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Population growth is often ignored when quantifying gene expression levels

across clonal cell populations. We develop a framework for obtaining the

molecule number distributions in an exponentially growing cell population

taking into account its age structure. In the presence of generation time varia-

bility, the average acquired across a population snapshot does not obey the

average of a dividing cell over time, apparently contradicting ergodicity

between single cells and the population. Instead, we show that the variation

observed across snapshots with known cell age is captured by cell histories,

a single-cell measure obtained from tracking an arbitrary cell of the population

back to the ancestor from which it originated. The correspondence between

cells of known age in a population with their histories represents an ergodic

principle that provides a new interpretation of population snapshot data.

We illustrate the principle using analytical solutions of stochastic gene

expression models in cell populations with arbitrary generation time distri-

butions. We further elucidate that the principle breaks down for biochemical

reactions that are under selection, such as the expression of genes conveying

antibiotic resistance, which gives rise to an experimental criterion with

which to probe selection on gene expression fluctuations.
1. Introduction
Exploring the consequences of cell-to-cell variability is crucial to understand the

functioning of endogenous and synthetic circuitry in living cells [1–4]. In clonal

cell populations, differences between cells arise from several dynamical effects.

An important source of heterogeneity is the intrinsic stochasticity in biochemical

reactions [5–7]. Equally important, but often overlooked, is the substantial varia-

bility of individual cell division timings. In fact, two sister cells do not divide at

the same time [8–10], which leads to more heterogeneous cell ages in clonal popu-

lations. Although both of these factors have been studied independently, their

contributions cannot easily be separated when cells are growing and dividing

[11,12]. Approaches that allow to investigate the interplay of these effects

remain widely unexplored.

Stochasticity in the levels of molecules per cell is commonly modelled using

the stochastic simulation algorithm [5,13]. While this approach fares well for

non-growing cells, it does not take into account the fact that molecule levels per

cell need to double over the cell division cycle, at least on average. A number of

studies therefore considered lineages that track the biochemical dynamics

inside a single dividing cell over many generations [14–19]. Such approaches

are well equipped to model the statistics observed in mother machines [20,21],

for example, or using cell tracking [22] that allow monitoring intracellular bio-

chemistry in isolated cells over time. Modelling approaches that also account for

the substantial variations observed in cell division timing are only currently

being developed [23,24]. Generation times of single Escherichia coli [10] and bud-

ding yeast cells [25], for example, vary up to 40% and 30% from their respective

means, and similar values have been observed in mammalian cells [26].
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On the other hand, population snapshots are commonly

used to quantify heterogeneity across clonal cell populations.

Such data are obtained from flow cytometry [27] or smFISH

[28], for instance. An important source of heterogeneity in

these datasets stems from the unknown cell-cycle positions

[29]. Sorting cells by physiological features—such as using

cell-cycle markers, DNA content or cell size as a proxy

for cell-cycle stage—are used to reduce this uncertainty

[27,30,31]. It has also been suggested that simultaneous

measurements of cell age, i.e. the time interval since the last div-

ision, could allow monitoring the progression of cells through

the cell cycle from fixed images [30–33]. Presently, however,

there exists no theoretical framework that addresses both

cell-cycle variability and biochemical fluctuations measured

across a growing cell population, and thus we lack the

principles that allow us to establish such a correspondence.

In applications, it is often assumed that the statistics

observed over successive cell divisions of a single cell equals

the average over a population with marked cell-cycle stages

at a single point in time [34]. In statistical physics, such an

assumption is referred to as an ergodic hypothesis, which

once it is verified leads to an ergodic principle. Such principles

certainly fare well for non-dividing cell populations, but it is

less clear whether they also apply to growing populations, in

particular, in the presence of fluctuating division times of

single cells. While this relationship can be tested experi-

mentally [35,36], we demonstrate that it is also amenable to

theoretical investigation.

In this article, we develop a framework to analyse the dis-

tribution of stochastic biochemical reactions across a growing

cell population. We first note that the molecule distribution

across a population snapshot sorted by cell ages disagrees

with the statistics of single cells observed in isolation, similarly

to what has been described for the statistics of cell-cycle

durations [8,37,38]. We go on to show that a cell history, a

single cell measure obtained from tree data describing typical

lineages in a population [39–43], agrees exactly with age-

sorted snapshots of molecule numbers. The correspondence

between histories and population snapshots thus reveals an

ergodic principle relating the cell-cycle progression of single

cells to the population. The principle gives important biological

insights because it provides a new interpretation to population

snapshot data.

In the results, we investigate the differences of the statistics

of isolated cell lineages and population snapshots. Section 2.1

develops a novel approach to model the stochastic bio-

chemical dynamics in a growing cell population. We derive

the governing equations for an age-sorted population and

formulate the ergodic principle. In §2.2, we demonstrate this

principle using explicit analytical solutions for stochastic

gene expression in forward lineages and populations of

growing and dividing cells. Our results are compared with sto-

chastic simulations directly sampling the histories of cells in the

population. Finally, in §2.3, we elucidate using experimental

fluorescence data of an antibiotic-resistance gene that testing

the principle allows us to discriminate whether a biochemical

process is under selection.
2. Results
Several statistical measures can be used to quantify the levels of

gene expression in single cells and populations. Distributions
obtained across a cell population, such as those taken from

static images, represent the final state of a growing population

(figure 1a, shaded green cells). Cells in isolation, by contrast,

can be modelled as random paths in the lineage tree, denoted

as forward lineages (figure 1a, black line), that follow either

of the two daughter cells with equal probability. Stochastic

simulations show that the distributions of these two statistics dis-

agree (figure 1b), and thus, apparently, the population dynamics

violates the ergodic hypothesis. In the following analysis, we

provide a novel ergodic principle relating how single cells pro-

gress through the cell cycle to the distribution of a growing cell

population. To formulate the principle, we introduce histories
(figure 1a, red line), a single-cell statistic that has the same distri-

bution as a population that is sorted by cell ages (figure 1c,d).

Such histories are obtained by choosing an arbitrary cell in the

population and tracing its evolution back to the ancestor from

which the whole population originated.

