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Simple Summary: Highly digestible and high-quality proteins are especially needed in weaned pigs
to alleviate weaning stress in piglets. Fishmeal (FM) and soybean protein (SPC) are two commonly
used protein supplements in the diets of weaned pigs, but the high prices of those two kinds
of ingredients have prompted a search for an alternative cost-effective protein source. After the
removal of anti-nutritional factors, degossypolized cottonseed protein (DCP) shows potential as an
alternative to FM and SPC. In this study, the effects on weaned piglets of replacing FM and SPC with
DCP in diets were evaluated. The results showed that replacing FM with DCP weakens the small
intestinal morphology and decreases nutrient digestibility, but improves the community structures of
cecum microbiota that relieve these negative effects without impairing the growth performance of
weaned piglets.

Abstract: The inclusion of high-quality proteins is commonly used in swine production, especially
in weaned pigs. Our research investigated the effects of replacing fishmeal (FM) and soybean
protein concentrate (SPC) with degossypolized cottonseed protein (DCP) on the growth performance,
nutrient digestibility, intestinal morphology, cecum microbiota and fermentation in weaned pigs. A
total of 90 pigs were used in a 4-week trial. Pigs were randomly assigned to three dietary treatments
(initial BW 8.06 ± 0.26 kg; six pigs per pen; five pens per treatment), including a basal diet group
(CON) with a 6% SPC and 6% FM; two experimental diets group (SPCr and FMr) were formulated by
replacing SPC or FM with 6% DCP, respectively. There were no differences in growth performance
and diarrhea rate among three treatments except for the ADFI during day 14 to day 28. Using the
DCP to replace FM would weaken the jejunum morphology and decrease the nutrient digestibility of
pigs during day 0 to day 14. However, replacing FM with DCP can improve the community structure
of cecum microbiota, and may relieve these negative effects. In conclusion, DCP can be used as a
cost-effective alternative protein supplement.

Keywords: cecum microbiota; degossypolized cottonseed protein; weaned piglets

1. Introduction

In the weaning period, piglets undergo a transition from a highly digestible liquid
milk to a solid diet including complex protein [1]. Under this circumstance, the drastic
changes to the food composition present challenges to the fragile intestinal tract of weaned
piglets. Highly digestible and high-quality proteins are especially needed in weaned pigs
to alleviate weaning stress and supply nutrients for piglets. Fishmeal (FM) and soybean
protein concentrate (SPC) are two commonly added protein supplies for weaned pigs due
to their high contents of essential amino acids, and can be fed to piglets without adversely
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affecting performance [2,3]. However, two problems remain. First, the price of soybean has
risen in recent years due to competition between human consumption and the livestock
industry, especially in the context of the significant growth of pig stock in China in recent
years. Second, high demand and limited resources have caused the price of FM to be high,
and the potential risk of animal protein also limits its use [4]. Therefore, the possibility of
replacing SPC and FM with alternative protein sources could reduce economic costs and
contribute to more sustainable pork production.

Cotton is cultivated in large quantities in China, with a production of 6.42 million
tons in 2021 [5]. This kind of crop is mainly planted for its fiber, but more cottonseed
is produced than the lint fiber ginned from cotton. After extracting oil from cottonseed,
cottonseed meal is frequently used in animal feed and garden fertilizers due to its high
protein content. Cottonseed proteins are sequentially extracted from defatted cottonseed
meal. Even though cottonseed meal and cottonseed protein have high nutritional value due
to their high protein contents, the output of free gossypol limits its use in pig farming [6].
Gossypol may be either free or bound. Bound gossypol is not toxic to pigs, but free gossypol
is toxic [7]. Degossypolized cottonseed protein (DCP) is produced by the solvent extraction
of water-soluble carbohydrates and free gossypol from cottonseed meal, which finally
contains high-quality protein and a low concentration of free gossypol [8]. Compared with
SPC and FM, the lower price and similar high-quality protein make DCP a potential protein
source for weaned pigs.

However, limited information is available on the effects on pigs’ intestinal morphology,
cecum microbiota and fermentation of replacing SPC and FM with DCP. Therefore, the ob-
jective of this study is to evaluate the effects on weaned pigs’ growth performance, nutrient
digestibility, intestinal morphology, cecum microbiota and fermentation of replacing SPC
and FM with DCP.

2. Materials and Methods

All procedures used in this experiment were approved by the China Agricultural
University Institutional Animal Care and Use Committee (Beijing, China). All animal
trials were conducted in the China Agricultural University Animal Experimental Base
(Fengning, China). In this study, the DCP was kindly provided by Sino-leader Biotech Co.,
Ltd. (Beijing, China). The chemical compositions of DCP, FM and SPC were analyzed and
are presented in Table 1.

