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Abstract 
Myeloid cells including brain-resident (microglia) and peripheral macrophages  play a crucial 

role in various pathological conditions, including neurodegenerative disorders like Alzheimer's 

disease (AD). They respond to disruption of tissue homeostasis associated with disease 

conditions by acquiring various transcriptional and functional states. Experimental investigation 

of these states is hampered by the lack of tools that enable accessible and robust 

reprogramming of human macrophages toward Alzheimer’s disease-relevant molecular and 

cellular phenotypes in vitro. In this study, we investigated the ability of a cytokine mix, including 

interleukin-4 (IL4), colony stimulating factor 1 (CSF1/MCSF), interleukin 34 (IL34) and 

transforming growth factor beta (TGFβ), to induce reprogramming of cultured human THP-1 

macrophages. Our results indicate this treatment led to significant transcriptomic changes, 

driving THP-1 macrophages towards a transcriptional state reminiscent of disease-associated 
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microglia (DAM) and lipid-associated macrophages (LAM) collectively referred to as DLAM. 

Transcriptome profiling revealed gene expression changes related to oxidative phosphorylation, 

lysosome function, and lipid metabolism. Single-cell RNA sequencing revealed an increased 

proportion of DLAM clusters in cytokine mix-treated THP-1 macrophages. Functional assays 

demonstrated alterations in cell motility, phagocytosis, lysosomal activity, and metabolic and 

energetic profiles. Our findings provide insights into the cytokine-mediated reprogramming of 

macrophages towards disease-relevant states, highlighting their role in neurodegenerative 

diseases and potential for therapeutic development. 

Keywords 
disease-associated microglia, lipid-associated macrophages, DAM, LAM, Alzheimer’s disease, 

THP-1 macrophages, IL4, efferocytosis.  

Introduction 
Alzheimer's disease (AD) is the most prevalent type of dementia in the elderly, affecting tens of 

millions of people worldwide; however, no effective disease-modifying treatments are currently 

available. Genome-wide association studies (GWAS) have identified genetic variants in ~75 

genomic regions (loci) associated with AD in people of European ancestry 1. Apolipoprotein E 

(APOE) is a major Alzheimer’s disease risk gene 2 ,  with the APOE ε2 and ε4 alleles associated 

with reduced and increased risk of developing the disease respectively, compared to the most 

common APOE ε3 allele 3. We and others have shown that common non-coding AD risk alleles 

identified by GWAS are specifically enriched in enhancers that are active in macrophages 

including microglia, the resident macrophages and innate immune cells of the brain 4–7. These 

genetic and genomic findings strongly implicate macrophages in the etiology of AD. In addition, 

pathway analyses of AD GWAS data strongly implicate 1) cholesterol metabolism, 2) 

phagocytosis/endocytosis, and 3) the innate immune system in AD pathogenesis 8,9. These 

three biological pathways may not be independent causal drivers of AD; rather, they may be 

three components of a higher-order biological process acting as an AD pathogenetic hub in 

macrophages. This pathogenetic hub may be efferocytosis, one of the most fundamental 

activities of all macrophages, to find, phagocytose, digest and clear/dispose of apoptotic cells 
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and other cholesterol-rich cellular waste 10–12. This multistep mechanism of efferocytosis is 

essential for the maintenance of tissue homeostasis and immune tolerance, and for the 

resolution of inflammation by eliminating damaged or otherwise unwanted cells and cellular 

debris (e.g., degenerating neurons, dystrophic neurites, myelin fragments and unwanted 

synapses) 13. When exposed to such debris, macrophages up-regulate the expression of 

several genes involved in phagocytosis, lysosomal processing, and cholesterol clearance. This 

gene expression profile is often referred to as DAM/LAM (for disease-associated microglia/lipid-

associated macrophages) 14–19. As we proposed previously, we collectively refer to states of 

these microglia/peripheral macrophages as DLAM 20. The most up-regulated DLAM gene is 

APOE, a major gene for AD risk, cholesterol metabolism, and efferocytosis 15,16,19,21,22. Another 

AD risk gene, TREM2, was proposed to drive the transition from homeostatic to the DLAM state 
15,16. Loss of TREM2 in mouse models and human iPSC-derived microglia hinders the ability of 

these cells to transition from a homeostatic state to the DLAM state, leading to impaired 

efferocytosis and response to amyloid plaques 15,18,23–27. In peripheral macrophages, loss of 

Trem2 also inhibits their transition to the LAM state, leading to adipocyte hypertrophy, systemic 

hypercholesterolemia, body fat accumulation, and glucose intolerance 16. 

Recently, three approaches were proposed to recreate the DLAM state in human cell in vitro 

systems by 1) using lipid/cholesterol-rich efferocytic substrates like myelin debris, 

synaptosomes, and dead neuronal cells 19, 2) overexpressing a DLAM-inducing transcription 

factor 19 3) reducing the expression of DLAM repressive transcription factors in iPSC-derived 

microglia 20. However, these iPSC-derived microglia models are expensive, not widely available 

and require engineered cell lines (knock-out or knock-in). Therefore, having a robust, widely 

accessible and reproducible in vitro system to modulate the expression of AD risk and DLAM 

genes that regulate efferocytosis and other disease-relevant cellular phenotypes may be a 

useful resource, particularly for functional genomic studies.  

Here, we utilized an in vitro model of human immortalized THP-1 macrophages treated with a 

mix of anti-inflammatory cytokines such as IL4 and TGFβ, along with survival cytokines IL34 

and MCSF, to polarize macrophages toward an anti-inflammatory, DLAM state 28,29). We 

observed a robust increased expression of DLAM genes, a decreased expression of 

proliferative genes and modulation of several AD risk genes when THP-1 macrophages were 

exposed to the cytokine mix as compared to control THP-1 macrophages. Importantly, unlike 

most previous studies, we performed extensive functional characterization of these DLAM-like 

macrophages in vitro probing each step of efferocytosis. This work offers insights into functional 
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characteristics of THP-1 human macrophages with activated transcriptional programs similar to 

those observed in DLAM clusters.   

Results 

Cytokine mix treatment polarizes THP-1 macrophages to a DLAM-like 

transcriptional state 

The main goal of this study was to develop an in vitro system for the investigation of Alzheimer’s 

disease-relevant molecular and cellular phenotypes in human macrophages. To this end we 

used the human THP-1 monocytic leukemia immortalized cell line that is more accessible, 

affordable, easier to manipulate when performing functional genomics experiments than 

microglia derived from induced pluripotent stem cells and can easily be differentiated to 

macrophages using phorbol 12-myristate 14-acetate (PMA). Differentiated cells were treated for 

2-3 days with a combination of cytokines (cytokine mix) including IL4 (20ng/ml), MCSF 

(25ng/ml), IL34 (100ng/ml) and TGFβ (50ng/ml). We included IL4 and TGFβ to polarize cells 

toward an anti-inflammatory state. Previous studies showed that one of the DLAM regulators, 

LXRα, controls anti-inflammatory subsets of DLAM and promotes cholesterol clearance and 

immune response 30. Two additional cytokines, MCSF and IL34 were also selected to polarize 

human macrophages toward a more microglial-like phenotype by providing molecular cues 

present in the brain tissue microenvironment 31,32. In addition, IL4 and MCSF were previously 

shown to increase TREM2 expression 28,29, which is one of the key drivers of the DLAM state 
15,16. Importantly, in human alveolar macrophages, IL4 has been shown to induce expression of 

well-known DLAM markers including CTSB, CTSD, LGALS3, APOE, APOC2 at the transcript 

and protein levels 33. As a control, we used THP-1 macrophages that were not exposed to the 

cytokine mix (Figure 1A). To assess global transcriptomic changes in THP-1 macrophages 

treated with the cytokine mix, we performed bulk RNA-seq. First, we used principal component 

analysis (PCA) to visualize the overall distance between the transcriptomes of control and 

cytokine mix-treated THP-1 macrophages and those of other myeloid cells and cell states 

publicly available from published studies. This analysis revealed that both control and cytokine 

mix-treated THP-1 macrophages, are separated from ex-vivo peripheral macrophages such as 

liver macrophages 34, macrophages from atherosclerotic plaques 35 and macrophages from 

adipose tissue 16,35. They show some degree of clustering with ex-vivo 7,36,37 and in vitro 38 
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primary microglia, but show a high degree of clustering with in vitro iPSC-derived microglia 

(iMGLs) 19,20,34 (Figure 1B). Next, we performed differential gene expression analysis (DGEA) 

and found 1,613 significantly up-regulated genes (logFC > 1, adj.p < 0.05), and 1,394 

significantly down-regulated genes (logFC < 1, adj.p < 0.05). The top up-regulated genes 

include AQP9, KRT16, CCL13, TGM2, CD274, SERPINB4, VCAM1, while the most down-

regulated genes include GPR34, RGS18, COL21A1 (Figure 1D). Next, we used gene set 

enrichment analysis using curated canonical pathways such as KEGG, REACTOME 

(c2.kegg_legacy.v2023.2.Hs.symbols.gmt, c2.reactome.v2023.2.Hs.symbols.gmt) and Gene 

ontology gene sets collection (c5.mf.v2023.2.Hs.symbols.gmt, c5.bp.v2023.2.Hs.symbols.gmt, 

c5.cc.v2023.2.Hs.symbols.gmt) to identify changes in THP-1 macrophages driven by cytokine 

mix treatment. We found “Oxidative phosphorylation” (M19540), “Lysosome” (M11266), “Retinol 

Metabolism” (M9488), “PPAR signaling pathway” (M13088), “Fatty Acid metabolism (M699) 

among the top positively enriched KEGG pathways (Figure 1C), while, “FC Gamma Receptor 

Mediated Phagocytosis” (M16121), “Gap junctions” (M4013), “Ribosome” (M189), and “Cell 

Cycle” (M7963) were among the top negatively enriched KEGG pathways (Figure 1C). To 

investigate whether changes in gene expression and pathways in cytokine mix treatment are 

driven by IL4 or three factors (3F) of survival/maturation cytokines (MCSF, IL34, TGFβ) we 

conducted bulk RNAseq and gene expression analysis using THP-1 macrophages treated with 

IL4 only and 3F only and compared them to the control condition. We found that IL4 is the main 

driver of differential gene expression and pathway enrichment in cytokine mix-treated THP-1 

macrophages as evidenced by similar top up- and down-regulated genes and normalized 

enrichment score of top canonical pathways changed in cytokine mix-treated THP-1 

macrophages (Figure 1C-D). Results of differential gene expression analysis and gene set 

enrichment analyses for all cytokine treatment groups including single and cytokine mix-

treatments as compared to non-treated THP-1 macrophages are included in Table S1. 

