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a b s t r a c t

Purpose: Traumatic brain injury (TBI) generally causes mortality and disability, particularly in children.
Machine learning (ML) is a computer algorithm, applied as a clinical prediction tool. The present study
aims to assess the predictability of ML for the functional outcomes of pediatric TBI.
Methods: A retrospective cohort study was performed targeting children with TBI who were admitted to
the trauma center of southern Thailand between January 2009 and July 2020. The patient was excluded if
he/she (1) did not undergo a CT scan of the brain, (2) died within the first 24 h, (3) had unavailable
complete medical records during admission, or (4) was unable to provide updated outcomes. Clinical and
radiologic characteristics were collected such as vital signs, Glasgow coma scale score, and characteristics
of intracranial injuries. The functional outcome was assessed using the King's Outcome Scale for
Childhood Head Injury, which was thus dichotomized into favourable outcomes and unfavourable out-
comes: good recovery and moderate disability were categorized as the former, whereas death, vegetative
state, and severe disability were categorized as the latter. The prognostic factors were estimated using
traditional binary logistic regression. By data splitting, 70% of data were used for training the ML models
and the remaining 30% were used for testing the ML models. The supervised algorithms including
support vector machines, neural networks, random forest, logistic regression, naive Bayes and k-nearest
neighbor were performed for training of the ML models. Therefore, the ML models were tested for the
predictive performances by the testing datasets.
Results: There were 828 patients in the cohort. The median age was 72 months (interquartile range 104.7
months, range 2e179 months). Road traffic accident was the most common mechanism of injury, ac-
counting for 68.7%. At hospital discharge, favourable outcomes were achieved in 97.0% of patients, while
the mortality rate was 2.2%. Glasgow coma scale score, hypotension, pupillary light reflex, and sub-
arachnoid haemorrhage were associated with TBI outcomes following traditional binary logistic
regression; hence, the 4 prognostic factors were used for building ML models and testing performance.
The support vector machine model had the best performance for predicting pediatric TBI outcomes:
sensitivity 0.95, specificity 0.60, positive predicted value 0.99, negative predictive value 1.0; accuracy
0.94, and area under the receiver operating characteristic curve 0.78.
Conclusion: The ML algorithms of the present study have a high sensitivity; therefore they have the
potential to be screening tools for predicting functional outcomes and counselling prognosis in general
practice of pediatric TBIs.
© 2021 Chinese Medical Association. Production and hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Traumatic brain injury (TBI) in children is a public health
problem.1 From previous studies in Thailand, 37.5%e65.3% of
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pediatric TBIs were injured from road traffic accidents2,3 and 22.4%
of the wounded was motorcycle drivers.2 The mortality rate of
pediatric TBIs of all ranges of severity has been reported at 3.2%e
5.2%, while 0.3%e0.8% of those were found as a vegetative state and
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severe disability.4,5 More than half of severe pediatric TBIs died
within one year after injuries, and only 4.6%e8.7% had a good
recovery.6

Post-traumatic sequelae and long-term consequences of severe
pediatric TBIs have been recognized to incur a productivity loss for
the nation.7 Prediction of functional outcomes among the injured
children is one of the important processes to evaluate future
economic burden. In general, the clinical outcome is predicted
from independent variables by traditional statistical methods.
Nowadays, machine learning (ML) algorithms have been used as
clinical prediction tools in the literature.7,8 Prior studies have
performed ML for classifying and predicting clinical outcomes
such as neuro-oncology,9,10 TBI,11 stroke,12 and postoperative
complications.13

The ML approach, particularly supervised ML, has also been
used to predict clinical outcomes following TBI. Random forest has
been reported as a valuable method for predicting moderate to
severe TBIs based on quantitative electroencephalography mea-
surements and clinical parameters, which has an area under the
receiver operating characteristic curve (AUC) of
0.94e0.81 according to the study of Haveman et al.14 In addition,
the performance of mortality prediction in TBIs reported that the
models of random forest, support vector machines, neural net-
works, and gradient boosting machines have an AUC of 0.81 (95% CI
0.78e0.84), 0.81 (95% CI 0.79e0.84), 0.82 (95% CI 0.79e0.84), and
0.83 (95% CI 0.81e0.86), respectively.15 Amorim et al.11 used various
ML algorithms to predict the mortality of TBI patients and found
that the naive Bayes algorithm had the best predictive value of
mortality (AUC ¼ 0.906), while random forest had an AUC of 0.880.
The concordance of the results demonstrated that naive Bayes had
the best performance for predicting clinical outcomes, but an AUC
equal to 0.76 was not a good performance.13 In the face of this gap,
we aimed to evaluate the predictive performance of ML algorithms
for clinical outcomes. Also, the present study is based on the
functional outcomes of pediatric TBI.

