSe) was applied to identify microorganisms that
can be used to discriminate psoriasis patients from people
with no psoriasis.

Liquid Chromatography–Mass
Spectrometry Metabolomic Data
Collection
A 100-µL plasma sample from each patient was mixed
with 300 µL of methanol containing 1 µg/mL 2-chloro-L-
phenylalanine (Hengbai Biotech, Shanghai, China) as the internal
standard. After brief sonication in ice water for 10 min, all
the samples were placed at −40◦C for 1 h and centrifuged
at 10,000 rpm for 15 min at 4◦C. Then, the samples were
resuspended in 100 µL of 50% acetonitrile. For quality control
(QC) sample preparation, a mixture containing an equal volume
(10 µL) of each plasma extract was prepared.

For liquid chromatography–mass spectrometry (LC-MS)
metabolomic data collection, all plasma samples were analyzed
by a 1290 UHPLC instrument (Agilent Technologies, CA,
United States) coupled with a Thermo Q Exactive Focus (Thermo
Fisher Scientific, MA, United States) by Biotree Ltd. (Shanghai,
China), according to previously reported methods with minor
modifications (He et al., 2020). Briefly, mobile phase A in
positive ion mode was 0.1% formic acid in water, and in
negative ion mode, it was 5 mmol/L ammonium acetate in
water. Mobile phase B was acetonitrile. The elution gradient
was set as follows: 1% B at 1 min, 99% B at 8 min, 99%
B at 10 min, 1% B at 10.1 min, and 1% B at 12 min.
The flow rate was set to 0.5 mL/min. The Q Exactive mass
spectrometer was run at a spray voltage of 4.0 kV in positive
mode and −3.6 kV in negative mode. Other ESI source
conditions were as follows: sheath gas flow rate of 45 Arb,
Aux gas flow rate of 15 Arb, and capillary temperature of
400◦C. All MS1 and MS2 data were obtained under the
control of Xcalibur (Thermo Fisher Scientific). A UPLC HSS T3
column (Waters, MA, United States) was used for all analyses.
Organic reagents, including methanol, acetonitrile, and formic

1http://ccb.jhu.edu/software/FLASH/, v1.2.7
2http://www.drive5.com/uparse/, v7.0.1001
3www.Arb-silva.de

acid (HPLC grade), were purchased from CNW Technologies
(Dusseldorf, Germany).

Gas Chromatography–MS Data
Collection
The extracted plasma samples were resuspended in 30 µL
of methoxyamine hydrochloride (20 mg/mL in pyridine) and
incubated at 80◦C for 30 min. After derivatization with 40 mL
of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1%
trimethylsilyldiethylamine (Sigma, Darmstadt, Germany) at
70◦C for 1.5 h, the samples were cooled down gradually to
room temperature. For QC sample preparation, a mixture
containing an equal volume (10 µL) of each plasma extract was
prepared. An additional 5 µL of saturated fatty acid methyl esters
(Dr. Ehrenstorfer GmbH, Augsburg, Germany) dissolved in
chloroform was added to the QC samples for gas chromatography
(GC)–MS analysis.

Gas chromatography–time of flight (TOF)–MS analysis was
carried out by using an Agilent 7890 gas chromatograph
(Agilent Technologies) coupled with a Pegasus HT TOF mass
spectrometer (LECO, Michigan, United States). In this analysis,
a DB-5MS capillary column (30 m × 250 µm × 0.25 µm,
Agilent Technologies) was used. The carrier gas was helium, the
front inlet purge flow was set as 3 mL/min, and the gas flow
rate was 1 mL/min. The temperature gradient was set as 50◦C
for 1 min, increased to 310◦C at a rate of 20◦C/min, and then
maintained for 6 min. The front injection temperature, transfer
line temperature, and ion source temperature were 280, 280,
and 250◦C, respectively. The energy was −70 eV in electron
impact mode. The MS data were acquired in full-scan mode with
an m/z range of 50–500 at a rate of 12.5 spectra per second
after a solvent delay of 4.85 min. A 1-µL sample was injected
for this analysis.