Next, we used gene set enrichment analysis (GSEA) to test whether our cytokine mix treatment 

effectively induced transcriptional DLAM response in THP-1 macrophages. To this end, we used 

the following DLAM gene sets: 1) humanized DAM up- and down-regulated gene sets from 

mouse models of amyloidosis  15,39–43 2) DAM-like gene sets from human AD brains 36,44–47, 3) 

LAM that reside in a lipid-rich niche 16,35,48,49, 4) in vitro DAM obtained by exposure to lipid-rich 

phagocytic substrates 19, 5) Other gene sets including Proliferative, Interferon and LPS gene 

sets 42,45,47. All gene sets are listed in Table S2 and have a unique gene set identifier (GS) used 

throughout this manuscript. Overall, we found that transcriptional changes that occur in cytokine 

mix-treated THP-1 macrophages are positively enriched for genes up-regulated in disease-
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associated microglia clusters such as DAM 15 (GS1) and ARM 41 (GS5), and microglial 

signatures from Neurodegeneration module 42 (GS10), CD11c positive microglia 40 (GS3), and 

Aβ-associated microglia 39 (GS7) that were selected from mouse models of amyloidosis (Figure 

2A). Importantly, we showed positive enrichment of genes up-regulated and negative 

enrichment of genes down-regulated in clusters closely resembling mouse DAM obtained from 

sc/sn-RNAseq of microglia from AD brains in cytokine mix-treated THP-1 macrophages 

compared to control THP-1 macrophages. We found positive enrichment of the AD1 signature 

from Aβ-associated microglia 44 (GS11), Cluster 7 up-regulated genes that mostly resembled 

mouse DAM 36 (GS19), lipid-processing microglia (MG4), and glycolytic microglia (MG7) 

signatures 47 (GS21 and GS22), GPNMB_NACA, GPNMB_EYA2 and LPL_CD83 DAM cluster 

signatures from AD brain biopsies 45 (GS13-GS15) in cytokine mix-treated THP-1 macrophages 

(Figure 2A). In addition, we found that transcriptional changes that occur in cytokine mix-treated 

THP-1 macrophages are positively and negatively enriched for, respectively, genes up- and 

down-regulated in Cluster 2 and 8 of human iPSC-derived microglia treated with lipid-rich brain 

phagocytic substrates in vitro 19 (GS29-32). Similar transcriptomic activation states to those 

identified in microglia in aging and AD brains have been observed in subpopulations of 

macrophages in diseased lipid-rich tissues (e.g., TREM2high macrophages in atherosclerotic 

plaques 49, lipid-associated macrophages (LAM) in fatty liver and obese adipose tissue 16). 

Therefore, we examined the enrichment of signatures from lipid-associated macrophages in 

THP-1 macrophages treated with cytokine mix compared to control. We found statistically 

significant, positive enrichment of genes up-regulated in LAM from obese individuals 16 (GS25), 

foamy macrophages 35 (GS24), humanized signature from TREM2high macrophages from 

atherosclerotic plaques 49 (GS23) and white matter microglia isolated from patients with multiple 

sclerosis that are exposed to large demyelinated lesions 48 (GS27) with concomitant negative 

enrichment of genes down-regulated in these clusters (i.e. genes down-regulated in LAM 16 

(GS26) and in white matter microglia from MS patients 48 (GS28)) (Figure 2A). Consistent with 

the GSEA results, we also found an increased expression of selected DLAM genes in cytokine 

mix-treated macrophages in bulk transcriptomes (Figure 2B). 

Apart from DLAM subsets, several other subsets of microglia/peripheral macrophages have 

been identified by scRNAseq including subsets involved in Proliferation, Interferon response,  

LPS-induced, which were examined by GSEA. We found a strong, negative enrichment of 

genes up-regulated in the Proliferative cluster (Prolif) 45 (GS33) and cycling microglia (MG12) 47 

(GS34) found in AD brains as well as negative enrichment of a humanized Proliferation module 
42 (GS36) (Figure 2A). This is also in agreement with gene set enrichment analysis showing 
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“Cell cycle” as the top negatively enriched pathway (Figure 1C). Intriguingly, we found positive 

enrichment of the LPS-induced module 42 (GS37) in cytokine mix-treated macrophages (Figure 

2A). Additionally, some of the LPS-induced genes such as CCL2 (Figure 2B) CD274, and 

proteins CD44, CD274 (Figure 2C) were markedly increased. Indeed, a number of studies show 

IL4 promotes expression of both anti- and pro-inflammatory genes in human monocytes and 

macrophages  50,51 and importantly, DLAM has been shown to be a heterogenous population 

enriched for both pro- and anti-inflammatory subsets 30. 

To dissect which cytokine is driving the effect of DLAM polarization and negative impact on 

Proliferative clusters, we included two additional conditions: single IL4 treatment and 3F and 

performed GSEA analysis. Similarly to global transcriptomic changes, we demonstrated that 

positive enrichment of DLAM gene sets and negative enrichment of homeostatic and 

proliferative gene sets is driven by IL4 rather than 3F as evidenced by very similar values of 

NES between cytokine mix and IL4 (Figure 2A).    

To further validate transcriptomic findings and the positive enrichment of DLAM markers in THP-

1 macrophages treated with our cytokine mix, we performed flow cytometric studies to assess 

the level of surface DLAM markers. We used previously validated classic DLAM markers such 

as CD11c 15,30,44 and CD63 16, CXCR4, a marker that has previously been shown to be an anti-

inflammatory DLAM surface marker, and two pro-inflammatory DLAM markers CD44 and 

CD274 30. Consistent with transcriptomic changes, we found statistically significant increased 

DLAM geometric fluorescent intensity (gMFI) of CD11c, CD63, and CD274 in THP-1 

macrophages treated with the cytokine mix as compared to control macrophages (Cytokine mix 

- Control Mean of differences [95% confidence interval], p=two-tailed paired t test gMFI (CD11c: 

1473 [862.9 to 2083] p=0.001, CD63: 1996 [183.9 to 3809] p=0.035, CXCR4: 206.3 [-206.3 to 

618.8] p=0.237, CD44: 6863 [-4701 to 18427] p=0.174, CD274: 1553 [1043 to 2063] p=0.001) 

(Figure 2C, Figure S2). We did not observe an increased percentage of positive cells 

suggesting a higher level of DLAM marker gene expression per cell rather than increased 

proportion of DLAM-like cell population (Figure S2)  (% of positive cells (CD11c: 3.564 [-12.17 to 

19.30] p=0.5996, CD63: -3.39 (-8.56 to 1.77) p=0.158, CXCR4: 1.99 [-0.29 to 4.28] p=0.017, 

CD44: -2.01 [-7.99 to 3.97] p=0.403, CD274: 42.88 [32.40 to 53.36] p<0.001]). One exception to 

that was CD274, previously associated with the pro-inflammatory subset of DLAM 30. It was 

weakly expressed on the surface of control cells but induced in cytokine mix-treated THP-1 

macrophages (Figure S1). This is also in agreement with the transcriptomic level of CD274, 

which was one of the top up-regulated genes in cytokine mix-treated THP-1 macrophages 
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(Figure 1D). Altogether, these data show that the mix of cytokines including anti-inflammatory 

and microglial maturation cytokines promotes DLAM-like transcriptional responses in THP-1 

macrophages that recapitulate both anti- and pro-inflammatory transcriptional signatures 

identified by weighted co-expression network analysis 30. 

Candidate AD risk genes are differentially expressed in cytokine mix-

treated THP-1 macrophages 

Multiple integrative analyses of AD GWAS and functional genomic data have identified 

candidate AD risk genes expressed in myeloid cells 4–7. Some of the candidate AD risk genes 

are upregulated in DLAM states including APOE and TREM2, the cholesterol transporter 

ABCA1 and lysosomal markers such as CTSB, and GRN. Similarly, several AD candidate 

genes are downregulated in DLAM states including MS4A6A, BIN1, CD2AP, and RIN3 

suggesting that AD risk variants may impact the plasticity of microglia to transition from 

homeostatic to DLAM state. Using a list of 81 candidate AD risk genes nominated by 1,52 we 

found that more than half of them (44/81) are differentially expressed in cytokine mix-treated 

THP-1 macrophages (adj.p < 0.05) including PICALM, SCIMP, PTK2B, FERMT2, ABI3, HLA-

DQA1, APOE (Figure S1A). This effect is mainly driven by IL4 which, when applied alone, 

induces differential expression of 36/81 genes. 3F alone induced differential expression of one 

fourth of AD risk genes (21/81). Five genes (5/81) were excluded because they did not appear 

in the bulk transcriptome or were filtered out because of very low expression level (CLNK, 

PRDM7, IL34, HS3S35T, TSPOAP1). The list of candidate AD risk genes and their expression 

level in cytokine-treated groups as compared to control is listed in Table S2. 

Next, we used a list of genes whose expression levels in myeloid cells are predicted to alter 

disease susceptibility, from an integrative analysis of AD GWAS and myeloid genomic data that 

we previously conducted 6. In Novikova et al. we found 29 candidate causal genes whose 

directionality of expression (increased or decreased level) was predicted to increase AD risk 

(see Fig.5 in 6). We added TREM2 and APOE to this list, since their directionality of expression 

has been previously associated with modulation of AD risk 53–55. In particular the lower 

expression level of APOE has been genetically associated with higher risk of AD 55. The list of 

31 myeloid candidate AD risk genes is depicted in Figure S1, and listed in Table S2. As 

proposed by Novikova et al., 6, red indicates that increased expression of the gene is predicted 

to increase risk for AD, blue indicates that decreased expression of the gene is predicted to 

increase risk for AD, gold indicates that the directionality of gene expression that is associated 
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with increased disease susceptibility cannot be robustly inferred. We filtered log2 fold change 

(logFC) for each gene in three conditions (cytokine mix, IL4 and 3F) and attributed change in a 

contrast (cytokine(s) treatment vs control) to increased or decreased AD risk. For example, 

decreased expression of BIN1 was associated with increased AD risk 6. In cytokine mix-treated 

THP-1 macrophages, BIN1 level was significantly increased as compared to non-treated 

macrophages (logFC = 1.68 adj.p = 1.04e-5), therefore the effect of cytokine mix treatment on 

BIN1 expression in THP-1 macrophages is indicative of a risk-decreasing effect and is labeled 

as “risk-decreasing” in the heatmap (Figure S1B). On the contrary, BIN1 expression is 

significantly reduced upon exposure to 3F only (logFC = -0.83, adj.p = 0.019) as compared to 

non-treated THP-1 macrophages, suggesting 3F treatment in THP-1 macrophages modulates 

BIN1 expression toward increased AD risk and was therefore labeled as “risk-increasing” in the 

heatmap (Figure S1B). The level of BIN1 expression in IL4-treated THP-1 macrophages was 

not significantly changed as compared to non-treated macrophages (logFC = 0.30, adj.p = 

0.26), therefore we cannot reliably infer the effect on AD risk and (no label on the heatmap) 

(Figure S1B).  

We observed a group of genes strongly implicated in efferocytosis 12 such as AP4M1, ZYX, 

PTK2B, PILRA, BIN1, APOE and TREM2 whose increased levels of expression in cytokine mix 

treated THP-1 macrophages are predicted to reduce AD risk. Another interesting observation 

was that IL4 and 3F have different effects on MS4A4A and MS4A6A,  whose increased levels of 

expression are predicted to increase AD risk 6. We found that in THP-1 macrophages the 

expression levels of these two genes are induced by IL4 treatment while they are significantly 

reduced by 3F treatment. Interestingly, in cytokine mix-treated THP-1 macrophages, the effect 

of 3F dominated that of IL4 leading to decreased expression of MS4A4A and MS4A6A, which is 

in turn associated with reduced AD risk (Figure S1B). Finally, in cytokine mix-treated THP-1 

macrophages, there was a group of genes (including SPI1, SCIMP, and REBEP1) whose 

increased expression levels are associated with increased AD risk. 