Methods

Study design and study population

The authors retrospectively reviewed the medical records of
patients with TBI admitted to the trauma center of southern
Thailand, who was younger than 15 years between January 2009
and July 2020. In detail, all TBI patients had been prospectively
registered in the traumatic database of our hospital. The exclusion
criteria were patients who did not undergo a CT scan of the brain,
died within the first 24 h, had unavailable complete medical re-
cords during admission and those who were unable to provide the
updated outcomes.

Various clinical, radiological, treatment and outcome variables
were collected for analysis. Glasgow coma scale (GCS) score after
resuscitation was used to classify TBI severity: mild TBI (GCS score
13e15), moderate TBI (GCS score 9e12), and severe TBI (GCS score
3e8).5 In addition, secondary systemic injuries such as hypotension
and bradycardia were defined according to the age period.16,17 For
radiological findings, the characteristics of intracranial injuries,
midline shift, and obliteration of basal cistern were reviewed by
two neurosurgeons. Based on Vieira et al.,18 the diffuse axonal
injury was defined where patients had a GCS score of �8 following
resuscitation and CT scan or MRI showed signs of diffuse axonal
injury.

The functional outcome of the present study was assessed
using King's Outcome Scale for Childhood Head Injury
(KOSCHI).19 The KOSCHI classification was collected at hospital
discharge and every follow-up visit. For patients who we were
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unable to follow up face by face, we evaluated the patients'
outcomes by telephone. Patients who could not be contacted
were excluded. For the dependent variable, the KOSCHI classifi-
cation was dichotomized into favourable outcomes and unfav-
ourable outcomes for binary proposes. Good recovery and
moderate disability were categorized as favourable outcomes,
whereas death, vegetative state, and severe disability were
categorized into the unfavourable group.

The study was performed with the approval of the human
research ethics committee (REC.63-373-10-1). Because the present
study was a retrospective cohort study design, informed consent
was not performed. However, the patients' identification numbers
were encoded before analysis.

Statistical analysis

Clinical characteristics were calculated from descriptive data.
The median with interquartile range (IQR) was used for contin-
uous variables. The prognostic variables, which were used for
building the ML models, were analyzed using the traditional bi-
nary logistic regression. Initially, clinical and imaging variables
were estimated by univariate analysis and the variables that had p
values less than 0.01 were regarded as candidate variables. In
multivariable analysis, these candidate variables were estimated
whether they should be included as the prognostic factors using
the Akaike information criterion. Thereafter the qualified prog-
nostic factors were used for building ML models. In this part,
statistical analysis was performed using the R version 3.6.2 soft-
ware (R Foundation, Vienna, Austria).

ML

By randomly splitting data, 70% of the total data were used to
train theMLmodels, while the remaining 30% were used for testing
the models’ performance. Data preprocessing included dichoto-
mization of independent variables into binary classifiers. Because
patients who had incomplete data were excluded, missing data
management was not performed in the present study.

Supervised algorithms with 10-fold cross-validation including
support vector machines, neural networks, naive Bayes, logistic
regression, and k-nearest neighbor were used for training the
models from the training dataset. The parameters of each algorithm
were also optimized by the grid-search method. Therefore, a
confusion matrix was constructed to describe the performance of
ML models for which the true values of the outcome were known.
To test the ML models, we built web-based applications of various
algorithms using stream lit and deployed via the Heroku platform.
(Heroku, California, USA).

The performance of each algorithm included sensitivity, speci-
ficity, positive predictive value (PPV), negative predictive value
(NPV), accuracy, F1-score, and average precision. Furthermore, the
receiver operating characteristic curve and AUC were created. An
AUC of �0.7 was acceptable discrimination, � 0.8 good discrimi-
nation, and �0.9 excellent discrimination.20 ML was performed
using Python version 3.7.7 with Scikit-learn 0.23.2. (Python Soft-
ware Foundation, Washington, USA).