LC-MS and GC-MS Metabolomic Data
Analyses
ProteoWizard software was used to transform the original LC-
MS data to mzXML format. The data were processed by XCMS.
GC-MS raw data were processed by Chroma TOF software. After
peak identification, peak alignment, peak extraction, retention
time (RT) correction, and peak integration, a three-dimensional
data matrix was obtained. To make the metabolomics data
reproducible and reliable, peaks with relative standard deviations
greater than 30% in the QC samples were filtered out. The
remaining peaks were identified by comparison of RT and
mass to charge ratio (m/z) indexes in a library containing
spectral information from the online database of HMDB4, Kyoto
Encyclopedia of Genes and Genomes (KEGG)5, and the in-house
library. The GC-MS data were matched with the LECO-Fiehn
Rtx5 database. Peak intensity was quantified by using the area
under the curve. The data matrix was further processed by
removing the peaks with missing values in more than 50%
of the samples and substituting the remaining missing values

4www.hmdb.ca
5www.genome.jp/kegg
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with half of the minimum value. Then, a new data matrix was
generated by normalizing the data to the peak intensity of the
internal standard.

Statistical Analysis
Statistical analysis was performed by using Microsoft Excel
(Microsoft Inc., Redmond, WA, United States) and R software
version 3.5.1 (R Foundation for Statistical Computing, Vienna,
Austria). The differential abundance of bacterial taxa at different
levels (phylum, class, order, family, and genus) between psoriasis
patients and healthy controls was calculated by the Wilcoxon
rank-sum test and Metastat. The differences in alpha diversity
indexes were determined by Student t-test. The beta diversity
difference between psoriasis patients and the control group was
analyzed by analysis of similarity (ANOSIM). To understand the
difference in the metabolomic profile between psoriasis patients
and healthy people, multivariate statistical analyses, including
principal component analysis (PCA) and orthogonal projections
to latent structure-discriminant analysis (OPLS-DA), were
carried out. Small molecules with a VIP (variable importance
in projection) >1 in OPLS-DA and p < 0.05 by Student
t-test were considered significantly altered metabolites. Spearman
correlation was carried out to determine the relationship between
the skin microbiota and plasma metabolites.

RESULTS

Altered Skin Microbiota Composition in
Psoriasis Patients
We recruited 32 severe plaque psoriasis patients (PASI > 12) and
29 healthy controls to identify the psoriasis-related microbiota.
After QC, the DNA sample amounts from only 26 patients and
10 controls were sufficient for 16S sequencing.

Overall, we obtained 83,998 effective tags and 7,887 OTUs
according to 97% similarity. After taxonomic assignment against
the Silva132 database, 7,606 OTUs were annotated at different
phylogenetic levels (Supplementary Table 1). According to the
species accumulation curve, the sequencing data and samples
were sufficient for taxon identification. However, there were no
significant differences between control individuals and psoriasis
patients in terms of number of species on skin (Supplementary
Figure 1A). In addition, the alpha diversity indexes, including
the total observed species, Shannon index, ACE index, Simpson
index, and Chao1 index, of the skin of psoriasis patients were
not significantly different from those of the control group
(Supplementary Figures 1B–F). To identify the microbes that
were altered in psoriasis patients, we then conducted Student
t test at the genus level (Figure 1A). The average abundance
of Lactobacillus, which is widely distributed in the human
gut and skin and plays a role as a lactic acid producer, was
increased in psoriasis patients. This may suggest a potential
positive role of Lactobacillus in regulating skin cell proliferation,
which is consistent with a previous report that Lactobacillus
was capable of enhancing skin repair after UV damage (Im
et al., 2018). Moreover, the abundances of Thermomonas and
Luteimonas, which are pathogenic members of Proteobacteria

(phylum)_Gammaproteobacteria (class), were also increased,
suggesting that the skin of psoriasis patients was a pathogenic
environment. To further analyze the alterations in the microbiota
in psoriasis patients, we applied Metastat, another widely used
statistical analysis tool, to screen for significantly changed
organisms (Figure 1B). Similarly, the change in the Lactobacillus
abundance was also identified as an important alteration. In
addition, another member of Gammaproteobacteria, Vibrio, was
identified as being significantly elevated in psoriasis patients.
Together, these data suggest an elevation in the abundance
of pathogenic bacteria, especially Gammaproteobacteria, in
psoriasis patients.