Table 1. The chemical compositions of degossypolized cottonseed protein, fish meal and soybean
protein concentrate (as fed basis).

Items 1 DCP FM SPC

DM, % 90.43 93.84 93.14
GE, MJ/kg 18.24 18.67 19.27

CP, % 65.48 64.8 65.7
Ether extract, % 0.46 9.80 1.05

Neutral detergent fiber, % 20.42 - 8.60
Acid detergent fiber, % 5.51 - 5.44
Free gossypol, mg/kg 224.60 - -

Indispensable amino acids
Arginine, % 8.11 4.05 4.35
Histidine, % 2.17 1.18 1.68
Isoleucine, % 1.86 2.58 3.01
Leucine, % 3.71 4.73 5.04
Lysine, % 2.68 4.57 4.15

Methionine, % 3.30 1.69 0.88
Threonine, % 2.15 2.42 2.50

Tryptophan, % 0.79 0.86 0.81
Valine, % 2.87 2.85 3.17

1 DCP, degossypolized cottonseed protein; FM, fish meal; SPC, soy protein concentrate; DM, dry matter; DE
digestible energy; ME, metabolic energy; CP, crude protein.
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2.1. Animals, Diets and Experimental Design

A total of 90 healthy 28 day aged crossbred pigs [Duroc × (Landrace × Large White)]
with an initial BW of 8.06 ± 0.26 kg were used in this study. They were both from 10 sows
(average BW = 253 kg, parity = 3) in the same batch and the lactation period lasted 21 days.
After 7 days of weaning adaption period, they were assigned to 3 dietary treatments in
a completely randomized design. Each treatment diet was fed to 5 replicated pens with
6 pigs (3 barrows and 3 gilts) per pen. The control group (CON) were fed the diet that
included 6% FM and 6% SPC supplement, and the 2 experimental groups were fed diets
formulated by replacing all the FM (FMr) and SPC (SPCr) with DCP, respectively (Table 2).
We envisage that DCP cannot completely replace both SPC and FM in actual condition, so
the design allows it to replace only one of them. In this way, we can know which protein
source can be replaced by DCP to provide better performance. The experiment period was
divided into phase 1 (day 1–14 of post-weaning) and phase 2 (day 15–28 of post-weaning).
All diets were formulated to meet or exceed the nutrient requirements recommended by
NRC (2012), and 0.3% chromic oxide was added to the diet as the exogenous indicator.

Table 2. The ingredient composition and nutrient levels of diets (as fed basis).

Items 1, % CON FMr SPCr

Corn 53.67 52.68 53.53
Soybean meal 16 16 16
SPC 6 6 0
FM 6 0 6
DCP 0 6 6
Whey powder 10 10 10
Soybean oil 2.9 2.9 2.9
Sucrose 2 2 2
Limestone 0.7 1 0.7
Dicalcium phosphate 0.92 1.4 0.9
Salt 0.25 0.25 0.25
L-Lysine·HCl 0.47 0.62 0.6
L-Threonine 0.17 0.19 0.19
L-Tryptophan 0.03 0.03 0.04
DL-Methionine 0.09 0.13 0.09
Chromic oxide 0.3 0.3 0.3
Premix 0.5 0.5 0.5
Calculated nutrient level
ME, kcal/kg 3466 3455 3466
Crude protein 20.81 21.09 21.02
SID Lys 1.36 1.36 1.36
SID Thr 0.8 0.8 0.8
SID Met 0.4 0.4 0.4
SID Trp 0.22 0.22 0.22
Ca 0.81 0.8 0.8
Digestible phosphorus 0.41 0.4 0.4
Measured nutrient level
GE, kcal/kg 4005 3951 3975
Crude protein 19.56 19.8 19.78
Ether extract 5.61 5.01 5.56
Neutral detergent fiber 9.28 10.28 9.56
Acid detergent fiber 2.61 3.11 2.74

SID, standardized ileal digestibility; DCP, degossypolized cottonseed protein; FM, fish meal; SPC, soybean protein
concentrate; ME, metabolic energy. 1 Remix provided the following quantities per kilogram of complete diet
for weaned piglets: vitamin A, 12,000 IU; vitamin D3, 3000 IU; vitamin E, 30 IU; vitamin K3, 2.5 mg; vitamin
B12, 20 µg; riboflavin, 4.0 mg; pantothenic acid, 12.5 mg; niacin, 40 mg; choline chloride, 400 mg; folacin, 0.7 mg;
thiamine 2.5 mg; pyridoxine 3.0 mg; biotin, 70 µg; Mn, 30 mg (MnO); Fe, 100 mg (FeSO4·H2O); Zn, 80 mg (ZnO);
Cu, 90 mg (CuSO4·5H2O); I, 0.25 mg (KI); Se, 0.15 mg (Na2SeO3).
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2.2. Animal Management