In summary, cytokine mix treatment induced the expression of ten myeloid candidate AD risk 

genes toward decreased risk and modulated the expression of five other myeloid candidate AD 

risk genes toward increased risk (Figure S1B). IL4 treatment induced expression of six myeloid 

candidate AD risk genes toward protection and nine genes toward increased risk. Finally, 3F 

induced the expression of five myeloid candidate AD risk genes toward protection and four 

genes toward increased risk (Figure S1B). 
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Altogether we found that the cytokine mix treatment which includes a combination of IL4,  and 

3F (MCSF, IL34 and MCSF) is the most effective treatment compared to single 3F or IL4 in 1) 

induction of AD risk gene expression 2) induction of myeloid candidate AD risk genes in the 

same direction as associated with decreased AD risk. Hence, we decided to conduct further 

analysis including single cell RNAseq and functional studies using cytokine mix treatment and 

control non-treated THP-1 macrophages (control) excluding 3F and IL4 conditions.        

Single-cell RNA-seq identifies disease-associated and non-

proliferative transcriptional states in THP-1 macrophages treated with 

cytokine mix 

To confirm our bulk RNA-seq findings and test if exposure to the cytokine mix induced different 

transcriptional states in THP-1 macrophages cultured in vitro, we performed scRNA-seq on 

control and cytokine mix-treated cells. Quality control, integration and clustering were performed 

prior to downsampling cells to the smallest treatment condition for comparison, resulting in 

27,584 total cells (Figure 3A; Table S3). Cluster annotations were defined based on the 

enrichment of existing myeloid gene expression signatures and biological pathways (Figure 3B; 

Figure S4A). We found nine unique clusters Mac0-Mac8 where Mac0 showed increased 

expression of DLAM canonical markers such as CTSB, CTSZ, SPP1, ITGAX and CLEC7A 

(Figure 3B, Figure S3A,B). We employed several methods to compare our data with existing 

datasets from brain-resident and peripheral macrophages from in vitro and in vivo studies that 

identified different macrophage transcriptional states. First, we tested which THP-1 macrophage 

clusters overlap with published DLAM cluster marker genes. We found that the cluster marker 

genes identified in this study showed a statistically significant hypergeometric overlap with 

DLAM cluster marker genes including marker genes from AD brains such as GPNMB_NACA 

cluster (GS15) (hypergeometric overlap adjusted p value: adj.pMac0 = 5.90e-17, adj.pMac3 = 

5.60e-19, adj.pMac4 = 0.075, adj.pMac7 = 0.009, adj.pMac8 = 1.80e-13), GPNMB_EYA2 cluster 

(GS14) (adj.pMac0 = 1.80e-09, adj.pMac4 = 0.017, adj.pMac7 = 1.00e-61, adj.pMac8 = 0.016), 

LPL_CD83 cluster (GS13) (adj.pMac0 = 6.40e-09, adj.pMac3 = 0.050, adj.pMac4 = 0.030, adj.pMac7 = 

8.60e-26, adj.pMac8 = 4.90e-06) identified by Gazestani et al. 45, MG4 (lipid processing) cluster 

(GS21) described by Sun et al. (adj.pMac0 = 1.00e-06, adj.pMac4 = 0.001, adj.pMac7 = 9.80e-53) 47, 

LAM signature (GS25) from peripheral macrophages from obese individuals 16 (adj.pMac0 = 

8.20e-10, adj.pMac3 = 2.90e-11, adj.pMac4 = 0.006, adj.pMac8 = 3.50e-26), and cluster marker 

genes from white matter microglia isolated from patients with multiple sclerosis (HS7 cluster) 
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(GS27) 48 (adj.pMac0 = 4.80e-08, adj.pMac3 = 1.20e-37, adj.pMac8 = 2.20e-22). In addition we found 

that marker genes from Mac0, Mac3, Mac4, Mac7, Mac8 showed overlap with in vitro DAM 

cluster marker genes such as Cluster 2 (GS29) (adj.pMac0 = 4.30e-29, adj.pMac3 = 0.029, adj.pMac4 

= 3.60e-04, adj.pMac7 = 1.80e-12, adj.pMac8 = 4.00e-12) and Cluster 8 (GS31) (adj.pMac0 = 5.40e-

27, adj.pMac3 = 7.10e-04, adj.pMac4 = 4.80e-05, adj.pMac7 = 1.50e-04, adj.pMac8 = 1.60e-14) 

identified by Dolan et al, 19,45, marker genes from DAM cluster extracted from 5xFAD brain 

(GS1) (adj.pMac0 = 4.90e-11, adj.pMac3 = 1.20e-17, adj.pMac4 = 0.002, adj.pMac7 = 0.220, adj.pMac8 = 

4.80e-14) 15, as well as, marker genes from DAM cluster from xenografted human iPSC-derived 

microglia from 5xFAD mouse (GS8) (adj.pMac0 = 4.80e-16, adj.pMac3 = 5.50e-12, adj.pMac4 = 

0.007, adj.pMac7 = 9.40e-5, adj.pMac8 = 1.90e-18) 43 (Figure 4A). These results show that we did 

not identify one DLAM cluster in THP-1 macrophages, instead we found increased enrichment 

of DLAM genes in multiple clusters (Mac0, Mac3, Mac4, Mac7, Mac8) (Figure S3A,B; Table S3). 

Mac1 showed a strong hypergeometric overlap with marker genes extracted from Proliferative 

clusters identified by others in AD brains, Gazestani Cluster Prolif (GS33) (adj.pMac1 = 2.40e-31) 
45, Sun MG12 (cycling microglia) (GS34) (adj.pMac1 = 5.80e-239) 47. Next, we tested the 

enrichment of the DLAM cluster marker genes in the THP-1 dataset calculating module score 

for several DLAM transcriptional signatures. We found that Mac0 and Mac8 showed the highest 

enrichment of Cluster 2 (GS29) and Cluster 8 (GS31) marker genes 19 (Figure 4C). Cluster 2 

and 8 appear in iMGLs upon exposure to brain phagocytic substrates such as apoptotic neurons 

(Cluster 2 and 8), Aβ fibrils (Cluster 8), and myelin fragments and synaptosomes (Cluster 2) 19. 

Interestingly, we have also found an enrichment of DLAM signatures from AD brains in Mac0 

and Mac6 clusters. Lipid processing cluster marker genes (MG4) (GS21) from AD brains 

identified by 19,47 and cluster marker genes from GPNMB_EYA2 (GS14) and LPL_CD83 (GS13) 

clusters identified in AD biopsies 45 were particularly enriched in Mac6 and part of Mac0 cluster 

identified in this study (Figure 4C, Figure S3C. This observation that microglial state found in AD 

brains exists in a small population of human immortalized macrophages cultured in a dish is 

very intriguing and underscore the utility of in vitro models to recapitulate some of the states 

found in the human brain.  In addition, cluster marker genes of the My2 macrophage cluster 

(GS51) isolated from human atherosclerotic plaques showed enrichment with Mac0, Mac8, and 

Mac3 clusters 56 (Figure S3C) emphasizing the shared responses of peripheral and brain-

resident macrophages to a lipid-rich environment. Finally, we found that proliferative states that 

exist in in vitro iMGLs exposed to brain phagocytic substrates 19 and human AD brains 19,45 are 

highly enriched in Mac1 cluster that was also annotated in this study as Proliferative and 

showed a high degree of overlap with known proliferative cluster marker genes (Figure 4A,C). 
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Intriguingly, when we tested for enrichment of AD risk genes (Table S2) nominated as candidate 

causal genes in AD GWAS loci 1,12, we found an enrichment of AD risk genes in DLAM clusters 

such as Mac0, Mac2, Mac8, and additionally in Mac6 which is the most relevant to human DAM 

and lipid processing DLAM clusters (Figure 3C, Figure S3C).       

Next, we compared the THP-1 transcriptional states with those found in vitro in iMGLs exposed 

to brain phagocytic substrates 19. We projected our THP-1 macrophage clusters into clusters 

identified by Dolan et al, and found that the majority of our macrophage clusters project to the 

DAM Cluster 8 (Figure 4B). This is also in agreement with our cluster annotation and 

hypergeometric overlap that show that multiple macrophage clusters identified in this study 

showed increased expression of DLAM genes. Consistently, all cells from Mac0 were projecting 

to Cluster 8 confirming Mac0 is the most representative of our DAM clusters (Figure 4B). We 

have also confirmed the existence of Proliferative clusters in THP-1 macrophages and found 

that Mac1 Proliferative cluster cells project to three proliferative clusters identified in iMGLs 

(Cluster 10, 6, 9) (Figure 4B). Next, we separately projected clusters from control conditions 

only (“control”) and from treatment condition only (“Cytokine mix-treated”) and we found that in 

control, cells from cluster Mac0 are distributed among Dolan’s Cluster 8 (n=2,476 cells) and 2 

(n=601 cells), while in cytokine mix-treated macrophages nearly all cells from Mac0 (n=3,786 

cells) projected to Cluster 8 (Figure S3D). We have also found that many more cells in control 

THP-1 macrophages projected to Proliferative clusters (Cluster 10, 9 or 6) identified by Dolan et 

al., (n=5,026 cells), whereas in cytokine mix-treated THP-1 cells only n=2,360 cells were found 

in the Proliferative clusters from Dolan et al (Figure S3D) confirming depletion of proliferative 

and induction of DLAM states in cytokine mix-treated macrophages.   

To find biological processes enriched in each cluster we performed gene set enrichment 

analysis using gene ontology terms (GO) and cluster marker genes for each cluster. Mac0 

cluster marker genes were enriched in “Regulation of Phagocytosis” (GO:0050764), “Receptor-

mediated Endocytosis” (GO:0006898), “Intracellular pH reduction” (GO:0051452) (Figure S4A). 

In addition to that, CLEC7A, the canonical DAM marker associated with microglial response to 

amyloid plaques and apoptotic neurons 17,57 was enriched in Mac0 cluster (Figure S3B). Genes 

from clusters Mac3 and Mac8 were enriched in biological processes involved in “Cytoplasmic 

translation” (GO:0002181), “Peptide Biosynthetic Process” (GO:0043043), and “Ribosome 

Biogenesis” (GO:0042254) (Figure S4A). Mac4 genes were enriched for “Regulation of Neuron 

death” (GO:1901214) and “Leukocyte Tethering or Rolling” (GO:0050901). (Figure S4A). 

Biological processes enriched in genes positive in cluster Mac7 were “Regulation of 
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Transcription by RNA Polymerase” (GO:0006357), “Circulatory System Development” 

(GO:0072359), “Positive Regulation of GTPase Activity” (GO:0043547). Mac1 genes were 

enriched for biological processes involved in “Mitotic Sister Chromatid Segregation” 

(GO:0000070), “DNA Metabolic Process” (GO:0006259), “Positive Regulation of Cell Cycle 

Process” (GO:0090068) (Figure S4A).  