To further examine the alterations associated with psoriasis,
we conducted LEfSe analysis. The main differences were the
increase in abundance of undefined_Cyanobacteria (class
unidentified_Cyanobacteria and order Cyanobacteria) in
psoriasis patients (Figure 2A). Some differences were also
observed at a lower taxonomic level. Psoriasis patients showed
a loss in the abundance of the genus Citrobacter (Figure 2B).
Taken together, these data indicate alterations in the commensal
gut microbiome composition in psoriasis patients, suggesting
dysregulation of the microbial community.

Functional Prediction of the Skin
Microbiome of Psoriasis Patients
To further determine the functional impact of skin gut
microbiota alterations in psoriasis, we predicted the KEGG
pathways based on the 16S sequencing data by using PICRUSt
software (Langille et al., 2013). Metabolic pathways ranked
as the most abundant pathways predicted, accounting for
approximately 50% of the pathways (Figure 3A). Among these
pathways, carbohydrate metabolism and the metabolism of
other amino acids were obviously decreased (Supplementary
Figure 2). In contrast, pyrimidine and purine metabolism
(nucleotide metabolism); glycolysis/gluconeogenesis, oxidative
phosphorylation, and methane metabolism (energy metabolism);
the metabolism of cofactors and vitamins; and the biosynthesis
of other secondary metabolites showed an increase in psoriasis
patients compared with healthy controls (Figure 3B and
Supplementary Figure 2).

Plasma Metabolic Profiling of Psoriasis
Patients
Microbiota alterations have been reported to be correlated with
tissue metabolism in many studies (Liu et al., 2017; Olson
et al., 2018). In addition, our data showed that skin microbiota–
mediated small molecule metabolism was impacted by psoriasis
(Figure 3). We thus investigated the metabolic alterations in
psoriasis patients by applying GC and ultrahigh-pressure LC
coupled with MS. In general, a total of 3,562 features and
716 metabolites were obtained (Supplementary Table 2). PCA
showed very obvious separation of metabolic profiles between
psoriasis patients and healthy controls, demonstrating different
metabolic activities (Figure 4A). After statistical analysis, we
obtained 117 significantly altered metabolites (VIP >1 and
p < 0.05) (Figure 4B). Among them, we found several
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FIGURE 1 | Skin microbiota alterations in psoriasis patients. (A) Significantly altered skin microbiota in psoriasis patients compared with healthy controls analyzed by
Student’s t-test at the genus level. (B) Heatmap shows the significantly altered skin microbiota at the genus level in psoriasis patients compared with healthy controls
analyzed by Metastat.

FIGURE 2 | Linear discriminant analysis (LDA) effect size. (A) Cladogram of LEfSe of the skin microbiome from 16S sequencing results. Red and green circles
represent the differences of the most abundant microbiome class. The diameter of each circle is proportional to the relative abundance of the taxon. (B) Histogram of
the LDA scores for differentially abundant microbes in psoriasis patients and healthy controls. Red, enriched in psoriasis patients; green, enriched in healthy controls.
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FIGURE 3 | Functional prediction of the skin microbiome. (A) KEGG pathway classification of the annotated taxa in healthy controls and psoriasis patients.
(B) Heatmap showing the altered metabolic pathways in psoriasis patients compared with healthy controls. Red represents upregulation, and blue represents
downregulation.

microbiome-generated metabolites that were also significantly
changed. These included taurochenodeoxycholic acid (TCDCA),
deoxycholic acid glycine conjugate (GDCA), chenodeoxycholic
acid glycine conjugate, and L-kynurenine (Chávez-Talavera et al.,
2017; Agus et al., 2018; He et al., 2020). To uncover the metabolic
pathway alterations, we conducted KEGG pathway analysis of
the differentially expressed metabolites by using Metaboanalyst6

(Figure 4C). Branched-chain amino acid metabolism (valine,
leucine, and isoleucine biosynthesis), which was reported to
be closely related to microbiota metabolic activity (Liu et al.,
2017), was significantly altered. In addition, the metabolism of
α-linolenic acid and linoleic acid, which reflect the inflammation
status of tissues (Sergeant et al., 2016), was also significantly
altered.