All the piglets were fed in the experimental pens (1.2 m × 2 m) with 6 piglets per pen.
Each pen was fitted with a duckbill drinker, an adjustable stainless-steel feeder and plastic
slatted floors. Inside the pen, piglets were available to eat feed and drink water ad libitum.
The pig house environment was controlled automatically, including the contents of CO2 and
ammonium in the air, ventilation intensity, humidity and temperature. The average indoor
temperature was controlled at 24–26 ◦C, while relative humidity was maintained at 60–70%.
To prevent disease, the experimental house was cleaned every day and a health-assessment
procedure was conducted by a veterinarian every week. After 12 h of starvation, the
individual weight of each piglet and the remaining feed weight of each pen were weighed
on day 0, 14 and 28, and then to calculate the average daily gain (ADG), average daily feed
intake (ADFI) and the ratio of feed to gain (F:G). The incidence of diarrhea was calculated
according to the following formula: diarrhea rate (%) = [(number of pigs with diarrhea ×
diarrhea days)/(number of pigs × total observed days)] × 100 [9]. The higher diarrhea rate
represents more severe diarrhea in piglets.

2.3. Experimental Sample Collection

Before the experiment, 2 kg samples of DCP, FM and SPC were collected. During
the experiment period, approximately 2 kg of representative feed samples were collected
weekly. From day 12 to 14 and day 26 to 28, the rectal palpation was used every day to
make sure approximately 100 g of fresh feces were collected from at least 3 medium BW
pigs in a pen. All the fecal samples were frozen at −20 ◦C immediately after collection until
analysis every day. Finally, the feces collected in the 3 days were pooled by pen and dried
at 65 ◦C for 72 h. Before analysis, all these dried feces and feed samples were ground to
pass through a 1 mm sieve.

On day 29, a total of 9 pigs with median BW in three groups (3 pigs each treatment)
were humanely killed by exsanguination after electric shock. Segments of the mid-jejunum
and mid-ileum were collected and rinsed with 0.9% saline, and then stored in 10% buffered
formalin. The digesta collected from the cecum were frozen in liquid nitrogen and stored
at −80 ◦C until further analysis.

2.4. Chemical Analysis

The dry matter (DM), crude protein (CP), ether extract (EE) and free gossypol of the
ingredients (DCP, SPC and FM), diets and fecal samples were measured by following the
methods of the Association of Official Agricultural Chemists [10]. The gross energy (GE)
in the ingredients (DCP, SPC and FM), diets and fecal samples were measured by the
automatic isoperibolic oxygen bomb calorimeter (Parr 1281, Automatic Energy Analyzer;
Moline, IL, USA). Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were
determined by the procedure of Van Soest et al. [11]. Amino acids in DCP, SPC and FM
were analyzed using ion-exchange chromatography with an automatic amino acid analyzer
(L-8900, Automatic Amino Acid Analyzer; Hitachi, Tokyo, Japan) after hydrolyzing with
6 N HCl at 110 ◦C. Moreover, we used the atomic absorption spectrophotometer (Z-5000;
Hitachi, Tokyo, Japan) to measure the concentration of chromic oxide (Cr) in feed and
fecal samples. Organic matter (OM) was calculated from 1 − ash content (DM basis).
Using the equation Apparent total tract digestibility nutrient (ATTD) = 1 − (Crdiet ×
nutrientfeces)/(Crfeces × nutrientdiet), nutrient digestibility was determined.

2.5. Measurement of Intestinal Morphology

Samples from the mid-jejunum and mid-ileum segments were embedded in paraffin
and cut into 5-µm serial sections, and five non-successive sections from each tissue sample
were selected and stained with hematoxylin-eosin for identification [12]. Six well-oriented
villi (determined as the distance between the crypt openings and the end of the villi) and
their associated crypt (measured from the crypt-villous junction to the base of the crypt)
per section were selected and measured under a light microscope (CK-40, Olympus, Tokyo,
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Japan) at 40 × magnification and analyzed with an Image Analyzer (Lucia Software. Lucia,
ZaDrahou, Czechoslovakia). The average of these measurements was calculated to yield a
single value for each pig. These procedures were conducted by the same observer unaware
of the dietary treatments.