To determine whether cytokine mix exposure had any significant effects on the proportion of 

THP-1 macrophage subtypes, we used the propeller method 58 with adjustment for two 

independent macrophage differentiations. We observed an increase in the proportions of 

several DLAM-like clusters in response to cytokine mix treatment including Mac0 (29.1% - 

24.7% = 4.4% [3.9%, 4.4%] cytokine mix-treated - control, t-statistics = -0.46, p = 0.647), Mac3 

(14.8% - 7.1% = 7.7% [7.1%, 8.4%], t-statistics = -1.73, p = 0.099), Mac4 (7.5% - 3.3% = 4.2% 

[3.5%, 4.9%], t-statistics = -1.81, p = 0.086), Mac7 (6.2% - 1.6% = 4.6% [3.3%, 5.9%], 

t.statistics = -2.80, p = 0.011), and Mac8 (3.0% - 1.7% = 1.3% [-0.4%, 3.0%], t-statistics = -1.11, 

p = 0.277), but these effects did not pass the statistical significance threshold after multiple 

testing correction) (Figure 3C; Table S3). In addition, we observed a reduced proportion of 

proliferative cells in Mac1 (13.1% - 35.0% = -21.9% [-21.1%, -22.7%], t-statistics = 2.79, p = 

0.011) indicating that the cytokine mix may have an inhibitory effect on the proliferation of THP-

1 macrophages. This is also in agreement with GSEA analysis conducted on a ranked 

transcriptome list (Table S1) from bulk RNAseq showing strong positive enrichment of DLAM 

gene sets and negative enrichment of proliferative gene sets (see Figure 2A), enrichment of 

Proliferative module scores (Figure 4C) and strong hypergeometric overlap between Mac1 

cluster marker genes and Proliferative gene sets (Figure 4A).  

To investigate the effects of cytokine mix treatment on gene expression, we performed 

differential expression analysis on pseudo-bulked cells using edgeR 59. The up-regulated DEGs 

from scRNA-seq showed strong concordance with the bulk transcriptomic data as evidenced by 

the rank hypergeometric overlap method (Figure S4B). The top up-regulated genes include 

TGM2, SERPINB4 and CCL5, while top down-regulated genes include IPCEF1 and CD14. The 

up-regulated genes show increased expression in two major DLAM-like clusters (Mac0, Mac4), 

whereas the top down-regulated genes have decreased expression in different DLAM-like 

clusters (Mac3, Mac7) (Figure 3D), suggesting that these THP-1 macrophage subtypes may be 

driving the transcriptional response to the cytokine mix exposure that we observe. Together, 

these findings indicate that cytokine mix-treated THP-1 macrophages can exhibit transcriptional 
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profiles and states similar to those found in human AD brains and iMGLs treated with 

phagocytic, CNS-relevant substrates.  

Cytokine mix-treated THP-1 macrophages show a reduction in 

migration, phagocytosis, and lysosomal proteolysis. 

Phagocytic clearance of cellular debris  rich in cholesterol and other lipids, such as dystrophic 

neurites, synapses, apoptotic cells, and myelin fragments (a.k.a. efferocytosis) is one of the 

biological processes that AD risk variants may affect to modulate disease susceptibility 10–12. 

This four-step biological process involves migration/recognition (“find-me”), engulfment (“eat-

me”), degradation (“digest-me”) and adaptation/storage/elimination (“poop-me”) of such debris 

and the cholesterol/lipids derived from its digestion.  (Figure 5A). In addition, global 

transcriptomic analysis showed that some aspects of efferocytic clearance may be increased 

including the degradation and adaptation processes (“Oxidative phosphorylation”, “Lysosome”, 

and increased DLAM signatures) and other aspects may be suppressed (“FC Gamma Receptor 

Phagocytosis”). Therefore, we functionally characterized the performance of THP-1 

macrophages stimulated with the cytokine mix in each of the efferocytosis steps. First, we used 

a Scratch Wound Assay to evaluate macrophage motility and migration capacity. A scratch is 

performed in the center of the well and we imaged for 24 hours to quantify the cell density in the 

wound. We observed a reduction in the relative wound density in THP-1 macrophages 

stimulated with the cytokine mix compared to control THP-1 macrophages (Figure 5B) (Cytokine 

mix - control mean of differences (95% confidence interval) p=two-tailed paired t-test: -15.72 [-

49.21 to 17.77] p=0.0181). This reduction in motility might be associated with a higher capacity 

for attachment that was observed when performing routine detachment of the macrophages by 

a trypsinization method in order to seed the cells for experimental procedures. Cytokine-induced 

macrophages also displayed significantly increased area as evidenced by increased confluence 

(Figure S5)  In addition, we observed an increase in ICAM-1, an adhesion receptor, in cell 

media in THP-1 macrophages treated with the cytokine mix compared to control (Figure S6). 

Secondly, we investigated the phagocytic uptake ability of control and cytokine-stimulated 

macrophages using four different substrates. We used flow cytometry to quantify the uptake of 

fluorescent latex beads, pHrodo-labeled myelin, pHrodo-labeled zymosan, and pHrodo-labeled 

early apoptotic Jurkat cells (EAJ). We found uptake of all four phagocytic substrates was 

decreased as evidenced by lower phagocytic index (Figure 5B) Latex beads: -0.9171 [-1.135 to 
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-0.6994] p=0.0009, Myelin: -1.654 [-2.429 to -0.8780] p=0.0065, Zymosan: -1.710 [-2.845 to -

0.5748] p=0.0173, EAJ: -3.745 [-5.899 to -1.591] p=0.0116).  

To assess the degradative capacity of cytokine-treated macrophages, we evaluated lysosomal 

activity. We stained control and cytokine mix-stimulated THP-1 macrophages with  markers for 

lysosomal mass (LysoTracker) and lysosomal acidification (LysoSensor). By using flow 

cytometry, we observed a significant reduction in the lysosomal mass as evidenced by lower 

lysosomal mass index: -1.823 [-2.617 to -1.028] p=0.0053, but no differences in lysosomal 

acidification represented as lysosomal acidification index: 0.2187 [-0.3352 to 0.7726] p=0.2979 

in cytokine mix-stimulated THP-1 macrophages compared to control (Figure 5 D1, D2). Next, we 

exposed cells to DQ-BSA, a substrate used to evaluate lysosomal proteolysis. We found a 

reduction of DQ-BSA signal in THP-1 macrophages treated with the cytokine mix compared to 

control by time-lapse imaging as evidenced by lower Integrated Intensity normalized to 

Confluence: -4040 [-7664 to -415] p=0.0408 (Figure 5 D3). We confirmed decreased DQ-BSA 

signal 24h post DQ-BSA exposure in cytokine-treated macrophages by flow cytometry 

quantifying DQ-BSA index: -4.743 [-7.580 to -1.906] p=0.0130 (Figure 4 D4). This observation 

was unexpected because transcriptomic profiling of cytokine-treated macrophages showed up-

regulation of genes involved in “Lysosomal” pathway (Figure 1C) such as LAMP1, EEA1, RAB5 

(Table S1), and cathepsins such as CTSB, CTSD (Figure 2B, Table S1) suggesting that 

lysosomal proteolytic capacity might be induced in cytokine-treated macrophages. Using 

western blot we confirmed that the LAMP1 and RAB5 proteins were up-regulated in cytokine-

treated macrophages as evidenced by increased protein band signal normalized to Actin 

(LAMP1: 0.2383 [0.1708 to 0.3057], p=0.0043; RAB5: 0.2318 [-0.1334 to 0.6970], p=0.100) 

(Figure 5 E1, E2). To understand the discrepancies between  functional response and 

transcriptomic changes in gene expression involved in lysosomal proteolysis and phagocytic 

uptake, we carefully examined the expression of genes involved in each step of phagocytic and 

endocytic clearance. We found that some phagocytic receptors were up-regulated such as 

(TREM2 logFC = 0.52, adj.p = 0.0098; CD300A logFC = 1.36, adj.p = 9.77e-5; ITGAV logFC = 

0.75, adj.p = 0.0003), while others were down-regulated (TYRO3 logFC = -2.04, adj.p = 6.29e-

06; SRA1 logFC = -0.70, adj.p = 0.0001) in THP-1 macrophages exposed to cytokine mix 

(Figure 5F). We have also observed an increased expression of lysosomal genes such as 

(ATP6AP1 logFC = 0.47, adj.p = 5.22e-07; ACP2 logFC = 0.62, adj.p = 1.93e-06; CTSB logFC 

= 0.80, adj.p = 0.011; SORT1 logFC = 0.95, adj.p = 1.06e-06) in THP-1 macrophages treated 

with cytokine mix (Figure 5F). Finally, we examined the expression of genes involved in 

formation of phagocytic and endocytic cups. This is an important step for both phagocytosis and 
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endocytosis through which lipid-rich substrates and extracellular proteins such as BSA are 

internalized. We found that actin-related genes (ACTB and ACTG1) involved in regulation of 

actin polymerization as well as Rho family GTPases such as RAC1 and RHOA that are 

essential for phagocytic/endocytic cup formation, are significantly down-regulated in cytokine-

treated THP-1 macrophages  which may explain reduced internalization of DQ-BSA and 

phagocytic substrates (ACTB, logFC = -0.232 adj.p = 0.0069; ACTG1, logFC = -0.239 adj.p = 

0.0035; RAC1, logFC = -0.325 adj.p = 4.24e05; RHOA, logFC = -0.258  adj.p = 0.0036)(Table 

S1) (Figure 5F). 

Cytokine mix-treated THP-1 macrophages enhance oxidative and 

glycolytic metabolism. 

The uptake and digestion of whole cells or cellular fragments requires adaptation to the 

engulfed material, which includes transcriptional changes, lipid storage and efflux, and 

metabolic adaptation (Romero-Molina et al., 2023). Metabolic changes have been shown to be 

both a modulator and a consequence of the immune response in macrophages (Jha et al., 

2015). We used the Seahorse technology to study glycolytic and mitochondrial bioenergetics. 

Upon stimulation with the cytokine mix, THP-1 macrophages increased basal: 128.7 [35.52 to 

221.9] p=0.0085 and maximal respiration capacity: 251.9 [-10.64 to 514.4] p=0.0107 (Figure 

6A). In parallel, our glycolytic stress test showed a pronounced increase in basal glycolysis: 

90.83 [49.05 to 132.6] p=0.0002 and maximal glycolytic capacity: 53.18 [15.7 to 90.66] 

p=0.0079 (Figure 6B). These results demonstrate an enhancement of both oxidative and 

glycolytic metabolism in response to the cytokine mix treatment and are also in agreement with 

transcriptomic findings showing “Oxidative phosphorylation” and “Glycolysis Gluconeogenesis” 

as top positively enriched pathways (Figure 1C).  

Cytokine mix-treated THP-1 macrophages show significant changes 

in lipid metabolism. 

Lipid efflux and storage are essential features in the adaptation step of the efferocytosis 

process. Moreover, the accumulation of lipids in myeloid cells has been a subject of interest due 

to its potential role in the pathogenesis of AD and related neurodegenerative conditions 60–63. 