2.1. Biochemical dynamics in cell populations
We model stochastic biochemical reactions in a population of

growing and dividing cells. We assume that each cell contains

a pool of interacting biochemical species X1, X2, . . ., XNS

reacting via a network of R intracellular reactions of the form

n�1,rX1 þ � � � þ n�NS,rXNS
! nþ1,rX1 þ � � � þ nþNS,rXNS

,

where r ¼ 1, . . ., R and n+j,r are the stoichiometric coefficients. To

model the effect of cell divisions, we associate to each cell an age

t measuring the time interval from cell birth. If cells divide with

an age-dependent rate g(t), which is independent of the

number of molecules x in the network under consideration,

the division times td of each cell are distributed according to

w(td) ¼ g(td) e
�
Ð td

0
dt0g(t0)

: ð2:1Þ

Equivalently, for a given division-time distribution one obtains

the corresponding rate function via

g(t) ¼ w(t)

1�
Ð t

0 dt0w(t0)
:

While the forward-lineage approach is summarized in

appendix A, we here focus on the population dynamics. To

this end, we associate with the state of the population the

density of cells n(t, x, t) with molecule count x and age

between t and t þ dt at time t. This quantity represents the

outcome of repeated snapshots of the population growth pro-

cess, which averages out variations in the total number of

cells (see appendix B for a detailed derivation). The mean

number of cells in the population is then given by

N(t) ¼
ð1

0

dt
X

x
n(t, x, t): ð2:2Þ

Since the probability for a cell to divide at age t is given by

g(t) dt, the rate of change in the cell density obeys

@

@t
þ @

@t
þ g(t)

� �
n(t, x, t) ¼ Q n(t, x, t), ð2:3aÞ

where Q is the transition matrix for the biochemical reactions

Q n(x, t, t) ¼
XR

r¼1

[wr(x� nr)n(x� nr, t, t)

� wr(x)n(x, t, t)], ð2:3bÞ

wr is the propensity and (nr)i ¼ nþir 2 n2
ir is the stochiometric

vector of the r-th reaction. Equation (2.3a) must be
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Figure 1. Ergodic principle between single cells and the population. (a) Lineage tree of a clonal population leading to heterogeneous distribution of molecule
numbers per cell (green colour). Two types of lineage statistics characterize the tree: (i) forward lineages (black line) originate from a common ancestor, end at an
arbitrary cell in the population, and (ii) histories start from an arbitrarily chosen cell in the population and end at a common ancestor (red line). The conceptual
difference between these measures are the probabilities with which these lineages are selected. (b) Statistics of simulated forward lineages do not agree with
snapshot distributions (see box 1 and caption of figure 5 for simulation details). (c) Statistics observed across the population and the statistics after sorting
cells by age, which allows inferring the cell-cycle progression. (d ) The ergodic principle states that the statistics of age-sorted cells equals the distribution observed
along cell histories but not along forward lineages.
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supplemented by a boundary condition accounting for cell

divisions. Because the number of newborn cells equals

twice the number of dividing cells, the condition reads

n(0, x, t) ¼ 2

ð1

0

dt
X

x0
B(x j x0)g(t)n(t, x0, t): ð2:3cÞ
The division kernel B(x j x0) in equation (2.3c) models

the inheritance of x daughter molecules from x0 mother

molecules and is given by

B(x j x0) ¼ 1

2
B1(x j x0)þ 1

2
B1(x� x0 j x0), ð2:4Þ



Box 1: First Division Algorithm to simulate a cell population up to time tf.

1. Initialization. At time t ¼ 0, initialize the cell population by assigning to each cell an age ti, a division time td,i and molecule

count xi.

2. Biochemical reactions. Determine the next dividing cell from j ¼ argmini (td,i 2 ti) and Dt ¼mini (td,i 2 ti). Advance the

molecule numbers of each cell independently from ageti toti þ Dt using the Gillespie algorithm andadvance timefrom t to t þ Dt.
3. Cell division. Replace the dividing cell by two newborn daughter cells of zero age. Assign to one of these a molecule

number distributed according to B1(x j xj), depending on the mother’s molecule count xj, and assign the remaining

molecules to the other daughter. Assign to each daughter independently a division time distributed according to w(td).

4. Repeat. Repeat from 2 until t ¼ tf.
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where B1(x j x0) and B1(x0 2 x j x0) are the marginal distri-

butions of inherited molecules for the two daughter cells

(see appendix B for details). Note that the total molecule

numbers are conserved during cell division. For example,

when molecules are partitioned with equal probability

between daughter cells, B1 and B are binomial [16,44].

A simple algorithm that enables simulating the biochemical

dynamics in the population exactly, which we will refer to as the

First Division Algorithm, is given in box 1. Step 2 simulates the

transitions due to biochemical reactions, equation (2.3b), while

step 3 implements the boundary condition (2.3c) for cell div-

isions. The density of cells with molecule count x and age t

obtained from several snapshots then obeys equations (2.3).

While stochastic simulations are relatively easy to carry out,

equations (2.3) are generally difficult to solve because they rep-

resent an integro-partial differential equation. To allow for

analytical progress, we consider the long-term behaviour in

which the population grows exponentially with rate l,

n(t, x, t) � N0 eltP(t, x) ð2:5Þ

and identify P(t, x) as the joint distribution of cell ages and

intracellular molecule counts in the population. We treat this

distribution synonymously with the population snapshot.

Using ansatz (2.5) in equation (2.3), we obtain

lP(t, x)þ @

@t
P(t, x)þ g(t)P(t, x) ¼ QP(t, x): ð2:6Þ

Similarly, the corresponding boundary condition is given by

equation (2.3c) but with replacing n(t, x) by P(t, x).

2.1.1. Age distribution in a population
The age distribution measures the fraction of cells in the popu-

lation that reach a given age. It is obtained from marginalizing

the population distribution over the molecule numbers

P(t) ¼
X

x
P(t, x): ð2:7Þ

Summing equation (2.6) and solving (see appendix C for

details), we find that the age distribution obeys

P(t) ¼ 2l e�lt
ð1

t

dt0w(t0), ð2:8Þ

which recovers the results in [8,9,45]. The integral in the above

equation denotes the probability that a cell has not divided

before reaching age t.