Results

Clinical and radiological characteristics

A total of 828 patients were included in the present cohort.
Median patient agewas 72months (IQR 104.7months, range 2e179
months). There were 567 males and 261 females. The mechanisms
of TBIs included motorcycle crashes (51.0%), falls (25.7%),



Table 2
Imaging characteristics, treatment and outcomes of the 828 pediatric patients with
traumatic brain injury.

Variables n (%)

Skull fracture 121 (14.6)
Linear skull fracture 70 (8.5)
Simple depressed skull fracture 20 (2.4)
Compound depressed skull fracture 19 (2.3)
Diastatic skull fracture 12 (1.4)

Intracranial injuries
Basilar skull fracture 40 (4.8)
Epidural hematoma 69 (8.3)
Subdural hematoma 97 (11.7)
Contusion 63 (7.6)
Brainstem contusion 4 (0.5)
Subarachnoid haemorrhage 48 (5.8)
Intraventricular haemorrhage 13 (1.6)
Diffuse axonal injury 24 (2.9)

Basal cistern
Obliteration 22 (2.7)
Patency 806 (97.3)
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pedestrians injured in traffic accidents (9.1%), objects striking the
head (2.9%), vehicle accidents (8.7%) and bicycle accidents (2.7%).
After resuscitation, 87.4% of the cases were of mild TBI (GCS 13e15),
while moderate and severe TBI were found in 6.0% and 6.5% of
patients, respectively. A summary of the demographic data is pre-
sented in Table 1. Long bone fractures and maxillofacial injuries
were the most common associated injuries, whereas coagulopathy
was found in 0.4% in the present cohort. Additionally, the post-
traumatic seizure was observed in 5% of cases (Table 1).

From the radiological findings, intracranial injuries were
observed as follows: skull fracture (14.6%), basilar skull fracture
(4.8%), epidural hematoma (8.3%), subdural hematoma (11.7%),
contusion (7.6%), brainstem contusion (0.5%), subarachnoid hae-
morrhage (5.8%), and primary intraventricular haemorrhage (1.6%).
Moreover, a diffuse axonal injury was diagnosed in 2.9% of cases.
Midline shift of 5 mm or more was observed in 1.4%, where the
obliterated basal cistern was in 2.7% of total cases. The radiological
findings and outcomes are revealed in Table 2.
Table 1
Baseline and clinical characteristics of the 828 pediatric patients with traumatic
brain injury.

Variables n (%)

Age (years)
<2 119 (14.4)
�2 709 (85.6)

Age (years)
<5 335 (40.5)
�5 493 (59.5)

Median age (IQR) (months) 72 (104.7)
Gender
Male 567 (68.5)
Female 261 (31.5)

Mechanism of injury
Motorcycle crash 422 (51.0)
Fall 213 (25.7)
Pedestrians injured 75 (9.1)
Vehicle crash 72 (8.7)
Object striking the head 24 (2.9)
Bicycle accident 22 (2.7)

Mean injury severity score (SD) 21.5 (7.9)
Association of injuries

Long bone fracture 165 (19.9)
Maxillofacial injury 82 (9.9)
Orbital injury 44 (5.3)
Lung contusion 39 (4.7)
Liver injury 30 (3.6)
Spine fracture 30 (3.6)
Kidney, ureter, and bladder injury 21 (2.5)
Splenic injury 18 (2.2)
Pelvic fracture 17 (2.0)
Bowel injury 8 (0.9)
Retroperitoneal injury 7 (0.8)

Comorbidities
Scalp hematoma/laceration 487 (58.8)
Loss of consciousness 315 (38.0)
Amnesia 225 (27.2)
Vomiting 210 (25.4)
Seizure 41 (5.0)
Hypotension episode 34 (4.1)
Bleeding per ear/nose 22 (2.7)
Hemiparesis 21 (2.5)
Bradycardia 6 (0.7)
Coagulopathy 3 (0.4)

Glasgow coma scale score
13-15 724 (87.4)
9-12 50 (6.0)
3-8 54 (6.5)

Pupillary light reflex
Fixed pupils both eyes 24 (2.9)
Fixed pupil one eyes 16 (1.9)
React pupils both eyes 788 (95.2)

Mean midline shift (mm) (SD) 0.02 (0.1)
Midline shift (mm)
<5 816 (98.6)
�5 12 (1.4)