Bulk RNA-seq analysis comparing THP-1 macrophages treated with the cytokine mix vs 

untreated controls showed statistically significant changes in the expression of lipid metabolism 
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related genes (Table S1). There was an up-regulation of genes coding for proteins directly 

involved in cholesterol efflux and transport (APOE logFC = 1.74, adj.p = 0.003, APOC1 

logFC=3.03, adj.p=2.92e-06), hydrolysis of cholesterol esters in lysosomes (LIPA, logFC=2.12, 

adj.p=1.39e-08) or egress of cholesterol from lysosomes (NPC2 logFC=0.40 adj.p=0.019) and 

cholesterol ester hydrolysis in lipid droplets (NCEH1 logFC=0.96, adj.p=3.60e-05). In contrast, 

we observed a down-regulation of SOAT1 (logFC=-0.33, adj.p=1.97e-04) involved in cholesterol 

ester synthesis and storage in lipid droplets.  

To test whether these transcriptomic changes were associated with changes in lipid 

metabolism, we performed unbiased lipidomics in control and cytokine mix-treated THP-1 

macrophages (Figure 7A). We observed a statistically-significant decrease in mono/di/tri-

acylglyceride (MG, DG, TG) species after stimulation with the cytokine mix, which could be 

related to the increased energy expenditure observed in Seahorse experiments (Figure 7A). In 

addition, we observed a reduction in globotriaosylceramide (GB3), a glycosphingolipid related to 

lipid storage. On the other hand, we found a significant increase in 

lysophosphatidylethanolamines (LPE), phosphatidylethanolamines (PE), phosphatidic Acid 

(PA), and phosphatidylserine (PS), which might suggest membrane remodeling, such as 

increase in fluidity, or alterations in cell signaling pathways.  

In addition, we used BODIPY to stain neutral lipids. By using flow cytometry, we observed 

increased BODIPY fluorescent signal in THP-1 macrophages treated with the cytokine mix as 

evidenced by increased BODIPY index: 0.32 [0.02 to 0.63] p=0.038 (Figure 7B). As mentioned 

above, the level of TGs (one of the lipid species that can be stored in lipid droplets) was 

decreased; however three cholesterol ester (CE) species were increased including CE 20:4 

(logFC = 0.71, adj.p = 0.009), CE 18:2 (logFC = 0.66, adj.p = 0.01), and CE 16:1 (logFC = 0.56,  

adj.p = 0.034) (Figure 7C and Table S4). We then examined proteins involved in reverse 

cholesterol transport such as cholesterol acceptor APOE and cholesterol transporter ABCA1. 

Transcriptomic levels of APOE were markedly increased in cytokine mix-treated THP-1 

macrophages compared to control (Table S1). We confirmed that cytokine mix-treated THP-1 

macrophages express higher levels of APOE protein: 0.2060 [0.02506 to 0.3869], p=0.0392 

(Figure 7D) and display increased levels of secreted APOE measured by ELISA (ng/ml): 317.3 

[-20.55 to 655.1] p=0.0582 (Figure 7E). Surprisingly, we observed a decreased level of ABCA1 

protein: -0.254 [-0.360 to -0.148], p=0.0003 (Figure 7F) as well as no changes in cholesterol 

efflux -0.111 [-0.266 to 0.044], p=0.137 (Figure 7G) suggesting that cholesterol efflux is not 

affected.   
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Cytokine mix-treated THP-1 macrophages showed minor alterations in 

secreted cytokine profile. 

To test if the cytokine mix exposure is associated with a decrease in proinflammatory cytokines 

and induction of anti-inflammatory cytokines, we measured secreted cytokines in the 

conditioned media of THP-1 macrophages treated with cytokine mix and compared the levels of 

cytokines in the conditioned media of control cells. Using proteome profiler dot blot we found 

increased levels of secreted CCL2, CXCL1, ICAM1 and decreased levels of IL-1ra (Figure S6). 

CCL2 is up-regulated in xMGL DAM (GS8) 43,64 and in human foamy macrophages (GS24) 35. 

Hence, elevated level of CCL2 expressed as relative density normalized to density of reference 

spot (0.518  [0.451 to 0.569], p<0.001), also markedly increased at the transcript level (Figure 

2B), most likely indicates a higher DLAM-like population in cytokine mix-treated THP-1 

macrophages. Consistently, the highest level of CCL2 expression was observed in the Mac0 

cluster that shows the biggest enrichment with DLAM genesets (Figure S3A). Another cytokine 

induced by cytokine-mix treatment is CXCL1 as evidenced by increased relative density 

normalized to density of reference spot : 0.109 [0.046 to 0.173], p=0.012 which is a potent 

neutrophil chemoattractant 65,66.   

 

Discussion 
 

Recent studies have focused on optimization of in vitro systems that recapitulate disease/lipid-

associated microglia/macrophages. These models use iPSC-derived microglia, CNS-relevant 

substrates, or genetic manipulations of DLAM master transcription factors 19,20,67. Although they 

can model human microglia under controlled conditions and offer insights into microglial biology, 

they also have several caveats. For example, generation of iPSC-derived microglia is expensive 

and time consuming (often > 1 month). In addition, the use of different differentiation protocols 

and iPSC lines by different labs to generate iMGLs is a  source of large variability 68. Yet, the 

efficiency to induce a DLAM-like state across these different methods and cells has never been 

fully investigated. In addition, to induce a DLAM state in vitro in HPC-derived iMGLs 32, one 

would need a combination of phagocytic substrates that have to be prepared in advance such 

as apoptotic cells, or myelin fragments and synaptosomes isolated from human or mouse brains 
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19. Here, we propose use of an easily accessible and well-characterized human immortalized 

monocytic leukemia cell line (THP-1) that can be differentiated into macrophages and then 

stimulated with a cocktail of cytokines including maturation, survival and anti-inflammatory 

cytokines to induce a DLAM-like state in vitro.   

Using bulk RNA-seq we found that THP-1 macrophages closely resemble iMGLs and ex vivo 

microglia making this cellular system relevant to investigate brain-resident macrophages. We 

demonstrated that a DLAM-like transcriptional response can be induced in vitro in THP-1 

macrophages with a mixture of four cytokines as evidenced by activation of similar 

transcriptional programs to those found in AD human brains 36,44–47 and iPSC-derived microglia 

exposed to CNS-derived lipid-rich substrates 19. Consistently, single cell RNA-seq analysis of 

control and cytokine mix-treated THP-1 macrophages identified 9 unique clusters enriched for 

DLAM, proliferative and antigen-presenting gene signatures from published studies 15,16,19,45,47,48 

and related biological functions. Interestingly, projection of DLAM clusters identified in this study 

to two DAM clusters induced by phagocytic substrates in iMGLs showed that our Mac DLAM 

clusters closely resemble Cluster 8 DAM identified by Dolan et al. that appear upon stimulation 

with either Aβ fibrils or apoptotic cells 19. Of note, both module score analysis and cluster 

projection using the scmap-cluster package, clearly showed that DLAM exists at baseline in 

control macrophages. This might be induced by a local turnover of macrophages when dying 

(apoptotic or necrotic) cells need to be phagocytosed and cleared. However our study showed 

that the proportion of clusters (Figure 3D, Figure S3D) can be shifted toward more DLAM, less 

proliferative by using a combination of cytokines. Importantly, we identified that several DLAM 

clusters match the transcriptional signature of microglia found in AD brains such as lipid 

processing microglia or GPNMB+ DAM clusters from AD biopsies45. For example Mac6 showed 

strong enrichment of lipid processing cluster marker genes (MG4) 47 suggesting that we can 

model some of the in vivo microglial states in a simple in vitro system.  

We also demonstrated that IL4 is the main driver of increased DLAM transcriptional responses 

and reduction of proliferative responses in our cytokine mix, while 3F cytokines have no impact 

on any of these transcriptional programs. Similarly, IL4 induced the expression of AD risk genes 

in the same direction as in the cytokine mix with the exception of MS4A4A, MS4A6A, and 

PILRA that were induced in the opposite direction in cytokine mix and 3F suggesting that 

MCSF, IL34, and/or TGFβ control the expression of these three AD risk genes. Altogether, we 

identified a mix of four cytokines (IL4, MCSF, TGFβ, IL34) that may be a useful tool to 

manipulate macrophage states in vitro toward a more AD-relevant state; which so far can be 
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achieved by more expensive and challenging methods such as exposure of iMGLs to 

synaptosomes, myelin fragments, and apoptotic neurons 19, reduction of transcription factors 

(BHLHE40/41) that repress DLAM responses 20, and overexpression of a positive DLAM 

regulator, MITF19.   

Another goal of this work was to functionally characterize DLAM-like cells in vitro in order to link 

the biological pathways associated with DLAM states defined by the transcriptomic analyses 

with experimental measures of their activity. The main DLAM-enriched processes are 

phagocytosis, lipid and lysosomal clearance and modulation of immune response 15,16. We have 

found that cytokine-stimulated macrophages showed decreased uptake of beads and 

decreased phagocytosis of cholesterol and lipid rich cellular debris, including early apoptotic 

cells, myelin and zymosan. The consequences of the polarization towards DLAM state on 

phagocytosis are not clear yet. On one hand, a recent study showed that overexpression of 

DLAM-regulating transcription factor, MITF, leads to increased phagocytic uptake of myelin 19. 

On the other hand, reduction of SPI1 (encoding PU.1), also associated with delayed AD onset 4 

led to decreased phagocytosis of myelin and zymosan 69. Although an enhanced phagocytic 

capacity may be beneficial for increased debris clearance, a reduced uptake may be 

advantageous in AD, considering how microglial uptake of cholesterol/lipid-rich cellular debris 

during neurodegeneration may result in microglial lipid overload and dysfunction, leading to cell 

senescence and death or polarization toward a neurotoxic, proinflammatory or otherwise 

detrimental state. Increased phagocytic uptake may also be a symptom of dysfunctional lipid 

trafficking to lysosomes in microglial cells as was previously described in Niemann-Pick type C 

neurodegenerative disease 70. In addition, it may slow down the removal of synapses observed 

in neurodegenerative diseases. Finally, in our system, decreased phagocytosis may rather be 

the effect of reduced actin polymerization and phagocytic cup formation than decreased 

efficiency of the endolysosomal system.  

The final step of efferocytosis involves metabolic and other molecular and cellular adaptations, 

as well as storage and elimination of cholesterol and other lipids and molecules derived from the 

digestion of engulfed material. This step is particularly important to handle the excess 

cholesterol derived from the degenerating brain, the most cholesterol-rich organ in the body. 

Cytokine mix-treated THP-1 macrophages showed an increased level of lipid droplets, APOE 

expression and secretion, but decreased expression of ABCA1 and no change in cholesterol 

efflux. Although we observed induced expression of DLAM genes involved in endolysosomal 

processing and cholesterol clearance, we also found an increased level of two DLAM inhibitors, 
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BHLHE40 and BHLHE41 (Table S1), that compete with LXR and MIT/TFE family members to 

decrease DLAM responses. We have previously shown that loss of BHLHE40/41 is associated 

with increased lysosomal and lipid clearance 20. Even though the majority of DLAM responses 

are induced at the transcript level, functional responses in cytokine-treated THP-1 macrophages 

may be partially inhibited due to BHLHE40 and BHLHE41 that inhibit positive transcriptional 

regulators of the DLAM response such as LXR, PPAR, and MITF/TFEB family TFs. In addition, 

BHLHE40 has been nominated by us as a regulator of mouse DLAM 20, and its induction has 

been shown to be a part of mouse DAM response 17,42.  