The population growth rate l needs to be determined

from the boundary condition (appendix C), which leads to

the characteristic equation

1 ¼ 2

ð1

0

dt e�ltw(t), ð2:9Þ
also known as the Euler–Lotka equation [8,9,45]. The largest

root of this equation yields the population growth rate l.

For a discussion of the relation between the population

growth rate and the mean division time, see [10,45].
2.1.2. Molecule-number distribution in an age-sorted population
Next, we consider the probability of observing x molecules in

a cell of age t. This conditional probability is given by the

number of cells with age t and molecule count x divided

by the number of cells at that age

P(x j t) ¼ n(t, x)P
x n(t, x)

¼ P(t, x)

P(t)
: ð2:10Þ

It can be verified by plugging equation (2.10) into (2.6) that

the distribution obeys the master equation

@

@t
P(x j t) ¼ QP(x j t): ð2:11aÞ

Similarly, inserting equation (2.10) with (2.5) into boundary

condition (2.3c), we deduce that the distribution of inherited

molecules obeys

P(x j 0) ¼
ð1

0

dtd

X1
x0¼0

B(x j x0)P(x0 j td)r(td): ð2:11bÞ

We identify the density r with the ancestral division-time

distribution [8,40]

r(td) ¼ 2w(td) e�ltd , ð2:11cÞ

describing the past division-times in a growing cell population.

Taken together, equations (2.11) describe the distribution in an

age-sorted population. Combining these equations with the

age distribution given in the previous section they contain

the full statistical information of the population distribution.

An extension of this result to heritable division times is

provided in appendix C.

Since histories contain only ancestral cells, their division

times are distributed according to the ancestral division-

time distribution r, as has been pointed by Wakamoto

et al. [40]. In figure 2a, we compare the division-time

distributions in forward lineages and histories for variable

division times. We observe that the distribution tails of w

are suppressed in cell histories due to exponential depen-

dence on the growth rate l. Specifically, we highlight

the fact that cells with division times shorter than ln 2/l

are over-represented in histories compared with forward

lineages, while cells with longer division times are

over-represented.
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Figure 2. Generation time variability in forward lineages and histories. (a) Division times in forward lineages (dashed lines) following a gamma distribution with
unit mean and coefficients of variation of 10% (red, scaled by factor 1

2), 50% (blue) and 100% (yellow dashed line). The corresponding division time distributions in
cell histories are shown by solid lines. (b) The corresponding age distributions in forward lineages (dashed), histories (solid lines) and the population (light dashed).
Note that the age-distribution in a history is the same as the population for the exponential distribution (CV 100%, yellow line), and the distributions in histories
and forward lineages are very similar for small cell-cycle variability (CV 10%, red lines).

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170467

5

2.1.3. Ergodic principle for cell populations
We now explain how these quantities can be computed

from population data. To this end, we use the approach pre-

sented by Nozoe et al. [42] enumerating all lineages of a

given population tree. We denote the molecule numbers in

lineage j by (x1,j(t1,j), . . ., xD,j(td,j)) with Dj completed cell div-

isions, where xi,j(t) is the time-course from birth to division

of molecule numbers of the ith cell in that lineage. We then

evaluate the average of a function f(x) over a lineage of cells

at a given age t,

�f j(x, t, t) ¼ 1

D j,t(t)

XDj(t)

i¼1

f(xi,j(t))d(t� ti,j), ð2:12Þ

where D j,t(t) ¼
PDj(t)

i¼1 d(t� ti,j) is the number of cells in the

lineage that reach age t before dividing.

Because forward lineages track either one of the two

daughter cells with equal probability, the probability of

choosing lineage j from the tree is 22Dj, which decreases

with the number of cell divisions [42]. Because the division

times in forward lineages follow the distribution w, we have

lim
t!1

XN(t)

j¼1

2�Dj(t)�f j(x, t, t) ¼
ð

dxp(x j t)f(x): ð2:13Þ

The distribution under the integral is the lineage-probability

described in appendix A.

Next, we consider the distribution along histories that track

an arbitrary cell from the population and trace back its evol-

ution. The probability of choosing such a history is the same

for every lineage and therefore equals the inverse number of

cells N(t) in the population. The statistics of histories can thus

be interpreted as a typical lineage. We note that equations (2.11)

can be understood as describing the distribution along a

lineage, similar to the forward-lineage approach develop

in appendix A (cf. equations (A 1)), but by replacing the

division-time distribution w with the one of the ancestral popu-

lation r. Since histories are composed entirely of ancestral cells,

their division times follow the ancestral division-time distri-

bution r. It hence follows that histories posses the same

statistics as in the age-sorted population, that is

lim
t!1

1

N(t)

XN(t)

j¼1

�f j(x, t, t) ¼
ð

dxP(x j t)f(x): ð2:14Þ
The distribution P(x j t) is the lineage distribution given by

the solution of equations (2.11) and equals the distribution

in an age-sorted population, as we have shown in §2.1.2.

We thus formulate the ergodic principle as the average of
the histories of single cells in a population obtained over many
cell divisions equals the average over an age-sorted cell popu-
lation at every time point. A more intuitive way of stating

the result is that the endpoints of all lineages have the

same distribution P(x j t) as cells of t in the population.

Note that equations (2.13) and (2.14) are equal only for

deterministic division times. In fact, most lineages �f j are

close to the history-average given by the right-hand side

of equation (2.14), as we show in the following section

through the use of examples (§2.2).

Before proceeding, we investigate the age distribution

that yields the fraction of cells reaching age t in a history.

Because division times in histories are distributed according

to r and the probability that a cell has not divided before

age t is
Ð1

t
dtdr(td), we have

lim
t!1

1

N(t)

XN(t)

j¼1

D j,t(t)
Dj(t)

¼ 1

ktdlr

ð1

t

dtdr(td), ð2:15Þ

where ktdlr is the mean of the distribution r, which arises

as a normalizing constant (see appendix D). The result is

notably different from the age-structure in a population

P(t), compare equation (2.8). For example, the corresponding

age distributions for gamma-distributed division times are

compared in figure 2b.