Surgical treatment 20 (2.4)
Craniotomy with clot removal 27 (3.3)
Decompressive craniectomy with clot removal 11 (1.3)
Intracranial monitoring insertion 2 (0.2)

Hospital-discharge KOSCHI outcome
Death 18 (2.2)
Vegetative stage 2 (0.2)
Severe disability 6 (0.7)
Moderate disability 13 (1.6)
Good recovery 789 (95.3)

Six-month KOSCHI outcome
Death 18 (2.2)
Vegetative stage 2 (0.2)
Severe disability 3 (0.4)
Moderate disability 15 (1.8)
Good recovery 790 (95.4)

Abbreviation: KOSCHI: King's Outcome Scale for Childhood Head Injury.
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KOSCHI categories at hospital-discharge included death (2.2%),
vegetative state (0.2%), severe disability (0.7%), moderate disability
(1.6%), and good recovery (95.3%). At 6-month follow-up, the rates
of death, vegetative state, severe disability, moderate disability, and
good recovery were 2.2%, 0.2%, 0.4%, 1.8%, 95.4%, respectively.
Therefore, the dichotomized KOSCHI categories comprised of 97.0%
favourable and 3.0% unfavourable outcomes after hospital
discharge (Table 2).

When clinical and imaging characteristics were estimated for
the prognostic variables using the traditional binary logistic
regression, GCS score, hypotension, pupillary light reflex, and
subarachnoid haemorrhage were found to be prognostic variables
in the final model, as shown in Table 3. Hence, these prognostic
variables were used for supervised learning.
ML

After splitting the data, 580 patients were considered suitable
for the training dataset and were used to construct the ML models.
The parameters of the ML models were optimized using the grid
search method. In detail, the support vector machines model was
optimized with a linear kernel, scale grama and the regularization
parameter (C parameter) of 1.0, while the optimized logistic
regression model was C parameter of 0.10 with “l2” penalization.
Optimization of the neural networks model comprised of two
hidden layers, “identity” activation, “lbfgs” “solver”, “invasling”
learning and an alpha of 0.0001. For k-nearest neighbor, the model



Table 3
Traditional binary logistic regression for favourable outcome.

Variables Univariate analysis Multivariable analysis

Odds ratio (95% CI) p value Odds ratio (95% CI) p value

Age group (years)
<2 Ref
�2 1.12 (0.21e5.95) 0.89

Age group (years)
<5 Ref
�5 1.86 (0.73e4.72) 0.19

Road traffic injury
No Ref
Yes 0.96 (0.41e2.26) 0.93

Comorbidities
Loss of consciousnessa 0.65 (0.29e1.45) 0.30
Vomitinga 4.02 (0.94e17.19) 0.06
Hemiparesisa 0.14 (003e0.36) <0.001
Scalp injurya 0.79 (0.34e1.82) 0.59
Bleeding per nose/eara 0.17 (0.04e0.64) 0.009
Seizurea 0.58 (0.13e2.58) 0.48
Hypotension 0.01 (0.004e0.02) <0.001 0.05 (0.009e0.37) 0.003
Bradycardia 0.02 (0.005e0.14) <0.001

Injury severity score 0.14 (0.14e2.36) 0.56
Glasgow coma scale score 2.04 (1.68e2.49) <0.001 1.69 (1.30e2.19) <0.001
Pupillary light reflex
Fixed both eyes Ref Ref
React one eye 5.0 (1.23e20.30) 0.02 0.23 (0.01e4.05) 0.32
React both eyes 21.7 (6.86e68.7) <0.001 9.46 (1.28e69.92) 0.02

Intracranial injuries
Skull fracturea 0.23 (0.10e0.53) 0.001
Basilar skull fracturea 0.14 (0.05e0.37) <0.001
Epidural hematomaa 0.21 (0.08e0.53) 0.001
Subdural hematomaa 0.10 (0.04e0.23) <0.001
Contusiona 0.15 (0.06e0.37) <0.001
Brainstem contusiona 0.02 (0.004e0.21) 0.001
Intraventricular haemorrhagea 0.04 (0.01e0.13) <0.001
Subarachnoid haemorrhagea 0.04 (0.01e0.09) <0.001 0.05 (0.01e0.29) 0.001
Diffuse axonal injurya 0.02 (0.01e0.06) <0.001

Midline shift (mm)
<0.5 Ref
�0.5 0.01 (0.005e0.05) <0.001

Basal cistern
Obliteration Ref
Patent 5.17 (0.13e7.17) 0.98

a Data only show “yes group” while reference groups (no group) are hidden.
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was also optimized with 5 neighbors and uniformweight function.
Additionally, the optimized random forest model comprised 5
maximum depths of the tree with 1000 trees in the forest.