2.6. Analysis of Microbial Community in Cecum

Until analysis, total genomic DNA was extracted from cecum digesta using a QIAamp
DNA Stool Mini Kit (Qiagen, Germany) according to the manufacturer’s instructions.
The final DNA concentration and purification were determined by NanoDrop 2000 UV-
vis spectrophotometer (Thermo Scientific, Wilmington, DE, USA), and DNA quality was
checked by 1% agarose gel electrophoresis. The bacteria 16S ribosomal RNA genes in the
region of V3-V4 were amplified using polymerase chain reaction (PCR) with primers 338F
(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′).
After extracting from a 2% agarose gel, the resulting PCR products were further purified
using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) and
then quantified using QuantiFluor™-ST (Promega, Madison, Wisconsin, USA) according
to the manufacturer’s protocol. Purified amplicons were pooled in equimolar and paired-
end sequenced on an Illumina MiSeq platform (Illumina, San Diego, CA, USA) according
to standard protocols by Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China).
Raw fastq files were quality-filtered by Trimmomatic and merged by FLASH. In addition,
operational taxonomic units (OTUs) were defined as a similarity threshold of 0.97 using
UPARSE. The taxonomy of each 16S rRNA gene sequence was analyzed by the RDP
Classifier algorithm (http://rdp.cme.msu.edu/) [13] against the Silva (SSU123) 16S rRNA
database using a confidence threshold of 70%.

2.7. Measurement of Volatile Acids and Branch-Chain Fatty Acids

The content of VFAs (acetate, propionate and butyrate) and BCFAs (isobutyrate,
valerate and isovalerate) in the digesta were analyzed for evaluating the fermentation
among three groups, based on the methods of He et al. [14]. The cecum digesta samples
(0.4 g) were dissolved in 8 mL of ultrapure water, sonicated for 30 min, and then centrifuged
at 3000× g for 5 min. Then, the collected supernatants were diluted (1:50) using ultrapure
water and finally filtered into an injection vial through a 0.22 mm membrane. Each sample
was detected using a high-performance ion chromatography system (DIONEX ICS-3000,
Thermo Fisher, Waltham, MA, USA). The contents of VFAs and BCFAs were expressed as
µmol/g of cecum digesta.

2.8. Statistical Analysis

Data for growth performance, diarrhea rate and digestibility of nutrients were ana-
lyzed with replicate as the experimental unit while intestinal morphology and fermentation
were analyzed with pigs as the experimental unit. The data were subjected to ANOVA
using the GLM procedure of SAS (version 9.4; SAS Inst. Inc., Cary, NC, USA). Statistical
differences among treatments were separated by Student–Newman–Keul’s multiple range
tests. Data for the bacterial community were analyzed with the three cecum samples
per treatment. According to the guidance of R software, standardized OTUs reads were
applied to analyze bacterial diversity by principal component analysis (PCA). In addition,
the Kruskal–Wallis method was conducted to analyze the populations of the bacterial
community in cecum samples of pigs at the phylum and family level. The abundance of
bacteria at the phylum and family levels were shown as bar plots. Significant differences
were defined at p < 0.05 and tendency was defined as 0.05 ≤ p < 0.10.

3. Results
3.1. Chemical Composition

As shown in Table 1, the NDF and ADF contents in DCP were greater than FM and
SPC, but DM and GE in DCP were lower than those in FM and SPC. The CP content was

http://rdp.cme.msu.edu/
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similar in the three ingredients but differ in EE. Free gossypol is the unique anti-nutritional
factor in DCP with a content of 224.6 mg/kg. The Arg, His and Met in DCP were greater
but Ile, Leu and Lys were lower than FM and SPC. The concentrations of Thr, Try and Val
in DCP was closer to the other two ingredients.

3.2. Growth Performance and Diarrhea Rate

As presented in Table 3, there were no significant differences in BW, ADG, ADFI and
F:G in piglets among the three dietary groups in any period, except for ADFI in CON,
which was greater than the other two groups in phase 2 (p < 0.01). Meanwhile, pigs fed the
FMr diet showed a tendency for lower diarrhea frequency in phase 1 (d 1-d 14) (p = 0.06).

Table 3. Effects of replacing fish meal and soybean protein concentrate with degossypolized cotton-
seed protein on growth performance and diarrhea rate in weaning pigs.