Macrophages, including microglia, demonstrate remarkable plasticity, adapting their metabolism 

to meet the specific demands of different microenvironments and immune challenges. In the 

pro-inflammatory activation state (M1), macrophages predominantly rely on glycolysis to rapidly 

generate energy and produce pro-inflammatory cytokines, while in the anti-inflammatory 

activation state (M2), macrophages exhibit a shift towards oxidative phosphorylation, promoting 

tissue repair 71. However, it has recently been shown that a pro-inflammatory treatment (LPS) 

for 24 hours increases both glycolytic and oxidative metabolism in HMC3 microglia 72. Similarly, 

our results showed an enhancement of both oxidative and glycolytic metabolism, which is in 

accordance with the mix of M1/M2 transcriptional profiles found in our cytokine-treated THP1 

macrophages 30. The fact that the increase in basal glycolysis had a higher effect size than the 

increase in basal mitochondrial respiration may be explained by the high glucose availability 

present in the media in vitro, or be a feature of the DLAM transcriptional profile, resembling the 

Warburg effect described in T cells (aerobic glycolysis without cell proliferation) 73. APOE4 

primary mouse microglia, which display an up-regulation of DAM genes compared to APOE3 

microglia, show higher rates of basal glycolysis and lower maximal respiration than APOE3 

microglia 74. However, in vivo data in AD mouse models showed a major up-regulation of 

oxidative phosphorylation in active (Clec7a+) microglia 75. The transmembrane receptor TREM2 

is essential for polarization towards a DLAM state 15, as well as for microglial metabolic fitness 
76, supporting the link between the transcriptomic and metabolic changes underlying the 

immune response. Our results showed that the transcriptomic changes that occur when 

macrophages are polarized towards a DLAM phenotype enhance both their glycolytic and 

oxidative metabolism to increase energy production.  

Triacylgliceride (TG) synthesis has been proposed to enhance macrophage inflammation 77. In 

vitro, mouse pro-inflammatory macrophages (LPS+IFNγ stimulation) increase TGs, in contrast 

to mouse macrophages treated with an anti-inflammatory stimulus (IL4), which showed a 
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reduction in some TGs compared to control macrophages 77. In concordance, our results 

showed a decrease in TGs in human macrophages treated with the cytokine mix, which 

contains IL4. On the other hand, upon chronic demyelination (12 weeks cuprizone treatment), 

Trem2-KO mouse microglia showed an increase in triacylglycerol (TG) and ganglioside (GB3) 

compared to WT mouse microglia, suggesting that TREM2 might modulate lipid metabolism 24. 

THP-1 macrophages treated with cytokine mix showed an increase in TREM2 expression 

coupled with a decrease in TG and GB3, compared to control macrophages, reinforcing the idea 

that TREM2 might play a role in immunometabolism 24,76. 

We also observed that the polarization towards a disease-associated state upon cytokine mix 

treatment induced an increase in lipid droplets (LD) in THP-1 macrophages. In accordance, 

Claes et al., showed lipid droplet accumulation in human DAM xenotransplanted microglia in the 

brain of chimeric AD mice 64. More interestingly, xenotransplanted TREM2-R47H mutant human 

microglia exhibited a reduction in the accumulation of lipid droplets in vivo 64. Prakash et al. 

showed that the lipid droplet load in microglia was positively correlated with their proximity to 

amyloid plaques in the 5xFAD mouse model and the human brain 78. In addition, LD-laden 

microglia showed a deficit in Aβ phagocytosis 78, which may explain the decreased phagocytic 

capacity that we observed in cytokine mix-treated THP1 macrophages. Finally, we found an 

increased level of CXCL1 that leads to increased accumulation of oxLDL and increases the rate 

of conversion to foam macrophages 79 which may also explain the increased level of lipid 

droplets in cytokine mix treated THP-1 macrophages. On the other hand, Haney et al recently 

described LD-associated microglia in APOE4 carriers 63. These toxic microglia, previously found 

by the same laboratory in aged mice 62 are transcriptionally distinct from DLAM 20 and 

accumulate TGs rather than CEs in LD. Isolated microglia from APP/PS1:APOE4 mice 

displayed an increase in both TGs and CEs compared  to microglia from APP/PS1:APOE3 mice 
80. Given a decreased level of several TGs species, LD in cytokine-treated THP-1 macrophages 

may be associated with non-inflammatory and protective rather than the detrimental phenotype.  

In conclusion, we have described here a convenient tool to polarize THP-1 macrophages toward 

a DLAM state in vitro, using a cocktail of anti-inflammatory and macrophage maturation 

cytokines. We performed bulk and single cell transcriptional profiling of cytokine mix-treated 

THP-1 macrophages and found robust activation of DLAM transcriptional responses as well as 

manipulation of the expression of several AD risk genes. The use of a human immortalized cell 

line may constitute an advantage in terms of time, cost and replicability compared to the use of 

induced pluripotent stem cells. Finally, since our model is more easily manipulated in functional 
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genomic studies, we performed a broad characterization that provides insight into the function of 

macrophages with increased expression of DLAM genes showing lower phagocytosis and 

lysosomal proteolysis, higher oxidative and glycolytic metabolism and lipid modifications. Future 

studies should confirm these phenotypes in vivo, in the presence of AD and other pathologies 

(e.g., age-related demyelination 81) and coupled with interactions with other cell types.  

Data and code availability 
 

All aligned read counts and fastQ files for cytokine-treated and control THP-1 macrophages 

from bulk and scRNAseq studies have been deposited to the Gene Expression Omnibus and 

are available under the following accession numbers GSE273482 (bulk RNAseq), GSE273912 

(scRNAseq). Additionally, TPM, DGEA and GSEA are listed in Table S1. Cluster marker genes 

and proportion between clusters related to scRNAseq analysis are listed in Table S3. Lipidomics 

raw data are available in Table S4 accompanying this manuscript.  
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Main figure titles and legends 
Figure 1. Differential abundance and pathway enrichment analysis of gene expression 

changes induced by cytokine treatment in THP-1 macrophages reveales changes in 

Lysosome, Oxidative phosphorylation and Cell cycle A) Schematic of THP-1 differentiation 

using phorbol 12-myristate 13-acetate (PMA) followed by cytokine treatment B) PCA analysis 

comparing THP1 macrophages (with and without cytokines) with other myeloid cell types C) 

KEGG-selected pathways from Gene set enrichment analysis (GSEA) positively in three main 

cytokines group as compared to No cytokine (control) (for all GSEA see Table S1) D) Volcano 

plot representing top differentially expressed genes in cytokine-treated macrophages.   

 

Figure 2. Cytokine treatment induces a DLAM, and non-proliferative transcriptional 

response in THP-1 macrophages. A) Enrichment of AD-related gene sets in Cytokine-treated 

macrophages. All gene sets are listed in Table S2, NES – normalized enrichment score * FDR 

q-val < 0.05 ** FDR q-val < 0.01 *** FDR q-val < 0.001 **** FDR q-val < 0.0001. B) Heatmap of 

DLAM genes Z-scores (log2 transformed TPM) based on Table S1 C) Quantification of surface 

expression of DLAM markers by flow cytometry. Values plotted as gMFI. Groups were tested 

with paired t.test (two-tailed) * p < 0.05, ** p < 0.01, *** p < 0.001. Percentage of positive cells 

plotted separately in Figure S2. Different dot shapes correspond to independent macrophage 

differentiations. N = 3-4 independent differentiation, each differentiation has 2 well replicates. 
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Figure 3. Cytokine mix treatment induces DLAM, non-proliferative macrophage 

transcriptional states in THP-1 macrophages A) UMAP of downsampled scRNA-seq data 

comparing THP1 macrophages at baseline (left) and following cytokine treatment (right). Nine 

independent clusters were identified using Seurat FindClusters. B) Heatmap showing top 

expressed genes per cluster compared to all other clusters (log2FC>0.6, qval<0.05, pct 

expressed>70%). The left block shows the number of genes in each geneset and representative 

genes are labeled on the right. Z-scores across clusters are used for the plot. C) The proportion 

of cells per treatment condition within each cluster after downsampling. The percentage of cells 

from the total number of cells per cluster is shown on each bar. D) Dotplot showing expression 

of the top 10 differentially expressed genes across each cluster. The size of dots are scaled to 

represent the percentage of cells expressing the gene within the cluster. Average expression is 

normalized within each feature.   

 

Figure 4. Comparison of THP-1 macrophages treated with cytokine mix with iPSC-derived 

microglia (iMGLs) exposed to phagocytic substrates and AD brain signatures reveals 

induction of similar transcriptional states A) Hypergeometric overlap results showing 

enrichment of myeloid gene signatures in the up-regulated differentially expressed genes from 

pseudobulk scRNA-seq of cytokine treatment vs controls, grouped by subtypes. B) Sankey plot 

showing the projection of clusters found in this study to clusters identified by Dolan et al., by 

exposure of iMGLs to phagocytic substrates. C)  UMAP projection of THP-1 macrophages 

dataset, cells colored by module scores of transcriptional signatures identified in DAM Clusters 

2 and 8, and Proliferative Cluster 10 by Dolan et al., 2023;  Lipid processing Cluster MG4 in AD 

brains identified by Sun et al,  2024, and DAM cluster GPNMB_EYA2 and Prolif cluster in AD 

biopsies identified by Gazestani et al., 2024.   

 

Figure 5. Cytokine mix treatment decreases phagocytosis and lysosomal processing in 

THP-1 macrophages. A) Diagram showing the steps in the efferocytosis process. B) Evaluation 

of the migration capacity through the scratch wound assay in THP1 macrophage control and 

treated with the cytokine mix. B1, relative wound density over time; B2, quantification of the area 

under the curve. Cytochalasin D (cytD) was used as a migration inhibitor. C) Quantification of 

phagocytic uptake of beads C1), myelin fragments C2), Zymosan C3), and early apoptotic cells 

(EAJ) C4). D) Evaluation of lysosomal activity in control and cytokine stimulated macrophages 

by LysoTracker (lysosomal mass, D1), LysoSensor (acidification, D2) and DQ-BSA (lysosomal 

proteolysis, D3-D4). Different dot shapes correspond to independent macrophage 
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differentiations. N = 3-4 independent differentiation, each differentiation has 2-3 well replicates. 

Groups were tested with paired t.test (two-tailed) * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

Figure 6. Cytokine mix treatment increases glycolytic and mitochondrial metabolism in 

THP-1 macrophages. A) Seahorse Mitostress Test: A1, Test profile of oxygen consumption 

over time. Quantification of basal (A2) and maximal (A3) respiration capacity. B) Seahorse 

Glycolysis Stress Test: B1, Test profile of extracellular acidification rate over time. Quantification 

of basal glycolysis (B2) and maximal glycolytic capacity (B3). Different dot shapes correspond to 

independent macrophage differentiations. N = 4 independent differentiation, each differentiation 

has 4-6 well replicates. Groups were tested with paired t.test (two-tailed) * p < 0.05, ** p < 0.01. 