Almost all the ML models had excellent performances after
training. Support vector machines, neural networks, and logistic
regression were the best models with high sensitivity and PPV.
Thus, details of performances from the training data are shown in
Table 4. Moreover, a confusion matrix of the ML models from the
training dataset is shown via https://pedtbi-train.herokuapp.com.

For testing the ML models, AUC of all the algorithms decreased.
However, the support vector machines model and the neural net-
works model still had AUC in acceptable levels at 0.78 and 0.72,
Table 4
Performances of each algorithm to predict outcome using training data (n ¼ 580).

Algorithm Sensitivity Specificity PPV

Support vector machines 0.99 (0.98e1.00) 0.71 (0.37e1.00) 0.99 (0.98e1.00)
Neural networks 0.99 (0.98e1.00) 0.71 (0.37e1.00) 0.99 (0.98e1.00)
Logistic regression 0.99 (0.98e1.00) 0.57 (0.20e0.93) 0.98 (0.97e1.00)
k-nearest neighbor 0.98 (0.97e1.00) 0.57 (0.20e0.93) 0.98 (0.97e1.00)
Naive Bayes 0.95 (0.93e0.98) 1.00 (1.00e1.00) 1.00 (1.00e1.00)
Random forest 0.99 (0.98e1.00) 0.85 (0.59e1.00) 0.99 (0.98e1.00)

Abbreviation: AUC: area under the curve, NPV: negative predictive value, PPV: positive
a 10-fold cross-validation.
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while the AUC of other ML models dropped to less than 0.7, as
shown in Fig. 1. Moreover, support vector machines had a sensi-
tivity of 0.95, specificity 0.60, PPV 0.99, NPV 0.21, and accuracy 0.94,
whereas the neural networks model had the sensitivity of 0.84,
specificity 0.60, PPV 0.99, NPV 0.07 and accuracy 0.83. In addition,
various ML models were built in the web-based applications for
testing further unseen data (https://pedtbi-home.herokuapp.com).

Discussion

A favourable outcome was reported to be 84.2%e99.2% in pe-
diatric TBI patients in the literature.19,21 Hawley et al.19 studied the
NPV Accuracy scorea (SD) F1-scorea (SD) Mean AUCa SD

0.71 (0.37e1.00) 0.90 (0.254) 0.50 (0.33) 0.98 (0.04)
0.83 (0.53e1.00) 0.93 (0.14) 0.61 (0.30) 0.99 (0.02)
0.66 (0.28e1.00) 0.93 (0.14) 0.61 (0.30) 0.98 (0.03)
0.57 (0.20e0.93) 0.93 (0.15) 0.47 (0.38) 0.89 (0.16)
0.95 (0.93e0.98) 0.89 (0.27) 0.75 (0.28) 0.95 (0.11)
0.85 (0.59e1.00) 0.91 (0.21) 0.55 (0.36) 0.97 (0.08)

predictive value.

https://pedtbi-train.herokuapp.com
https://pedtbi-home.herokuapp.com


Fig. 1. Receiver operating characteristic curve and AUC of various algorithms to predict
the outcomes following pediatric traumatic brain injury from the testing dataset.
AUC: area under the curve, kNN: k-nearest neighbor, LR: Logistic regression, NB: naive
Bayes, NN; Neural networks, RF: random forest, SVM: support vector machine.
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outcome of 526 children with TBI and found that the rates of good
recovery and moderate disability were 51.3% and 47.9%, respec-
tively; while another prior study21 reported a good recovery of 94%
andmoderate disability of 1.7% among 948 pediatric TBI patients. In
the present cohort, we found an overall favourable outcome of
96.9%. The severity of TBIs, which is categorized by the GCS score, is
well known as a TBI predictor, including TBIs in children. Bredy
et al.21 studied 315 childrenwith TBIs and reported that severe TBIs
were associated with mortality or disability compared with mod-
erate and mild TBIs (odds ratio (OR) 2.55, 95% CI 1.96e4.52).
Additionally, a previous study used the traditional binary logistic
regression for identifying prognostic factors significantly associated
with unfavourable outcomes as follows: GCS score 3e8, hemi-
paresis, pupillary light reflex, hypotension, basilar skull fracture,
epidural hematoma, subdural hematoma, and motorcycle crash
mechanism.5