Novel Interplay Between the Skin
Microbiota and Plasma Metabolism
Many articles have reported the correlation of the gut microbiota
and blood metabolism (Liu et al., 2017; He et al., 2020), whereas
little is known about the relationship of the skin microbiota
and blood metabolism. In this study, we carried out Spearman
correlation analysis of the annotated skin microbiota at the genus
level and the identified plasma metabolites. The association of the
skin microbiota and plasma metabolites was different between

6www.metaboanalyst.ca

healthy controls and psoriasis patients (Figures 5A,B), suggesting
that the alteration of plasma metabolites was closely related to the
skin microbiome. Interestingly, most of the associations between
Lactobacillus and plasma metabolites and the associations
between Enterococcus and plasma metabolites in healthy controls
(Figure 5A) disappeared in psoriasis patients (Figure 5B).
In addition, new correlations between Vibrio, Ferruginibacter,
Romboutsia, and plasma metabolites were established in psoriasis
patients (Figure 5B). The metabolites that showed a significant
positive association with specific skin bacteria in both healthy
controls and psoriasis patients were itaconic acid, crotonic
acid, and heptadecanoic acid, which are involved in lipid
metabolism (Figures 5A,B). Notably, some plasma metabolites
were negatively associated with the skin microbiota in psoriasis
patients. In addition to several lipids, xanthine, D-ribose 5-
phosphate, and uric acid participate in nucleotide metabolism
(Figure 5B). These results suggest a role of the skin microbiota in
influencing lipid and nucleotide metabolism in psoriasis patients.

To determine a global relationship between the skin
microbiota and plasma metabolism, we then conducted
Spearman correlation analysis by using all the samples from
healthy controls and systemic lupus erythematosus (SLE)
patients. The correlations were shown in a Cytoscape network
(Figure 5C), further suggesting a fundamental relationship of the
skin microbiota and plasma metabolism. Interestingly, receiver
operating characteristic (ROC) curve analysis revealed that many
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FIGURE 4 | Plasma metabolomic profiling. (A) PCA revealed clear separation of the plasma metabolome between psoriasis patients and healthy controls.
(B) Heatmap showing the significantly changed metabolites in psoriasis patients compared with healthy controls. The metabolites labeled with red font are
microbiota-specific metabolites. (C) Bubble plot of the metabolic pathway enrichment analysis results.

skin microbiota–associated plasma metabolites are potential
biomarkers for SLE classification (Supplementary Figure 3).

DISCUSSION

Previous studies investigated the changes in the blood
metabolome and gut microbiome that occur in psoriasis.
However, it is not sufficient to understand the pathogenesis
of psoriasis, as the disease primarily occurs on the skin.
Here, we analyzed skin microbiota alterations in psoriasis
patients by using 16S sequencing and plasma metabolomic
changes by applying an LC-MS metabolomics approach.
According to our results, the plasma metabolic homeostasis
of psoriasis patients was disrupted and was correlated with
alterations in the skin microbiome. We further identified
some skin microbes at the genus level, such as Enterococcus
and Vibrio, which are critical for plasma metabolism in
psoriasis patients. In addition, we also identified some skin
microbiota–associated plasma metabolites that are potential
biomarkers for strongly discriminating healthy controls from
psoriasis patients.

In our untargeted metabolomic study, many plasma
metabolites were significantly changed in psoriasis patients.
Pathway analysis revealed enrichment in both amino acid
metabolism and lipid metabolism pathways (Figure 4). The
valine, leucine, and isoleucine biosynthesis pathway, which is

a branched-chain amino acid metabolism pathway mediated
by the microbiota, has been reported to be related to many
diseases (Liu et al., 2017, 2020). In addition, several lipid
metabolism pathways were also enriched, including biosynthesis
of unsaturated fatty acids, glycerolipid metabolism, linoleic acid
metabolism, and α-linolenic acid metabolism. Glycerolipids
that play a very important role in membrane mobility and
provide building blocks for membrane biogenesis have also
been reported previously as potential diagnostic biomarkers
in psoriasis patients (Zeng et al., 2017). Furthermore, the
alteration in linoleic acid and α-linolenic acid metabolism
reflects the inflammation status of psoriasis (Boehncke, 2018).
In addition, the microbiota-mediated metabolism of bile
acids (TCDA, TCDCA, and GDCA) is well known for its
role in lipid metabolism, and L-kynurenine is well known
for its role in inflammation regulation (Vítek and Haluzík,
2016; Cervenka et al., 2017). Altogether, the metabolomic
results indicate the role of the microbiota in the regulation
of lipid metabolism and the inflammatory response in
psoriasis patients.