Item 1 CON FMr SPCr SEM p-Value

Initial BW, kg 8.04 8.06 8.07 0.26 0.96
Day 14 BW, kg 12.96 13.34 13.33 0.44 0.75
Day 28 BW, kg 21.81 22.05 21.65 0.71 0.70

Day 1 to 14
ADG, g/d 351 377 376 17.21 0.50
ADFI, g/d 479 490 510 19.91 0.55

F:G 1.41 1.29 1.32 0.07 0.58
diarrhea rate, % 4.64 3.93 7.26 0.87 0.06

Day 15 to 28
ADG, g/d 632 622 594 26.88 0.61
ADFI, g/d 962a 892b 874b 15.76 < 0.01

F:G 1.54 1.43 1.47 0.06 0.43
diarrhea rate, % 0.72 1.67 1.19 0.28 0.11

Day 1 to 28
ADG, g/d 492 500 485 17.67 0.85
ADFI, g/d 720 684 689 12.02 0.13

F:G 1.49 1.36 1.42 0.05 0.25
diarrhea rate, % 2.68 2.80 4.23 0.53 0.13

ADFI, average daily feed intake; ADG, average daily gain; BW, body weight; F:G, feed to gain ratio; DCP,
degossypolized cottonseed protein; SPC, soy protein concentrate; FM, fish meal. 1 FMr: 6% FM in CON were all
replaced with DCP; SPCr: 6% SPC in CON were all replaced with DCP.

3.3. The Apparent Total Tract Digestibility of Nutrients

As shown in Table 4, from day 0 to day 14, greater apparent total tract digestibility
(ATTD) of CP, GE, DM and OM were observed in the CON group compared with the FMr
and SPCr groups (p < 0.01). In phase 2, there was no difference in the ATTD of nutrients
among the three groups, and only ATTD of CP presented a decreased tendency in FMr
compared with SPCr groups (p = 0.06).

3.4. Intestinal Morphology

The intestinal morphology was given in Table 5. The villus height of jejunum in the
FMr and SPCr groups presented a decreased tendency compared with the CON group
(p = 0.08). Meanwhile, the crypt depth of jejunum in the FMr group increased compared
with the CON and SPCr groups (p < 0.01) but the ratio of villus height to crypt depth of
jejunum in the FMr group was lower than it in the CON group (p = 0.03). No differences in
the three indicators were founded in the ileum.
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Table 4. Effects of replacing fish meal and soybean protein concentrate with degossypolized cotton-
seed protein on apparent total tract digestibility in weaning pigs.

Items 1 CON FMr SPCr SEM p-Value

Day 14
CP, % 74.33 a 69.46 b 69.32 b 0.95 <0.01
GE, % 82.17 a 78.3 b 77.19 b 0.71 <0.01
DM, % 81.63 a 77.35 b 76.78 b 0.72 <0.01
OM, % 84.67 a 81.21 b 80.51 b 0.60 <0.01
Day 28
CP, % 72.9 70.57 73.79 0.83 0.06
GE, % 80.18 78.67 80.03 0.72 0.32
DM, % 80.03 78.65 78.78 0.67 0.33
OM, % 82.96 82.09 82.27 0.51 0.49

CP, crude protein; GE, gross energy; DM, dry matter; OM, Organic matter. SPC, soy protein concentrate; FM, fish
meal. 1 Mean values within a row with different letters differ at p < 0.05.

Table 5. Effects of experimental diets on intestinal morphology in weaned pigs.

Item 1 CON FMr SPCr SEM p-Value

Jejunum
Villus height, µm 419 399 393 5.99 0.08
Crypt depth, µm 198 b 224 a 202 b 3.64 <0.01
Villus height:crypt depth 2.13 a 1.78 b 1.96 ab 0.05 0.03
Ileum
Villus height, µm 346 326 336 8.78 0.35
Crypt depth, µm 161 161 160 6.73 0.98
Villus height:crypt depth 2.15 2.02 2.12 0.12 0.75

1 Mean values within a row with different letters differ at p < 0.05.

3.5. Cecum Microbiota

The Venn analysis identified 311, 297 and 375 operational taxonomic unit (OTUs) from
cecum samples in the CON, FMr and SPCr groups, respectively, and showed 7, 12 and
70 unique OUTs in the three groups (Figure 1A). The Shannon index in CON was higher
than FMr group (Figure 1B) and no difference was observed in the Chao index (Figure 1C).
The principal component analysis (PCA) showed that a greater variation was detected in
cecum digesta samples of CON compared with the FMr group. The first two principal
components accounted for 80.59% of the total variance in cecum microbiota composition
(Figure 1D).