It thus follows that the average over a history of molecule

numbers is not generally the same as the population average

irrespective of age. The only exception to the rule are memory-

less division times, i.e. constant division rates resulting in

exponentially distributed division timings. In this case,

equation (2.8) and (2.15) agree, but interestingly, the popu-

lation distribution differs from the forward-lineage

distribution.
2.2. Analytical solutions for forward lineages, histories
and snapshot distributions

To obtain analytical solutions we make use of the generating

function approach. For this purpose, we restrict ourselves to
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binomial partitioning of molecules

B(x j x0) ¼ 2�x x0

x

� �
: ð2:16Þ

The boundary condition (2.11b) for the probability generating

function G(z j t) ¼
P

x zxP(x j t) then simplifies to

G(z j 0) ¼
ð1

0

dtd G
1

2
(1þ z)jtd

� �
r(td): ð2:17Þ

In the following, we demonstrate how explicit solutions for

the lineage, histories and snapshot distributions can be

obtained for simple examples of stochastic gene expression

but arbitrary division-time distributions.

2.2.1. Molecule synthesis and degradation
As a first application, we consider a birth–death process.

Molecules are synthesized at a constant rate k0 and are

degraded via a first-order reaction with rate k1,

; !k0 X !k1 ;: ð2:18Þ

To test whether differences between forward lineages and

histories could be significant in a single population, we

used the First Division Algorithm (box 1) to simulate a popu-

lation tree corresponding to figure 1a. We then select histories

by choosing cells at random from the population and tracing

their evolution back through the population tree. Similarly,

we choose forward lineages by following the first cell in the

population over many cell cycles selecting either daughter

cell with equal probability. A qualitative comparison of few

representative time-courses shows that forward lineages

exhibit fewer cell divisions but higher molecule counts

than histories (figure 3a), consistent with the predicted age-

distributions, which contain more old cells in forward

lineages than in histories (figure 2b).

To quantify whether histories represent typical lineages in

a finite population, we simulate 40 lineage trees up to a popu-

lation size of N ¼ 100, 1000 and 10 000. We then calculate

mean and second moments for each individual lineage in

the tree and evaluate their distributions across all lineages

(figure 3b,c). As the population size increases the distribution

of first and second moments becomes centred about the

moments of the history distribution which are smaller than

the corresponding ones in forward lineages. In particular,

the moments of histories correspond to the distribution
modes verifying that histories are typical lineages, even for

finite populations.

Next, we investigate how to analytically characterize the

distributions of both processes. The generating function of the

corresponding master equation obeys the evolution equation

@

@t
G(z j t) ¼ k0(z� 1)G(z j t)� k1(z� 1)

@

@z
G(z j t): ð2:19Þ

Because molecules are produced and degraded independently,

their number x per cell can be separated into a sum of two inde-

pendent contributions: (i) the amount of molecules newly

produced and degraded up to age t, and (ii) the amount of mol-

ecules inherited after cell division. Clearly, the first contribution

is Poissonian and its mean is given by m(t) ¼ (k0/k1)(1 2 e2k1t).

The second contribution needs to be determined from the

boundary condition as we show in the following.

The solution to equation (2.19) can be written as a product

of generating functions of the aforementioned contributions

G(z j t) ¼ G0((z� 1) e�k1t) e(z�1)m(t), ð2:20Þ

where the first factor is the generating function of newly

produced and degraded molecules until age t. Using this

solution in equation (2.17) we find the condition

G0(z� 1) ¼
ð1

0

dtdr(td)G0
1

2
(z� 1) e�k1td

� �
e(z�1)(m(td)=2):

ð2:21Þ

If cell divisions occur at deterministic time intervals, the integral

is straightforward. In this case, the distribution of inherited

molecules p0 is Poissonian with mean mp(t) ¼ ((1 2 e�k1td )/

(2 2 e�k1td ))(k0/k1) e�k1t and depends on the division-time td.

This result has been obtained earlier by Schwabe et al. [29],

and as a particular case by Johnston et al. [19].

The solution turns out to be more involved in the pres-

ence of division-time variability. Certainly, equation (2.20)

could be solved for particular choices of r(td). Since,

however, the division-time variability is difficult to character-

ize, in general, we aim to solve this equation for arbitrary

distributions. To this end, we expand

G0(z� 1) ¼
X1
n¼0

an(z� 1)n ð2:22Þ

and write an equation for the series coefficients an. Plugging

equation (2.22) into (2.20) and equating equal powers of z,
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we find

an ¼
Xn

m¼1

an�m
kmm(td) e�k1td(n�m)lr
m!(2n � ke�k1tdnlr)

¼
Xn

m¼1

an�m
k0

k1

� �mXm

k¼0

m
k

� � (� 1)kr̂(k1(k þ n�m))

m!(2n � r̂(k1n))
, ð2:23Þ

where r̂ is the Laplace transform of the division-time distri-

bution in equation (2.11c). From the above formula all

coefficients can be computed recursively using a0 ¼ 1. It follows

using G0((z 2 1) e2k1t) in equation (2.22) and differentiating at

z ¼ 1 that the probability of observing x molecules inherited

after cell division is

P0(x j t) ¼
X1
n¼x

n
x

� �
(� 1)n�xan e�nk1t: ð2:24Þ

Note that the distribution depends on the cell age t because the

inherited molecules are degraded over the cell cycle. Because

the number of molecules produced up to age t is Poissonian,

the total amount of molecules for a cell of age t obeys

P(x j t) ¼
X1
n¼x

P0(n j t)
mx�n(t)

(x� n)!
e�m(t): ð2:25Þ

The distributions of forward lineages are obtained by

substituting w for r in equation (2.23) (appendix A).

In figure 4a, we show the resulting distributions of

inherited molecules (t ¼ 0) for different levels of cell-cycle

variability (figure 4a,i) for the cases of an age-sorted population

(solid lines) and for the lineage statistics (dashed lines).

Division times are assumed to be gamma-distributed, which

fits cell-cycle variability observed in many bacteria [8,10].