When traditional binary logistic regression was performed with
a backward elimination procedure, the prognostic factors were GCS
score, hypotension, pupillary light reflex, and subarachnoid hae-
morrhage. These clinical characteristics have been reported in
previous studies as prognostic factors. Hypotension meaningfully
increased the mortality and poor outcome in pediatric TBIs, which
could be explained by the systematic hypoperfusion directly
effecting the global cerebral ischemia.22,23 LowGCS scores and poor
pupillary light reflex have been associated with poor outcomes and
low survival rate24,25 because these factors indicate the severity of
TBI and brainstem dysfunction.25 In addition, subarachnoid hae-
morrhage is one of the prognostic factors in the present study.
However, this result differed from a prior study by Hochstadter
et al.26 who studied 171 pediatric severe TBIs and reported that
subarachnoid haemorrhage was not significantly associated with
mortality in multivariable analysis. Nevertheless, there is a lack of
studies that mention the relation of imaging findings with prog-
nosis in pediatric TBIs. This topic needs further studies to explore
the controversial results.

For ML-based prediction, prognostic factors were used for
developing the model with various algorithms. We observed the
overfitting performances during the model training, therefore
the application of the model with the testing datasets resolved
the problem. The support vector machines algorithm was
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achieved and validated with the test dataset. From a literature
review, various ML algorithms have been performed as clinical
prediction tools. Gravesteijn et al.15 studied the prognostication
of TBI patients using the algorithms of random forest, support
vector machines, neural networks, and gradient boosting ma-
chines and the AUCs of all of them were at a good level. More-
over, Amorim et al.11 built the ML-based model for mortality of
TBIs in Brazil and found that AUCs of naive Bayes, Bayesian
generalized linear model, random forest, and penalized
discriminant analysis were of high values of 0.906, 0.881, 0.880,
and 0.880, respectively.

In the present study, the support vector machines and neural
networks algorithms had acceptable performances in predicting
the functional outcome following pediatric TBIs, with a particu-
larly high sensitivity. For implication, these ML algorithms may
be involved in general practice as the screening tools for coun-
selling parents about prognosis. Stromberg et al.27 performed the
ML-based prediction for employment following moderate to se-
vere TBIs. AUCs of the decision tree model was 0.77 (95% CI
0.74e0.80) and 0.72 (95% CI 0.68e0.76) for 1-year and 5-year
outcomes, respectively. Moreover, the predictability of surgical
site infection in neurological operation using various ML algo-
rithms and the naive Bayes algorithm had the highest AUC of
0.76, sensitivity 0.63, specificity 0.87, PPV 0.29, NPV 0.96, and
accuracy 0.86.13

ML algorithms had varying performances for predicting clinical
outcomes. The characteristics of the study population possibly
explain this. The type of predictors such as continuous variables
and categorized variables (GCS score and severity of TBIs) affects
the predictability of ML models.13 In addition, a number of pre-
dictors were associated with high performance.28,29 More signifi-
cant predictors and more high-dimensional data increased the
performance of ML.30,31 Moreover, because several ML algorithms
are flexible from hyperparameters adjustment, the performance of
each algorithm was considerably dependent on its
hyperparameters.15

Limitations of the present study are acknowledged that study
design was a retrospective cohort study which might have led to
bias from confounding factors. The multivariable analysis helps to
control this bias, but the number of parameters for building the ML
model is limited after adjustment with multivariable analysis.
Additionally, the imbalance among the severity of TBI was probably
why performance reached an excellent level and high sensitivity.
Because a limited number of moderate and severe TBI was observed
in the present cohort, a multicenter-study may be able to resolve
this problem for improving the predictive performance. Also, the
predictability of the ML models of the present study needs to be
confirmed by external validation with unseen data in the future.
Alternatively, a nomogram is one of the clinical prediction tools
that have been performed for predicting the outcome of various
diseases.32e34 Therefore, researches should be explored in the
future with a comparison of predictability between ML-based
models and nomogram.

In summary, we found that ML algorithms have a high sensi-
tivity and PPV; therefore, MLmodels had the potential performance
as a screening tool for predicting the functional outcome in pedi-
atric TBIs for real-world implication.
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