At the phylum level, Firmicutes, Bacteroidetes and Proteobacteria were the dominant
bacteria, which accounted for more than 90% (Figure 2A) and no difference was determined
(Table 6). Down to the family level, the predominant families with the Firmicutes phylum
consisted of Lactobacillaceae, Streptococcaceae, Lachnospiraceae and Ruminococcaceae,
while prevotellaceae, T34 were the predominate family in Proteobacteria and Bacteroidetes
phylum, respectively (Figure 2B). The relative abundance of Lactobacillaceae in cecum
digesta of FMr increased compared with CON while Ruminococcaceae, Lachnospiraceae
and Streptococcaceae decreased (p < 0.05, Table 7).
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Figure 1. Richness, diversity, and similarity of bacterial communities between different dietary
treatments in weaned pigs. Venn diagram of the OTUs in CON, FMr and SPCr groups (A). Bacterial
diversity was estimated by the Shannon index (B). Bacterial richness was estimated by the Chao
index (C). The principal component analysis (PCA) of samples in the bacterial community among the
three groups (D). * represents a significant difference (p < 0.05).

Table 6. Differences in the cecum digesta microbiota composition at phylum levels.

Items 1 CON FMr SPCr p-Value

Firmicutes, % 90.53 ± 1.71 95.26 ± 2.54 86.13 ± 9.24 0.18
Bacteroidetes, % 1.86 ± 0.89 2.30 ± 1.45 6.64 ± 8.51 0.88
Proteobacteria, % 4.48 ± 3.55 0.72 ± 0.99 3.24 ± 3.58 0.30
Actinobacteria, % 2.51 ± 1.63 0.99 ± 0.99 3.31 ± 2.79 0.43

1 The values were presented as means ± SD. Only bacteria with a concentration greater than 1% were given.
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Table 7. Differences in the cecum digesta microbiota composition at family levels.

Items 1, 2 CON FMr SPCr p-Value

Lactobacillaceae, % 28.56 b ± 7.78 83.74 a ± 1.14 43.75 ab ± 16.09 0.04
Ruminococcaceae, % 18.93 ± 6.27 5.43 ± 1.58 24.75 ± 15.29 0.06
Lachnospiraceae, % 15.91 a ± 8.14 3.32 b ± 1.49 4.91 b ± 1.20 0.04
Streptococcaceae, % 15.85 a ± 6.00 0.41 b ± 0.42 7.02 ab ± 7.08 0.04

Prevotellaceae, % 1.48 ± 1.88 1.88 ± 1.21 6.09 ± 7.99 0.96
Acidaminococcaceae, % 4.89 ± 0.97 0.97 ± 0.66 1.38 ± 1.33 0.96

unclassified_o_Lactobacillales, % 2.48 ± 0.22 0.22 ± 0.23 1.67 ± 2.24 0.20
Coriobacteriaceae, % 1.63 ± 1.13 0.67 ± 0.69 2.07 ± 1.67 0.43
Enterobacteriaceae, % 1.96 ± 3.30 0.01 ± 0.02 1.80 ± 3.08 0.25
Erysipelotrichaceae, % 1.83 ± 0.57 0.32 ± 0.02 1.56 ± 0.90 0.06

Pasteurellaceae, % 1.77 ± 0.01 0.01 ± 0.01 0.81 ± 0.99 0.06
T34, % 0.71 ± 1.22 0.66 ± 0.99 0.50 ± 0.44 0.83

Veillonellaceae, % 1.06 ± 1.64 0.10 ± 0.11 0.38 ± 0.36 0.56
1 The values were presented as means ± SD. Only bacteria with a concentration greater than 0.50% were given. 2

Mean values within a row with different letters differ at p < 0.05.

Figure 2. Community structures of cecum bacteria in CON, FMr, SPCr groups on phylum level (A)
and family level (B). The bar plot was used to represent the difference of dominant species at the
family levels by Kruskal–Wallis H test.
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3.6. Fermentation in Cecum

As shown in Table 8, replacing the FM with DCP decreased the concentrations of
acetate in cecum compared with CON (p = 0.02). The FMr showed the greatest propi-
onate and butyrate while the CON group contained the lowest butyrate in cecum digesta
(p < 0.01). No differences were detected in total VFAs, isobutyrate, valerate and isovalerate
in cecum digesta.

Table 8. Effects of replacing fishmeal and soybean protein concentrate with degossypolized cot-
tonseed protein on concentrations of volatile fatty acids and branch-chain fatty acids in the cecum
digesta (µmol/g).

Items 1 CON FMr SPCr SEM p-Value

VFAs
Acetate 95.913 a 88.601 b 92.326 ab 1.273 0.02
Propionate 61.080 b 66.377 a 64.940 ab 0.940 0.02
Butyrate 11.166 c 13.726 a 12.523 b 0.170 <0.01
Total VFAs 168.159 168.704 169.789 0.159 0.89
BCFAs
Isobutyrate 2.301 2.101 2.35 0.072 0.11
Valerate 5.015 5.023 5.155 0.109 0.62
Isovalerate 3.600 3.425 3.556 0.070 0.26

VFAs: volatile fatty acids; BCFAs: branch-chain fatty acids. 1 Mean values within a row with different letters differ
at p < 0.05.