The molecule number distributions are obtained using either

r or w in equation (2.23) and truncating equation (2.24) after
the first 150 terms. In agreement with the theoretical predic-

tions, lineage and histories distributions are similar for small

division time variability (red lines) but become significantly

different as variability increases (yellow lines). Also shown

are the corresponding distribution for varying degradation

rates (figure 4a,ii). We observe that forward lineages and his-

tory statistics are comparable for unstable molecules (fast

degradation) but not for stable ones (slow degradation). This

finding is in line with the intuition that rapid degradation

averages out timing fluctuations.

To support the numerical results, we evaluate the mean

number of molecules at birth E[x j 0] ¼ a1 ¼ (k0=k1)(1� r̂(k1))=

(2� r̂(k1)). For fast degradation, the expression reduces to

E[x j 0] � 1
2 (k0=k1) in both forward lineages and histories

because it is independent of the division times. For slow degra-

dation, however, we obtain E[x j 0] � k0Er(td) in histories and

Efw[x j 0] � k0Ew(td) in forward lineages. Since Er(td) � Ew(td)

with equality for deterministic division times [10], we conclude

that cells in histories and the population contain fewer mol-

ecules than in forward lineages. One can further show that the

difference between population and forward lineages E[x j 0] 2

Efw[x j 0]¼ 2 k0ln 2 CV2
w[t] þ O(CV4

w) increases with the

coefficient of variation of timing fluctuations.

In figure 4b, we illustrate the corresponding distributions

for t ¼ 0.5 corresponding to half of the mean generation time.

We observe that both cell-cycle variation (figure 4b,i) and

degradation (figure 4b,ii) mitigate the discrepancies between

lineage and history statistics. Intuitively, this could also be

concluded from the fact that equation (2.19), and similarly

the distribution of molecules equation (2.11a), approaches

a steady state independent of the number of inherited

molecules for large t. For all cases, we verified the ergodic

principle by stochastic simulations using the First Division
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Algorithm (box 1) of 40 population trees from which

we chose histories at random. The corresponding distri-

butions are shown as shaded areas in figure 4a,b, which are

in excellent agreement with our analytical solutions (solid

lines).

To investigate the effect of the overall distribution

in the population irrespectively of cell age, we numerically

integrate the analytical solution (2.25) over the age-

distribution P(t) of the population given by equation (2.8),

P(x) ¼
Ð1

0 dtP(x j t)P(t); the result is shown in figure 4c.

The corresponding age distribution in a forward lineage is

given in appendix D. We find that these predictions (solid

lines) are in excellent agreement with the simulated distri-

butions across populations (shaded areas) but not with the

distributions across forward lineages (dashed lines).
2.2.2. Expression of a stable protein
Characteristic mRNA half-lives in E. coli are of the order of

5 min, while doubling times range from 20 min to several

hours. Given the findings of the previous section, this

suggests that generation time variability has little effect on

mRNA distributions. Protein half-lives in living cells, how-

ever, occur on timescales much longer than the doubling

time, meaning that many proteins are essentially stable and

diluted mainly through cell divisions.

To investigate protein variability in growing cell popula-

tions, we model the expression of such a protein including

mRNA transcription via the reactions

; !k0
mRNA !k1 ;

and mRNA !k2
mRNAþ protein:

)
ð2:26Þ

Using the First Division Algorithm (box 1), we simulate a

population of dividing cells and collect representative for-

ward lineages and histories (figure 5a). Given that empirical

distributions of rescaled log-division times in E. coli are invar-

iant and bell-shaped across conditions [46], we assume

lognormal distributed division times. We observe that protein

time-courses corresponding to forward lineages have higher

protein levels and are noisier than histories.

Deriving analytical expressions for the distribution of pro-

teins is more involved because the amount of produced

protein generally depends on the amount of inherited

mRNA. We use the simplifying assumption that the mRNA
half-life is much shorter than the cell-cycle time, for which

the reactions (2.26) reduce to a single reaction [47,48]

; !k0 m� protein; ð2:27Þ

with proteins being produced in stochastic bursts of size m
with distribution nm. For the reactions (2.26), the burst size

distribution nm is geometric with mean b ¼ k2/k1 correspond-

ing to the mean number of proteins produced per mRNA

lifetime [48].

The rate of change for the generating function of this

process satisfies

@

@t
G(z j t) ¼ �g(z� 1)G(z j t), ð2:28Þ

where g(z� 1) ¼ �k0

P1
m¼0 nm(zm � 1) ¼ bk0z=ðbz� 1Þ. It can

be verified using equation (2.28) and the boundary con-

dition (2.17) that the exact generating function solution is

G(z j t) ¼ eK(z)�g(z�1)t, ð2:29Þ

where K(z) ¼
P1

n¼1 ln r̂(g((z� 1)=2n)) and r̂ is the Laplace

transform of r. Marginalizing the above equation over the

age distribution, we obtain the generating function for the

protein number distribution in the population

G(z) ¼ eK(z)P̂(g(z� 1)): ð2:30Þ

An explicit expression for the Laplace transform of the age-

distribution P̂ is given in appendix D, equation (D 3).

The distributions corresponding to the generating func-

tion, equation (2.29), are obtained numerically via the

inverse transform

P(x j t) ¼ 1

2p

ð2p

0

duG(eiu j t) e�iux: ð2:31Þ

Note that because the moment-generating function does not

exist for the lognormal distribution, we computed the

Laplace transform of the division-time distribution directly.

In practise, it was sufficient to truncate the sum in K(z)

after the first 10 terms. In figure 5b, we show the resulting dis-

tribution of inherited protein in a population (t ¼ 0, red line).