 

Figure 7. Cytokine mix treatment induces changes in lipidomic profiles and lipid 

metabolism in THP-1 macrophages. A) Lipidomics results from control and cytokine mix 

stimulated THP-1 macrophages (N=4). B) Quantification of lipid droplet content (BODIPY 

staining) by flow cytometry in THP-1 control and stimulated macrophages. C) Abundance of 

selected cholesterol ester species (raw data in Table S4). D) Quantification of intracellular 

APOE normalized to Actin in THP-1 macrophages treated with cytokines. Quantification (left), 

representative images (right). E) Quantification of secreted APOE in THP-1 macrophages. F) 

Quantification of ABCA1, normalized to Actin, measured by western blot in control and cytokine-

treated THP-1 macrophages. Quantification (left), representative image (right) G) Quantification 

of cholesterol efflux, in THP-1 control and stimulated macrophages into HDL acceptor N = 3-4 

independent differentiation, each differentiation has 3 well replicates. Different dot shapes 

correspond to independent macrophage differentiations. Groups were tested by paired t.test 

(two-tailed) * p < 0.05, ** p <0.01.     

Materials and Methods 

THP-1 differentiation and cytokine treatment 

THP-1 monocytes were cultured in RPMI medium supplemented with 10% FBS, 1x Penicillin 

Streptomycin (1,000U/ml Penicillin 1,000μg/ml Streptomycin) and 10mM HEPES. 25ng/ml of 

phorbol 12-myristate 13-acetate (PMA) was used to differentiate THP-1 monocytes to 
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macrophages. After 3 days, PMA was removed and replaced with PMA-free RPMI media (as 

described above). THP-1 macrophages were treated with 20ng/ml IL-4, 25ng/ml MCSF, 50ng/ml 

TGFβ and 100ng/ml IL34 for 2-3 days and cells were collected, or functional assays were 

performed.  

Cholesterol efflux assay 

Cholesterol efflux was performed using a Cholesterol Efflux Fluorometric Assay kit (Biovision, 

K582-100) following the manufacturer's instructions. For this assay, cells were seeded in a 96-

well plate at 50,000 cells/well. Cells were labeled with a Labeling Reagent for 1h at 37°C 

followed by loading cells with an Equilibration Buffer. After overnight incubation, media 

containing Equilibration Buffer was aspirated and replaced with media containing cholesterol 

acceptor human HDL (40 µg/ml) for 5h at 37°C. At the end of the incubation, supernatants were 

transferred to flat bottom clear 96-well white polystyrene microplates (Greiner Bio-one, 

655095). Adherent cell monolayers were lysed with Cell Lysis Buffer and incubated for 30 min at 

RT with gentle agitation followed by pipetting to disintegrate cells. Cell lysates were transferred 

into flat bottom clear 96-well white polystyrene microplates. Fluorescence intensity 

(Ex/Em=485/523nm) of supernatants and cell lysates was measured using a Varioskan LUX 

multimode microplate reader (Thermo Fisher Scientific, VL0000D0). Percentage of cholesterol 

efflux was quantified: % cholesterol efflux = Fluorescence intensity of supernatant / 

fluorescence intensity of supernatant plus fluorescence intensity of cell lysate x 100.  

Lipidomic analysis 

THP1 macrophages were seeded in a 6-well-plate (1,000,000 cells/well) and differentiated to 

macrophages. Control and cytokine-stimulated macrophages were collected after 2 days of 

treatment and cell pellets were shipped to Columbia University Biomarker Core (NY, US), where 

a standard lipid panel was performed. We performed 4 independent macrophage 

differentiations, and each sample represented cells pooled from 3 wells (a total of 3,000,000 

cells per sample).  

Lipidomics profiling was performed using Ultra Performance Liquid Chromatography-Tandem 

Mass Spectrometry (UPLC-MSMS) (Agudelco et al 2020, Area-Gomez et al 2021) in 
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collaboration with the Core at Columbia University. Lipid extracts were prepared from cell 

lysates spiked with appropriate internal standards using a modified Bligh and Dyer method and 

analyzed on a platform comprising Agilent 1260 Infinity HPLC integrated to Agilent 6490A QQQ 

mass spectrometer controlled by Masshunter v 7.0 (Agilent Tecmethod and Santa Clara, CA). 

Glycerophospholipids and sphingolipids were separated with normal-phase HPLC as described 

before (Chan et al, 2012), with a few modifications. An Agilent Zorbax Rx-Sil column (2.1 x 100 

mm, 1.8 µm) maintained at 25°C was used under the following conditions: mobile phase A 

(chloroform: methanol: ammonium hydroxide, 89.9:10:0.1, v/v) and mobile phase B 

(chloroform: methanol: water: ammonium hydroxide, 55:39:5.9:0.1, v/v); 95% A for 2 min, 

decreased linearly to 30% A over 18 min and further decreased to 25% A over 3 min, before 

returning to 95% over 2 min and held for 6 min. Separation of sterols and glycerolipids was 

carried out on a reverse phase Agilent Zorbax Eclipse XDB-C18 column (4.6 x 100 mm, 3.5um) 

using an isocratic mobile phase,  chloroform, methanol, 0.1 M ammonium acetate (25:25:1) at a 

flow rate of 300 μl/min. Quantification of lipid species was accomplished using multiple 

reaction monitoring (MRM) transitions (Chan et al, 2012; Hsu et al, 2004; Guan et al, 2007) 

under both positive and negative ionization modes in conjunction with referencing of 

appropriate internal standards: PA 14:0/14:0, PC 14:0/14:0, PE 14:0/14:0, PG 15:0/15:0, PI 

17:0/20:4, PS 14:0/14:0, BMP 14:0/14:0, APG 14:0/14:0, LPC 17:0, LPE 14:0, LPI 13:0, Cer 

d18:1/17:0, SM d18:1/12:0, dhSM d18:0/12:0, GalCer d18:1/12:0, GluCer d18:1/12:0, LacCer 

d18:1/12:0, D7-cholesterol, CE 17:0, MG 17:0, 4ME 16:0 diether DG, D5-TG 16:0/18:0/16:0 

(Avanti Polar Lipids, Alabaster, AL). Lipid levels for each sample were calculated by using peak 

area. LipidR package (version 2.16.0, https://bioconductor.org/packages/lipidr)
88

 in R studio 

software (R Core Team (2023). A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing, Vienna, Austria; https:// www.R-project.org/) was used to 

graph and analyze the data.  

Lipid droplet assay  

Lipid droplet (LD) quantification was performed using FACS. Cells were collected and stained 

with 3.7 µM BODIPY for 30 minutes at room temperature (RT), protected from light. For FACS, 

single-cell data were acquired using Attune flow cytometer (Thermo Fisher Scientific) and 
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analyzed using FCS Express 7 (De Novo Software). Gates were set up based on fluorescence 

minus one (FMO) controls. BODIPY index was quantified to take into account both percentage 

of positive cells and changes in geometric mean fluorescent intensity (gMFI) (% of positive cells 

x gMFI)/10
5
.  

Lysosomal assays  

THP-1 macrophages were incubated with 75 nM LysoTracker-Red (Thermo Fisher Scientific, 

L7525) for 20 min at 37°C followed by 1 µM LysoSensor-Green (Thermo Fisher Scientific, L7535) 

staining for 1 min at 37°C. To characterize hydrolytic capacity of lysosomes, cells were treated 

with 1µg/ml DQ Red BSA (Thermo Fisher Scientific) for 1h at 37°C. After collecting the cells, 

single-cell data were acquired using Attune flow cytometer (Thermo Fisher Scientific) and 

analyzed using FCS Express 7 (De Novo Software). Gates were set up based on fluorescence 

minus one (FMO) controls. To quantify lysosomal activity, LysoTracker index, Lysosomal index 

and DQ-BSA index were calculated analogously to how we quantify phagocytic index as a 

measure of phagocytic activity
4
. These metrics take into account both percentage of positive 

cells and changes in geometric mean fluorescent intensity for each marker (gMFI) (% of positive 

cells x gMFI)/10
5  

.
 
Additionally, DQ-BSA red fluorescent signal was quantified over time using 

the Incucyte S3 live imaging system. Cells were plated in 96-well plates (40,000 cells/well) and 

treated with 1 µg/ml of DQ-BSA. Images were acquired every hour over 5h at 37°C. Total 

integrated density was calculated as mean red fluorescence intensity multiplied by surface area 

of masked object [RCU x µm
2
] and normalized by cell confluence (phase channel).  

Migration assay 

The Incucyte Scratch Wound Assay (Sartorius) is a real-time and automated method for 

studying cell migration and wound healing. THP1 monocytes (50,000 cells/well) were seeded in 

a 96-well tissue culture plate and differentiated to macrophages. A scratch/wound was 

generated in the cell monolayer using a 96-pin WoundMaker tool. Two washes were performed 

to eliminate cell debris. The plate was then placed into the Incucyte Live-Cell Imaging System, 

where images were captured every hour. The Incucyte software analyzed the images and 

enabled the quantification of wound closure over time. We performed 3-4 independent 
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experiments with 3-4 technical replicates per experiment that were averaged within each 

experiment. 

Phagocytosis assays  

Uptake of different bioparticles was measured by flow cytometry (FACS) in control or cytokine-

stimulated THP-1 macrophages. The following bioparticles were used: human myelin fragments 

(10 μg/ml), early apoptotic Jurkat cells (EAJ) 1xEAJ/THP-1 macrophage, 5 μg/ml zymosan 

particles (Thermo Fisher Scientific, cat. P35364) or Carboxyl Fluorescent Polystyrene 1.0μm 

particles (CD Bioparticles cat. DCFG-L007) for 24h. Myelin fragments were isolated from human 

brain tissue (corpus callosum) as described previously
89

. Early Apoptotic Jurkat cells (EAJ) were 

prepared using 3-hour incubation with 1 μM staurosporine (Alfa Aesar, cat. J62837-M) as 

described previously
69

. Isolated myelin fragments and EAJ were labeled with pHrodo dye 

(Thermo Fisher Scientific, cat. P36600) (10μg/ml) in PBS for 30 min in the dark at room 

temperature followed by two washes in PBS. To inhibit phagocytosis cells were pre-treated with 

2 μM Cytochalasin D (Sigma-Aldrich, cat. C8273-1MG) for 30 min and during incubation with 

bioparticles. After 24-hour incubation cells were collected with trypsin (Gibco, cat. 25200), 

washed twice, resuspended in 1.0% PBS/bovine serum albumin (BSA) buffer and analyzed on an 

Attune flow cytometer (Thermo Fisher Scientific). Cells were pre-stained with Live/Dead Fixable 

Violet Dead Cell Stain kit (Life Technologies, cat. L34955) to exclude dead cells and CD11b-FITC 

antibody (BioLegend, cat. 101206) for 30 min and then used for FACS. Data were analyzed using 