4. Discussion
4.1. Chemical Composition

The noticeable differences between the three ingredients (DCP, FM and SPC) lie in the
fiber, EE, Lys, Met, Arg and free gossypol. Differing from fish meal, which is an animal
protein source, SPC and DCP are plant-based protein ingredients that contain more plant
cell walls and plant fibers, resulting in more ADF and NDF. However, SPC involves a
stricter peeling process, which leads to a lower fiber concentration of SPC compared with
DCP [15]. The higher fat content of fishmeal can be attributed to the high oil content of fish
and the fact that both plant-derived proteins are subjected to an oil-extraction process. In
the current study, DCP contained more Arg and Met and less Lys than FM and SPC; this
finding was consistent with previous studies [1,8]. After the removal procedure, the free
gossypol in DCP was significantly lower than that in CSM reported in previous literature
with an average value of 300.94 mg/kg [16]. In addition, the tolerable level of free gossypol
in growing–finishing pig diets was 100 mg/kg [17] and not reported in nursery pigs. The
free gossypol level in diets in this study was lower than this tolerable level due to only
6% DCP being added to the diet, and no difference was observed in ADG in the three
experimental diets.

4.2. Growth Performance and Nutrient Digestibility

In this experiment, replacing FM and SPC with DCP does not affect the growth per-
formance of weaned pigs except for the ADFI in phase 2. The negative effect of a 6%
replacement of DCP on ADFI can be attributed to the lower palatability compared with
FM and SPC, which are always considered high-palatability ingredients [18]. Surprisingly,
however, the difference in ADFI was only observed in phase 2 but not in phase 1. There
is not a suitable explanation for this result, and it can only be speculated that prolonged
exposure to the poorly palatable feed may cause a reduction in feed intake. In this study,
we also found that using DCP decreased the ATTD of CP, GE, DM and OM in phase 1. This
finding is consistent with Wang [8], who reported a decreased digestibility using a diet
supplemented with DCP. Normally, animal protein is more digestible than plant protein
due to the plant cell walls or fibers that may prevent the binding of digestive enzymes to
nutrients. On the other hand, the higher fiber content in DCP may induce a rapid flow of di-
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gesta in the intestine and decrease the nutrient digestibility [19]. Meanwhile, free gossypol,
the major anti-nutritional factor in cottonseed co-products [6], can react with free lysine
and produce an indigestible complex, and finally result in lower protein digestibility [20].
The differences in ATTD of nutrients only appeared in phase 1 but not in phase 2 during
the experiment period. Weaning usually changes the architecture and function of piglets’
gut [21], resulting in a temporary decrease in digestive and absorptive function of the
small intestine. In phase 2, piglets are adapted to the diet and the intestine has developed
maturely [22]. Therefore, the effect of different protein sources on the digestibility of pigs is
reduced, which leads to no differences in digestibility in the later stage.

4.3. Intestinal Morphology

The intestinal morphology is a common marker to estimate the digestion and absorp-
tion capacity and the health of the intestine [23]. In this study, replacing FM with DCP
would weaken the intestinal morphology in weaned pigs with a lower jejunum villus
height and greater crypt depth. The free gossypol may be responsible for the morpho-
logical changes to the intestine since Li et al. (1990) [24] reported the hypersensitivity of
the intestine to anti-nutritional factors in the diet. Marion et al. (2002) [25] also declared
that 56% of the variation of villus height in the proximal small intestine was explained
by the level of feed intake. With such a premise, the higher ADFI in CON in phase 2
can explain part of the intestinal morphology changes. This finding also supported the
results of ATTD of nutrients due to the high correlation between intestinal morphology
and nutrient absorption.