We observe excellent agreement between the theoretical sol-

ution and the history statistics obtained from stochastic

simulations of 40 population trees (shaded red area),

which verifies the ergodic principle. Instead, the distribution

obtained across forward cell lineages shows a broader
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distribution with significant distribution tails (blue line) due

to larger division time variability, in agreement with simu-

lations (shaded blue area). Similar to the previous example,

cells in histories and the population inherit fewer molecules

than in forward lineages. We also obtain good agreement

with the snapshot distributions measured across the cell

population shown in figure 5c (red line: theory, red shaded

area: simulation) by instead using equation (2.30) in the

transformation (2.31).
2.3. Breakdown of the ergodic principle under selection
So far, we considered traits that do not affect the cell division

rate. To test the validity of the principle in the opposite case,

we simulate the production of a biomolecule whose levels

increase division rate. We find that the distributions in his-

tories do not coincide with the age-sorted population

(figure 6a). The history distribution exhibits significantly

larger tails resulting in a higher mean number of molecules

(21.6 in histories versus 12.4 in population). This breakdown

suggests that one could in principle discriminate the factors

that affect cell fitness.

To investigate this effect, we consider Fisher’s reproductive

value [49], denoted by n, which counts the relative number of

future offspring for a cell in a given phenotypic state. Interest-

ingly, it can be defined as the ratio of the distribution of

histories and the age-sorted population statistics [50]. For a

given trait x observed in cells of age t, we here use their

conditional distributions that provide the following factorization

n(x, t) ¼ r(x j t)

P(x j t)|fflfflffl{zfflfflffl}
¼n(x j t), from expression of x

� n(t)|{z}
from other factors

: ð2:32Þ

The first factor is the reproductive value due expression of x,

involving the distributions across the age-sorted population

P(x j t) and across histories r(x j t). The second factor, n(t)¼

Ph(t)/P(t), denotes the contribution from other factors affecting

the division rate and is given by the ratio of the age distribution of

histories Ph(t) and the age distribution of the population P(t),

which are generally different [10,40]. According to the ergodic

principle the first contribution equals 1, when x does not affect

the division rate, and thus the reproductive value is solely
determined by ‘other’ factors that are not explicitly known and

modelled via a stochastic interdivision time. When x increases

division rate, higher levels of x can be selected upon and the

reproductive value n(x j t) increases with x (figure 6a, inset).

Thus, when the molecule levels are selected upon, ancestral

cells contain more molecules on average than cells of the present

population (figure 6a).

We investigate this dependence using recently acquired

tree data of the antibiotic-resistance gene smR conveying

resistance to the antibiotic streptomycin [42]. The protein is

fused to a fluorescent reporter allowing direct observation.

We obtain age-sorted distributions using measured total fluor-

escence after cell division (t ¼ 0), while lineage-weighted

distributions are computed using equations (2.13) and (2.14).

In the absence of antibiotic treatment, the distributions of

new-born cells in the age-sorted, histories and forward

lineages are essentially the same (figure 6b). In agreement

with the ergodic principle, the reproductive value due to the

expression of the protein is constant (figure 6b, inset). In the

presence of sub-inhibitory antibiotic doses, the distribution

in histories differ from the one acquired across the population

(figure 6c) and, moreover, the reproductive value increases

with fluorescence (inset), which indicates selection on higher

expression levels. These results are in agreement with the

known function of the gene and highlight that testing the pro-

posed ergodic principle can be used to probe selection in cell

populations.
3. Discussion
We presented a modelling approach for stochastic biochemical

reactions in dividing cell populations. The theory enabled us

to identify an ergodic principle between single cells and

the population, which can be stated as the average of the his-

tories of single cells in a population obtained over many cell

divisions equals the average over an age-sorted cell population

at any single time point. Cell histories capture the statistics

of typical lineages in a population, which are obtained by

choosing an arbitrary individual of a clonal population and

tracking back its evolution to the ancestor from which the

population originated.
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This principle provides an interpretation of population

snapshot data because it identifies the sample paths that are

associated with age-sorted snapshot data with typical cell his-

tories. Histories thus allow us to characterize the progression of

single cells in the population through the cell cycle. We empha-

sized that the statistical difference between forward lineages

and histories arises from variable division times, cells dividing

faster than the population growth rate being over-represented

in histories as compared to forward lineages. These deviations

are expected to be significant since generation times of single

cells are highly variable in microbial cell populations.

It is important to point out that the principle requires the

cell age to be known. The exception to this rule is the case of

exponential division times for which the time-average of his-

tories equals the one across snapshots. In the general case,

gating techniques as used in flow cytometry can be used to

narrow the range of physiological differences and thus corre-

spond to age-sorted distributions, which according to the

principle agree with the histories of single cells. Mother

machines, on the other hand, provide statistics of individual

forward lineages assuming that cells divide symmetrically.

Thus our findings suggest potential differences when studying

the dynamics of gene expression in different experimental

devices, even when cell-cycle positions are explicitly known.

Different notions of ergodicity have been discussed in the

literature. Rocco et al. [17], for instance, challenged the ergodic

hypothesis between an ensemble of individual lineages and

their time-averages. They found that the hypothesis only

holds true for fast degrading molecules. We found a similar

dependence for the ergodicity between snapshots of a growing

population and individual histories, which is justified

when studying the dynamics of short-lived molecules such

as mRNAs. The majority of proteins in E. coli and yeast, how-

ever, have half-lives much longer than typical population

doubling times [51,52], for which the present ergodic principle

accounts for. We demonstrated this dependence using analyti-

cal solutions to lineage, history and population distributions of

simple stochastic models of gene expression.

Although we developed the approach for biochemical reac-

tions, the general principle applies to heritable non-genetic

traits, such as plasmid numbers or chromatin states. Specifi-

cally, it applies to any trait of interest that does not affect the

cell division rate. A counterexample of such a trait is cell size

to which the history analysis has recently been applied [43].

Here, we found the that the likelihood to find an ancestral

cell with a positively selected trait value is higher than for

cells of the present population. Thus testing the ergodic prin-

ciple could be used to experimentally probe this effect on cell

fitness for any trait of interest.
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Appendix A. Biochemical dynamics in forward
lineages
The lineage description tracks a single cell over many cell div-

ision cycles but retains information about only one daughter
at each division. We consider the lineage-probability pD(xjt)

of observing x molecules in a cell of age t after Dth division.

