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The melting point is a fundamental property that is time-consuming to measure or
compute, thus hindering high-throughput analyses of melting relations and phase dia-
grams over large sets of candidate compounds. To address this, we build a machine
learning model, trained on a database of ∼10,000 compounds, that can predict the
melting temperature in a fraction of a second. The model, made publicly available
online, features graph neural network and residual neural network architectures. We
demonstrate the model’s usefulness in diverse applications. For the purpose of materials
design and discovery, we show that it can quickly discover novel multicomponent mate-
rials with high melting points. These predictions are confirmed by density functional
theory calculations and experimentally validated. In an application to planetary science
and geology, we employ the model to analyze the melting temperatures of ∼4,800
minerals to uncover correlations relevant to the study of mineral evolution.
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Melting points play an important role in a wide variety of disciplines. High-performance
refractory materials (1–5) have applications ranging from gas turbines to heat shields for
hypersonic vehicles. In this context, high melting points correlate with desirable mechan-
ical properties (e.g., high-temperature materials strength as well as good ablation and
creep resistance). In geology and planetary science, knowledge of the melting points of
minerals provides insight into their formation and evolution in addition to shedding
light into the structure of exoplanets.
In these examples, the melting points tend to be high, which considerably compli-

cates their experimental measurement (due to containment and calibration issues). For
minerals, these issues are compounded but the fact that many new species are identified
from small grains and are thus accessible in limited amounts. Complex phase equilibria
and incongruent melting lead to further complications. As a result, the melting temper-
ature is known for less than 10% of the more than 200,000 inorganic substances with
known crystal structures.
In light of these limitations, it would be natural to turn to computational methods.

Unfortunately, the calculation and prediction of melting temperatures is also an expen-
sive and complex procedure because it involves sampling a large number of
configurations.
Numerous efficient methods have been devised to capture melting temperatures from

computations (6). Using empirical potentials is relatively inexpensive, but it depends on
availability and reliability of such potentials. It is both complicated and time-consuming
to build a new classical interatomic potential for every new material, not to mention the
issue of reliability regarding accuracy. Density functional theory (DFT) calculations are
clearly better in terms of generalizability and reliability. However, they remain notori-
ously expensive, despite increasing power and capability of our computers. The large-size
coexistence method (7, 8), which is generally considered the gold standard and widely
utilized as a benchmark, typically requires a system size too large for DFT simulations,
rendering this approach prohibitively expensive in practice. The single-phase small-size
“Z method” (9), which heats a solid until it melts, seeks to address this, but suffers from
well-documented practical and conceptual problems (10). Alternatively, one can compute
melting temperatures via the free energy method (7, 11), which locates the intersection
of the free energy curves of the solid and the liquid. This approach requires highly accu-
rate free energy calculation of the liquid phase, because the two curves cross at a very
shallow angle and thus a small free energy shift will result in a large error in melting tem-
perature. Unfortunately, all methods for liquid state free energy computation, such as
thermodynamic integration (12), the particle insertion method (13, 14), and the two-
phase thermodynamics method (15), are expensive and challenging. In earlier work, we
proposed the accurate and relatively more efficient small-size coexistence method (6, 16),
and developed the solid and liquid in ultra-small coexistence with hovering interfaces
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(SLUSCHI) package (17) to automate the computation process.
We have utilized this method to calculate melting temperatures
of hundreds of materials, at the cost of several days of computa-
tions per compound. Despite such progress, these efforts still fall
short of providing a comprehensive view of the melting point
landscape.
To overcome these limitations, we turn to machine learning

(ML) methods, which are increasingly used for the prediction of
materials properties and missing thermodynamic data (18, 19).
We build a ML model to predict melting temperature, with an
ultimate goal of integrating DFT and ML, which complement
each other in terms of speed and accuracy. The ML model
allows us to rapidly estimate melting temperatures, at a speed on
the order of milliseconds per material, while the DFT calculation
provides robustness and accuracy at a much higher cost on the
order of several days of computations per material.
To provide training data for our ML procedure, we first build

a melting temperature database via web crawling. Melting tem-
peratures are collected and included in our database mostly from
Ref (20). DFT melting temperature calculations are included in
the database as well. Our current melting temperature database
contains 9,375 materials, out of which 982 compounds are
high-melting-temperature materials with melting points above
2,000 K. The database consists of chemical compositions (i.e.,
elements and concentrations) or equivalently chemical formula,
of the materials, and their corresponding melting temperatures.
To illustrate the usefulness of our software tool, two applica-

tion examples are described: (i) the prediction of melting tem-
peratures for 4828 mineral species, and (ii) the prediction of
compositions with melting temperatures above 3,500 K.