4.4. Cecum Microbiota

The gut microbiota offers many benefits to the host through a range of physiological
functions such as strengthening gut integrity or shaping the intestinal epithelium [26]. The
α-diversity is used as an indicator of functional resilience of the gut microbiota ecosystem,
including species diversity (Shannon) and richness (Chao) [27]. In this study, the substitu-
tion of FM using DCP decreased the species diversity of cecum microbiota, but was not
observed in the SPCr group. The three protein supplement ingredients were variable in
the present study, which indicated that nutrition composition may be the main reason
for microbiota changes. Polyphenols are the most common phytochemicals discovered
in plants and can, directly and indirectly, affect the structure of gut microbiota by their
antimicrobial and antioxidative properties [28]. The reduction of microbiota diversity when
using DCP may be due to the bonding of polyphenols to the bacterial cell membrane
and interrupting the normal bacterial functions. The DCP and SPC are both plant-origin
proteins and contain more phytochemicals than FM, so the difference is only found in the
FMr group. However, the data on the polyphenols of diets are non-accessible in this study,
so this inference should be evaluated in further research. Additionally, fibers are poorly
digested in the small intestine, but are an important substrate for hindgut microbiota,
which then alters their composition. Therefore, an explanation for the shifts in the cecum
when replacing FM with DCP may be an increasing fiber in the diet.

As with the previous report [29], Firmicutes and Bacteroidetes were found to be the
dominating bacterial community at the phylum level in weaned pigs which count for
approximately 95% of total gene sequences in cecum samples of weaned piglets. Our
research did not detect any differences in bacterial abundance at the phylum level, but
found changes in Lactobacillaceae Lachnospiraceae and Streptococcaceae at the family level.

In vitro, it has been proven that the dietary fiber of plants allows the selective pro-
liferation of Lactobacillus strains [30]. As Lactobacillaceae become more dominant in
cecum bacteria, the competition among the microbiota becomes more intense, resulting in
a general decline in other microbiota. To be specific, the proliferation of Lactobacillaceae
produces more lactate and brings down the pH, and the pH tolerance of other bacteria
can also influence their composition [31]. Firmicutes were mainly composed of Lacto-
bacillaceae, Streptococcaceae, Lachnospiraceae and Ruminococcaceae. The abundance of
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Streptococcaceae significantly decreased as Lactobacillaceae increased at the family level,
which resulted in no difference in phylum level.

As mentioned before, the plant-origin ingredients usually contain more polyphenols,
which can increase beneficial bacteria but reduce pathogenic bacteria [32]. Among these
various bacteria, Lactobacillus is classified as a beneficial bacterium, which can produce
hydrogen peroxide and antimicrobial factors (such as lactate and bacteriocins) to prevent
the colonization of pathogenic bacteria [33]. Meanwhile, Lachnospiraceae is considered to
be pathogenic bacteria because they produce potentially toxic metabolites that are harmful
to the host. The decreased relative abundances of Lachnospiraceae and Ruminococcaceae
might be beneficial for promoting growth or alleviating the incidence of diarrhea in weaning
piglets [34]. In this study, there was no difference in the growth performance in the whole
period. This may indicate that the improved cecum microbiota may relieve the negative
effect of the ATTD of nutrients and weaken intestinal morphology.

4.5. Fermentation in Cecum

The cecum is the major site of microbial fermentation of undigested carbohydrates in
pigs due to a great richness of bacteria and enough retention time of digesta [35]. Volatile
fatty acids are the main microbial fermentation products in the gut, especially in the large
intestine, and they are reported to have many beneficial effects on host health. In this
research, replacing FM with DCP decreased the acetate and increased the butyrate and
propionate. The microbial composition can change the VFA profile in the cecum [36]. The
decreased Lachnospiraceae and Ruminococcaceae may explain the lower concentration of
acetate because those two bacteria are known to produce acetate and suppress the growth
of Bacteroidales [37]. Lactobacillus, Megasphaera, Blautia, and Prevotella are considered to
participate in butyrate production [38]. Among them, Lactobacillus was thought to contact
with butyrate production via expanded butyrate-producing bacterial strains such as Blautia,
Roseburia, and Coprococcus [39]. The isobutyrate and isovalerate are only derived from
the deamination of valine and leucine, respectively, which are often considered indicators
of amino acid catabolism in the gut [40]. However, there were no differences in BCFAs,
for two reasons. First, the amino acids in the diet have been balanced by supplying extra
indispensable amino acids. Second, the digestion of protein or amino acids mostly takes
place in the small intestine but not in the cecum. The significant differences in VFAs
but not BCFAs also indicate that the effect on microbiota fermentation may be caused by
carbohydrates and fibers but not by proteins. The result of the VFAs matches the shifts in
cecum microbiota and prove that using DCP to replace FM can bring benefit changes in
cecum microbiota.

5. Conclusions

A diet supplemented with 60 g/kg of DCP to replace FM and SPC weakens the
intestinal morphology and decreases the nutrient digestibility, but improves the community
structures of cecum microbiota, and may relieve these negative effects without impairing
the growth performance of weaned piglets. Degossypolized cottonseed protein can be used
as a cost-effective protein to replace FM and SPC.
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