In between divisions the distribution satisfies the chemical

master equation

@

@t
pD(x j t) ¼ Q pD(x j t), ðA 1aÞ

where the transition matrix is defined in equation (2.3b) of the

main text. An important difference to the usual master

equation is that it needs to be solved subject to both an initial

condition p0(x j 0) and a boundary condition describing cell

divisions. The latter is given by

pDþ1(x j 0) ¼
ð1

0

dtd

X
x0

B(x j x0)pD(x0 j td)w(td), ðA 1bÞ

where w(td) is the distribution of division times, B(x j x0) is

the division kernel as defined in equation (2.4) of the main

text, and the summation is over all possible molecular

states x0. The stationary lineage-probability is obtained in the

long-term limit p(x j t) ¼ limD! 1pD(x j t) after a large

number of cell divisions, or equivalently, by letting pD(x j
t) ¼ pDþ1(x j t) in equation (A 1). The boundary condition,

equation (A 1b), couples the distribution of dividing to the

one of newborns.
Apendix B. Master equation description of
snapshot probabilities and snapshot densities
We here derive a stochastic description for the outcome of

snapshots in a dividing cell population. The state of the

system may be described by observations of molecule content

and cellular age fti, xigi¼N, where N is the present number

of cells. Note that ti and xi but also N are random variables

for a single snapshot [9]. When cells are indistinguishable,

a snapshot is equivalently characterized by the empirical

distribution function

s(x, t) ¼
XN

i¼1

dx, xid(t� ti): ðB 1Þ

Generally, more than a single snapshot is available, for

instance by collecting snapshots from different microcolonies.

Aggregating snapshots averages out the dependence on the

individual stochastic realizations of fti, xigi¼N, and yields

the snapshot density

n(x, t) ¼ kXN

i¼1

dx, xid(t� ti)l, ðB 2Þ

quantifying the frequency with which cells with molecule

count x and age t are observed in the population. In the fol-

lowing, we first derive a master equation description for

the functional probabilities P[s, t] of observing a particular

realization of the snapshot s(x, t) at time t. Second, we per-

form the average over all possible snapshots to obtain the

density n(x, t). An alternative approach to the one presented

here would extend the kinetic framework given in [53] to

incorporate biochemical reactions.

We consider two types of transitions: (i) cell division in

which molecules are partitioned between the two daughter

cells and (ii) biochemical reactions. The rate of cell division

for a single cell of age t0 is g(t0) and hence the propensity
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of cell divisions in the population is

g(t0)s(x0, t0) dt0: ðB 3Þ

At division, the mother cell is replaced with two new cells of

zero age. The snapshot, therefore, changes instantaneously by

s(x, t)! s(x, t)� dx, x0d(t� t0)þ dx, x1d(t)þ dx, x2d(t), ðB 4Þ

where t0 and x0 are the respective age and molecule count of

the mother cell, and x1 and x2 the molecule counts of the

daughter cells.

When a biochemical reaction with stoichiometry nr

occurs, we replace the mother cell with molecule count x0

by a cell of the same age but x0 þ nr molecules. The snapshot

therefore changes as follows:

s(x, t)! s(x, t)� dx, x0d(t� t0)þ dx, x0þnrd(t� t0): ðB 5Þ

For brevity of notation, we define the step-operator,

which acts as E+1
x0,t0

f[s(x, t)] ¼ f[s(x, t) + dx,x0
d(t� t0)] on

any functional f of the snapshot function s(x, t). Combin-

ing the changes from divisions and R possible reactions,

we obtain the change in the snapshot probability P[s, t],
describing the probability of all possible snapshots, which

obeys

d

dt
P[s, t] ¼

XR

r¼1

ð
dt0 dx0wr(x0)[Eþ1

x0 ,t0E�1
x0þnr ,t0 � 1]s(x0, t0)P[s, t]

þ
ð

dt0
X

x1,x2,x0
g(t0)B(x1, x2 j x0)

� [Eþ1
x0 ,t0 E�1

x1,0E�1
x2,0 � 1]s(x0,t0)P[s, t], ðB 6Þ

where we assume that B(x1, x2 j x0) is the probability of parti-

tioning x0 molecules into the proportions x1 and x2 of the

daughter cells.

The snapshot density n(x, t, t) from repeated experiments

is obtained as follows:

n(x, t, t) ¼
ð
D[s]s(x, t)P[s, t]:

Thus multiplying equation (B 6) by s(x, t), integrating over

all possible snapshots, and using the definition of the

total derivative, we obtain the master equation for the

snapshot density

@

@t
nðx; t, tÞ þ @

@t
nðx, t, tÞ ¼ �gðxÞnðx, tÞ

þ dðtÞ
X

x0

ð1

0

dt0gðt0ÞB1ðx j x0Þnðx0, t0, tÞ

þ dðtÞ
X

x0

ð1

0

dt0gðt0ÞB2ðx j x0Þnðx0, t0, tÞ

þ
XR

r¼1

ðwrðx� nrÞnðx� nr, t, tÞ � wrðxÞnðx, t, tÞÞ,

where B1(x j x0) ¼
P

x2
B(x, x2 j x0) and B2(x j x0) ¼

P
x1

B(x1, x j x0) are the marginal distributions of the partition

probability. If the molecule numbers are conserved during

cell division, we must have B2(x j x0) ¼ B1(x0 2 x j x0).
Integrating the above equation over a small interval

Ð e
�e dt

containing the newborn cells and using n(x, e)! n(x, 0),

n(x, 2 e)! 0 and definition (2.4) of the main text, we find

that the second and third term on the right-hand side of the

above equation give the boundary condition (2.3c) of the

main text. The remaining terms describe the rate of change
in between divisions and are equal to equation (2.3a)

with (2.3b) of the main text.
Appendix C. Extension to heritable interdivision
times
We here discuss an extension of the ergodic principle. We

consider a general trait x and division times that are statisti-

cally dependent between mother daughter cells. Such

correlations could arise, for instance, due to heritable factors

such as cell size. To proceed we characterize the state of each

cell by a cell age t and a interdivision time td. The latter is a

random quantity that yields the age at which a cell will even-

tually divide. The distribution of cell ages at division must

then satisfy

Pr(t j td) ¼ g(t, td) e
�
Ð t

0
dsg(s,td) ¼ d(t� td), ðC 1Þ

for an appropriate choice of the division rate g(s, td).