FCS Express 7 (De Novo Software). Live/Dead
Neg

CD11b-FITC
+
/pHrodo

+
 cells were used to 

quantify the phagocytic index: percentage of pHrodo
+
 cells in CD11b-FITC

+
 gated population x 

geometric mean pHrodo intensity / 10
6
; and represented as phagocytic activity as previously 

described
4
. Gates were set up based on fluorescence minus one (FMO) controls 

Assessment of disease-associated surface markers by flow cytometry 

Control or cytokine treated THP-1 macrophages were first washed with PBS then dissociated 

using Accutase for 10 min at 37°C using. Cells were spun at 400×g for 5 min and resuspended in 

1.0% PBS/bovine serum albumin (BSA). Cells were pre-stained with the following 

dyes/antibodies: Live/Dead Fixable Violet Dead Cell Stain kit (Life Technologies, cat. L34955) to 
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exclude dead cells, CD11b-FITC (BioLegend, cat. 101206) and one of the DAM markers CD11c-

APC 1:100 (BioLegend, cat. 301614), CD63-APC 1:100 (BioLegend, cat. 353007), CXCR4-APC 

1:100 (R&D Systems, cat. FAB172R), CD44-APC 1:100 (BioLegend, cat. 338805 ), CD274-APC 

1:100 (BioLegend, cat. 329707). Only one DAM marker was used at a time, DAM-specific 

antibodies were not mixed at any time. Cells were washed twice in 1.0% PBS/BSA buffer and 

analyzed by Attune flow cytometer (Thermo Fisher Scientific). Gates were set up based on 

fluorescence minus one (FMO) controls. Data were analyzed using FCS Express 7 (De Novo 

Software).  

Seahorse experiments and mitochondrial assays 

THP-1 monocytes were plated at 50,000 cells per well in a Seahorse 96 well-plate. Agilent 

Seahorse Mito Stress Test Kit (103015-100) was used to assess mitochondrial respiration. 

DMEM XF Base Media was supplemented with 1mM pyruvate, 2mM glutamine and 10mM 

glucose. Agilent Seahorse Glycolysis Stress Test Kit (103020-100) was used to address glycolytic 

capacity. DMEM XF Base Media was supplemented with 2mM glutamine. For both assays, cell 

media was replaced with 180ul of specific media and cells were incubated for 1h at 37°C in a 

non-CO2 incubator.  

Transcriptomic analysis  

RNA from human THP-1 macrophages (MACs was extracted using the RNeasy Plus Mini kit 

(Qiagen, 74136) following manufacturer's instructions. mRNA quantity was measured using 

Nanodrop 8000 (Thermo Fisher Scientific). RNA was submitted to Azenta (New Jersey, NJ, USA) 

for QC, library preparation, and next-generation sequencing. Samples passed quality control 

with Qubit and BioAnalyzer showing RIN > 9.0. Libraries were prepared using TruSeq RNA 

Sample Prep Kit v2 and paired-end sequenced using HiSeq2500 at a read length of 150bp to 

obtain 20-30M mapped fragments per sample. Sequenced reads were assessed for quality 

(FastQC v0.11.8), trimmed for adapter contamination (Cutadapt v2.6), and aligned to the 

human genome hg38 (STAR v2.5.3a). Differential gene expression analysis (DGEA) was 

performed using a linear mixed model implemented in DREAM (differential expression for 

repeated measures, variancePartition R package v1.23.1 and R v3.5.3
86

). Genes with FDR adj.p < 
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0.05 were considered differentially expressed (DEGs). To identify pathways enriched in THP-1 

macrophages treated with the cytokines, we used Gene Set Enrichment Analysis (GSEA). Briefly, 

ranked lists were generated from differential gene expression analyses by ordering genes 

according to the signed Z statistic (Table S1). Ranked lists were analyzed using the “GSEA 

Preranked” module using default GSEA settings including 1000 permutations. Our preranked 

lists were tested for enrichment against genesets from the Molecular Signatures Database 

(MSigDB v7.5.1, Broad Institute, c5.bp.v2023.2.Hs.symbols.gmt, c5.mf.v2023.2.Hs.symbols.gmt, 

c5.cc.v2023.2.Hs.symbols.gmt, c2.cp.reactome.v2023.2.Hs.symbols.gmt, and 

c2.cp.kegg_legacy.v2023.2.Hs.symbols.gmt). DGEA and GSEA results are shown in Table S1. In 

addition, we tested for enrichment of DLAM gene sets selected from several publications. Gene 

sets and their sources are listed in Table S2. Signatures extracted from mouse datasets were 

lifted to human orthologs using the Orthology search tool in gProfiler
90

. Enrichment scores 

were normalized by geneset size to generate normalized enrichment scores (NES) according to 

the standard protocol
91

.  

Rank-rank hypergeometric overlap (RRHO) 

Transcriptional signatures from bulk RNAseq (Table S1) and pseudo bulk scRNAseq (Table S3) 

were compared pairwise using the RRHO2 R package
87

. The recommended -log10(P-value) * 

sign(log2FC) metric was used to generate ranked lists of genes for each transcriptional 

signature. RRHO2 was then used to visualize both concordant and discordant gene expression 

changes across each pair of signatures as rank-rank hypergeometric overlap (RRHO) heatmaps. 

The color temperature of each pixel in an RRHO heatmap represents the negative log10- 

transformed hypergeometric overlap test P-value of subsections of the two ranked gene lists, 

adjusted for multiple testing using the Benjamini-Hochberg correction method. Heatmaps 

generated using RRHO2 have top-right (both decreasing) and bottom-left (both increasing) 

quadrants, representing concordant gene expression changes, while the top-left and bottom-

right quadrants represent discordant gene expression changes. The default step size and p 

representation method (hyper) were used.  
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Single-cell RNAseq library preparation 

Control or cytokine treated THP-1 macrophages were first washed with PBS, then trypsinized 

for 10 min at 37°C (Gibco, cat. 25200). Trypsinization was halted by the addition of an equal 

volume of warm RPMI medium with 10mM HEPES and 10% FBS, cells were spun at 400×g for 5 

min and resuspended in 1.0% PBS/bovine serum albumin (BSA). Cells were filtered through 

40μm cell strainer to exclude cell clumps. Trypan blue was used to assess cell number and 

viability (typicallyY>Y90%) using an automated cell counter Countess (Thermo Fisher Scientific). 

Gel bead-in-emulsion (GEM) encapsulation and single cell indexing reactions were performed 

using a Chromium X™ Controller instrument (10× Genomics, Inc., Cat. No. 1000202). Single-cell 

3’ RNA-seq libraries were prepared using the Chromium Next GEM Single Cell 3’ GEM, Library 

and Gel Bead Kit (version 3.1 chemistry, 10× Genomics, Inc., Cat. No. 1000121), according to the 

manufacturer’s instructions. Samples were processed in two independent batches. Libraries 

were sequenced on a NovaSeq 6000 System, with paired end 150Y×Y150 bp sequencing.  

Single cell RNAseq data analysis and integration 

Raw base call files from the sequencer were demultiplexed into FASTQ files using the 

CellRanger workflow v7.1.0 (10x Genomics). FASTQ files were aligned to the human reference 

genome (GRCh38) followed by filtering, barcode counting and UMI counting to generate a 

feature-barcode matrix per sample. Quality control, normalization, clustering and marker gene 

identification were performed with Seurat v5.0.2
92

. Briefly, cells were removed if they were 

expressing fewer than 100 genes, less than 500 UMIs and greater than 95% of total UMIs, or if 

greater than 10% of reads mapped to the mitochondrial genome. Raw count data was 

normalized using SCTransform v0.4.1
93

, with regression for mitochondrial mapping percentage. 

Principal components analysis (PCA) was performed to determine the top most variable genes 

and generate PCs. Samples were integrated using harmony v1.2.0
83

 to account for batch 

differences. Clustering and data reduction were performed in Seurat using UMAP for 

visualization. The number of cells per batch were randomly downsampled to the smallest 

treatment condition to ensure that differences in proportions were not due to variable cell 

counts. Marker genes for each cluster were identified using Seurat FindMarkers. Cluster 
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annotations were determined using a combination of approaches, (1) high expression of 

established marker genes from the literature; (2) enrichment of myeloid gene expression 

signatures from published datasets (Table S2) using hypergeometric overlap; (3) enrichment of 

biological pathways in the expressed genes to determine functional significance. We used the 

propeller method via the speckle package in R to identify statistically significant differences in 

cell proportions between treatment conditions for each cluster, with adjustment for 

experimental batch and using adj.p < 0.05 as a cutoff. For pseudobulk differential gene 

expression analysis (DGEA) between conditions, cells were aggregated to obtain average 

expression per gene per independent run (N=2 per condition) using Seurat AverageExpression 

function. Pseudobulked DGEA was performed using the edgeR
59

 package in R, with adjustment 

for the experimental batch to account for technical variability. For comparison of clusters 

identified in this study with iMGL clusters we used the scmap package (version 1.20.0)
85

. Briefly, 

Seurat objects were converted to SingleCellExperiment objects (SingleCellExperiment package, 

version 1.20.1). Projection of query (this study) and reference clusters
19

 was performed using 

scmap-cluster projection with a default feature selection (n_feature = 500). Enrichment of 

transcriptional programs was tested using the AddModuleScore function in Seurat. 

Transcriptional signatures are listed in Table S2.  

Western blotting 

Cells were lysed in RIPA buffer (Thermo Scientific, 89900) supplemented with 

Protease/Phosphatase Inhibitor Cocktail (Cell Signaling, 5872) following manufacturer’s 

instructions. Protein concentration was measured using BCA kit (Thermo Fisher Scientific, 

23225) and equal quantities were used to prepare samples for western blotting. Samples were 

resolved by electrophoresis with Bolt 4–12% Bis-Tris Plus Gels (Invitrogen) in Bolt MES SDS 

running buffer (Invitrogen, B0002) and transferred using iBlot 2 nitrocellulose transfer stacks 

(Invitrogen). Membranes were blocked for 1Yh and probed with antibodies: APOE 1:1000 

(Millipore, AB947), ABCA1 1:1000 (Abcam, 018180), LAMP1 (D2D11) 1:1000 (Cell Signaling 

Technology 9091S), RAB5 (C8B1) 1:1000 (Cell Signaling Technology, 3547S), ACTIN 1:10,000 

(Sigma-Aldrich, A5441) in 5% non-fat dry milk in PBS/0.1% Tween-20 buffer overnight at 4Y°C. 

Secondary antibody staining 1:10000 was applied for 1Yh at RT, visualized using WesternBright 
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ECL HRP Substrate Kit (Advansta, K-12045), and measured using iBrigh imagining system 

(Applied Bioscience). Images were analyzed using ImageJ (NIH). Uncropped western blot images 

are pasted in Figure S7. 

Quantification and statistical analysis 

Data were analyzed and visualized in GraphPad Prism 9 (GraphPad Software). In each analysis, 

three to six independent experiments were performed. Differences of means between groups 

were tested using a paired t.test All data are represented as group mean ± standard error of the 

mean (SEM). 
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