Psoriasis is a chronic inflammatory skin disorder. Increasing
evidence has suggested the role of the skin microbiome
in the pathogenesis of diseases (Grice, 2014; Picardo and
Ottaviani, 2014; Li et al., 2019). In our study, some skin
microbes were significantly altered in psoriasis patients
compared with healthy people, which is consistent with
previous research (Chang et al., 2018). Among them, the
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FIGURE 5 | Integrated analysis of skin microbes and plasma metabolites. (A) Spearman correlation analysis between significantly altered skin microbes and
significantly changed plasma metabolites in the healthy control group. Red, positive correlation; blue, negative correlation. *p < 0.05. (B) Spearman correlation
analysis between significantly altered skin microbes and significantly changed plasma metabolites in the psoriasis group. Red, positive correlation; blue, negative
correlation. *p < 0.05. (C) Spearman correlation network between significantly altered skin microbes and significantly changed plasma metabolites in all samples
from both groups. The purple circle represents the skin microbiota, and the cyan diamond represents plasma metabolites. Red line, positive correlation; blue line,
negative correlation. Only the correlations with p < 0.05 are shown. **p < 0.01.
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bacteria Thermomonas and Luteimonas from the pathogenic
Proteobacteria (phylum) and Gammaproteobacteria (class)
were significantly increased, suggesting the pathological role
of these bacteria in psoriasis. Vibrio, the most strongly and
significantly increased bacterial taxon (Figure 1B), is well
known for its role as the cholera pathogen (Conner et al.,
2016). Because the species of Vibrio mainly live in seawater
or brackish water (Vasagar et al., 2018), people should be
very careful when consuming seafoods or when exposed
to seawater. These results indicate that the accumulation
of the pathogenic microbiota is a possible reason for the
pathogenesis of psoriasis. This conclusion was also confirmed
by functional analysis of the skin microbiota. Skin microbiome–
mediated nucleotide metabolism and amino acid metabolism
activities were elevated in psoriasis patients compared with
healthy controls (Figure 3B), as small-molecule metabolism
pathways are critical for providing building blocks for skin
cell proliferation.

The interaction between skin microorganisms and blood
metabolism has rarely been investigated. In this article, we
analyzed the Spearman correlation of significantly altered
skin microbes and significantly changed plasma metabolites
(Figure 5). The results highlighted the role of the skin microbiota
in the regulation of plasma metabolism, especially the role of
the pathogens Enterococcus and Vibrio. These data also suggest
the role of the skin microbiome in skin homeostasis, which is
critical for the maintenance of the immunological barrier of skin
(Belkaid and Tamoutounour, 2016).

In summary, our study integrating skin microbiome 16S
sequencing and plasma metabolomic data reveals alterations in
global metabolic homeostasis status and the association of the
skin microbiota with psoriasis. Considering the impact of many
factors, including race, ethnicity, lifestyle, and environmental
factors, on the skin microbiome and global metabolome, more
studies are needed to address the role of the skin microbiome
in the pathogenesis of psoriasis. In addition, additional studies
are needed to understand the key skin microbes involved in
the pathogenesis of psoriasis, especially through an effect on
global metabolism. Our data provide the underlying mechanism
of skin microbiome–mediated regulation of blood metabolism
in patients with psoriasis. The results will be helpful for
understanding the pathological mechanism of psoriasis.
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Supplementary Figure 2 | Predicted function of the skin microbiome in level 2.
The function of the skin microbiome from healthy controls and psoriasis patients
was predicted and plotted. Red represents increased pathway annotation. Blue
indicates reduced pathway annotation. Metabolic pathways are
labeled with red font.

Supplementary Figure 3 | ROC curve of the metabolites significantly associated
with the skin microbiota. Biomarker analysis of the metabolites significantly
correlated with the skin microbiota in Figure 5 shows the high AUCs. Only the
metabolites with AUC value >0.8 are shown.

Supplementary Table 1 | The relative abundance of the annotated skin
microbiota measured by 16S sequencing.

Supplementary Table 2 | The relative abundance of the identified plasma
metabolites measured by the LC-MS metabolomic approach.
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