C.1. Forward lineages
At stationarity, the division time distribution along a forward

lineage can then be described by

w(td) ¼
ð1

0

dt0dB(td j t0d)w(t0d): ðC 2Þ

Similar to the case of independent division times, the lineage

dynamics of the trait x is a function of cell age

@

@t
p(x j t) ¼ Q p(x j t), ðC 3Þ

but does not depend on the future division time. The bound-

ary condition describing cell divisions is

p(x j 0) ¼
ð1

0

dtd

X1
x0¼0

B(x j x0,td)w(td)p(x0 j td): ðC 4Þ

Note that for generality we have included the case where the

division kernel B(x j x0, td) also depends on heritable factors

effectively through its dependence on the age at division td.

C.2. Distribution of age and division times
For the cell population, we describe the density of cells with

age t, future division time td and the trait x, which follows

the evolution equation

lþ @

@t
þ g(t, td)

� �
P(t, td, x) ¼ QP(t, td, x): ðC 5aÞ

To account for cell divisions, we supplement the above

equation by a boundary condition, which again replaces

each mother cell by two daughter cells of zero age but with

the trait x0 replaced by x after cell division. The latter can

be expressed as

P(0, td, x) ¼ 2

ð1

0

dt

ð1

0

dt0dB(td j t0d)g (t, t0d)

�
X1
x0¼0

B(x j x0, t)P(t, t0d, x0):
ðC 5bÞ

Summing equation (C 5a) over all possible trait values x
and solving for P(t, td), we find that the age-division-time

distribution is

P(t, td) ¼ P(0,td) e�ltu(td � t), ðC 6Þ
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where u denotes the Heaviside function. The division times of

newborn cells in the population follow P(td j 0), which is

obtained from

P(td j 0) ¼ P(0, td)

P(0)
: ðC 7Þ

The constant P(0) can be determined by integrating

equations (C 5) over all possible values of t, td and x and

combining the results to obtain

P(0) ¼ 2l: ðC 8Þ

Specifically, marginalizing equation (C 6) over the

division times td, the age distribution becomes

P(t) ¼ 2l e�lt
ð1

t

dtdP(td j 0): ðC 9Þ

Further, summing equation (C 5b) over all possible values of

x and combing equations (C 1), (C 6) and (C 7) with the

boundary condition (C 5b) gives an integral equation for the

division time of newborn cells in the population

P(td j 0) ¼ 2

ð1

0

dt0d B(td j t0d) e�lt
0
dP(t0dj0): ðC 10Þ

Interestingly, when division time is inherited this distribution

is different from the one in a forward lineage. The above

equation has first been derived by Powell [8] to investigate

the effect of mother–daughter correlations, albeit using a

different approach. The population growth rate is implicitly

defined through the normalizing condition

1 ¼ 2

ð1

0

dt0d e�lt
0
dP(t0d j 0): ðC 11Þ

In particular, we note that the distribution below the integral

is the ancestral division time distribution

r(td) ¼ 2 e�ltdP(td j 0): ðC 12Þ

This distribution counts all divisions that occurred in a

stationary population up to a certain point in time. The

distribution of ‘future’ division times is P(td)

P(td) ¼ 2P(tdj0)(1� e�ltd ), ðC 13Þ

which satisfies the relation

w(td) ¼ 1

2
r(td)þ 1

2
P(td): ðC 14Þ

C.3. Distribution of a trait along histories
Finally, we turn our attention to the distribution of molecule

numbers for cells of a given age. To this end, it is important to

note that the molecule numbers are non-anticipating in that

they are statistically independent of division time td but

they only depend on cell age

P(x j t, td) ¼ P(x j t): ðC 15Þ

It is worth pointing out that this statement assumes

the division times to be independent of the trait of interest.

In effect, the distribution of molecules at a certain cell age
evolves according to

@

@t
P(x j t) ¼ QP(x j t): ðC 16aÞ

The boundary condition can be derived by letting P(t, x,

td) ¼ P(x j t)P(t, td) in equation (C 5b), which gives

P(x j 0) ¼
ð1

0

dtd

X1
x0¼0

B(x j x0, td)r(td)P(x0 j td): ðC 16bÞ

We observe that this is the same equation as obtained in a

forward lineage but replacing the lineage distribution

of division times with the ancestral distribution r(td),

equation (C 12). Because histories contain only ancestral cells,

the above equation also determines the distribution in cell

histories. In summary, we have shown that the distribution

of a cellular trait along a history equals the distribution in a

dividing cell population with inherited division times.
Appendix D. Properties of the age distributions
Consider an age distribution of the form

P(t) ¼ P(0) e�lt
ð1

t

w(t), ðD 1Þ

which for l ¼ 0 coincides with the age distribution in for-

ward lineages and for l=0 with the age distribution in a

population. Its Laplace transform P̂(s) can be expressed as

follows:

P̂(s) ¼ P(0)

ð1

0

dt e�(lþs)t

ð1

t

dt0w(t0)

¼ P(0)

ð1

0

dt0w(t0)

ðt0
0

dt e�(lþs)t

¼ P(0)

lþ s
(1� ŵ(lþ s)), ðD 2Þ

where ŵ denotes the Laplace transform of the division-time

distribution w. For the population, it follows from P̂(0) ¼ 1

and ŵ(l) ¼ 1
2 that P(0) ¼ 2l. Hence, we obtain the Laplace

transform

P̂(s) ¼ 2l

lþ s
(1� ŵ(lþ s)): ðD 3Þ

For forward lineages, we use l ¼ 0 in equation (D 1) and the

fact that

ktlw ¼ lim
s!0

(1� ŵ(s))

s
, ðD 4Þ

equals the average division time. It then follows that P(0) ¼

1/ktl and hence

P̂lin(s) ¼ 1

ktlw

1� ŵ(s)

s
, ðD 5Þ

or, equivalently,

Plin(t) ¼ 1

ktlw

ð1

t

dtdw(td): ðD 6Þ
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