Architecture of Neural Network Model for
Melting Temperature Prediction

The majority of entries for melting temperatures used for machine
learning were collected by parsing data for ∼26,000 single-phase
compounds from a ten-volume compilation of thermodynamic
constants of substances (20). The values are based on experimental
data from ∼51,500 publications before 1982. Only congruent
melting temperatures were included in the current version of the
database used for machine learning. The data were complemented
by results obtained from ab initio molecular dynamic calculations
within the SLUSCHI framework (17).
In our machine learning model, we seek to build a mapping

from chemical formula to melting temperature. The minimal
requirement of input, only chemical formula here, should facili-
tate the model’s extensive application in the future: no additional
materials properties are required as input, and thus neither com-
putational nor experiment data are needed. In our view, relying
on input feature would reduce the broad applicability of the
method, especially in high-throughput exploration or screening
applications, where chemistry is typically the only a priori known
input. The machine learning model combines the Graph Neural
Network (GNN) (21) and residual neural network (ResNet)
(22) architectures within the Tensorflow (23) framework (Fig. 1).
The GNN architecture is designed to impose permutation invari-
ance (e.g., ZrO2 and O2Zr are the same material), which drasti-
cally reduces model complexity and thus improves efficiency. The
ResNet architecture avoids the problem of vanishing gradient by
skipping connections, which also effectively simplifies the net-
work. When a material (i.e., its elements and composition) is fed
to the neural network, each element is first converted to 14 fea-
tures, such as atomic radius, atomic mass, electronegativity, core
and valence electrons, ionization energy, electron affinity, density,

and position in the periodic table. These features are encoded and
passed to the next layer, which we expect to include the key deter-
minants of the individual atomic contributions to the melting
temperature. In addition, elemental features interact with each
other via the GNN connections, thus leading to contributions
from the binary, ternary, and higher-order combination of ele-
ments. These encoded contributions are passed to the next layer
as well. This layer, consisting of unary, binary, and ternary interac-
tions of the elements and compositions of the material of interest,
is fed into a four-layer ResNet, which leads to the regression and
the estimation of melting temperature. Currently the number of
elements is limited to four, but this constraint can be removed if a
larger combination of elements is needed. For instance, the limit
is relaxed to five in the study of minerals later in this paper. More
elements increase the complexity of the model and thus the risk of
overfitting. The GNN architecture undergoes two iterations of
communication among elements, as we find more rounds do not
significantly improve performance of the model. Dropout layers
are heavily employed in the architecture to avoid overfitting.

The 9,375 materials are randomly assigned to training and
testing sets, with 8,635 materials in the training set, and 740
materials for testing. The training process takes 2,000–4,000
epochs of optimization. As shown in Fig. 2, the root-mean-square
errors (rmse) of melting temperature are 110 and 160 K for the
training and testing sets, respectively. These surprisingly small
errors [DFT error is typically 100 K (6) due to imperfect den-
sity functionals] represent the method’s accuracy over the ranges
of composition that are included in the database. While the test-
ing set is a holdout dataset and thus it provides an unbiased
evaluation of the final model, we note that accuracy could
degrade for prediction request in relatively poorly sampled
regions of composition space, which would demand consider-
able extrapolation. The errors for materials of different types are
shown in SI Appendix, Fig. S1.

We benchmark our GNN model with XGBoost, one of the
most popular gradient boosting methods. Our model score (R2:
0.933, rmse: 160K) outperforms that of XGBoost (R2: 0.919,
rmse: 183K). This observation is consistent with our expectation
and understanding of the two methods. With only chemical for-
mula and elemental features as input, data features are very lim-
ited in this work, and thus it favors the neural networks method,
which is more capable of combining and generating features by
itself. The moderately large size of our dataset also works well
with the neural networks method.

ResNet Tm

Fig. 1. Architecture of the GNN model for ML melting temperature predic-
tion. Each circle represents an element and its composition in the material.
Up to four elements are connected in this graph (denoted as A, B, C, and D).
First, each element and composition are converted to 14 features, which are
then encoded and fed to the ResNet input layer. The circles communicate
with each other in order to account for higher order contributions. For
example, each circle (element and composition) pulls information from other
circles via the GNN. The outputs are then sent to the ResNet. The latter con-
sists of four fully connected layers with skipping connections and leads to
the regression analysis for melting temperature prediction.

2 of 5 https://doi.org/10.1073/pnas.2209630119 pnas.org

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2209630119/-/DCSupplemental


The model is currently hosted at the ASU Research Computing
Facilities and available through a web page (24) and Application
Programming Interface (API) interface. To use the model, a user
needs to visit the webpage and input the chemical compositions
of the material of interest. The model will respond with a pre-
dicted melting temperature in seconds, as well as the actual melt-
ing temperatures of the nearest neighbors (i.e., the most similar
materials) in the database. Thus this model serves as not only a
predictive model, but a handbook of melting temperature as
well. A user may also run batch calculations via command line
with much shorter latency, by sending an HTTP POST request
to the API server and providing JSON data (elements and
compositions of multiple materials) in the body of the POST
message. Detailed instruction is available at the webpage.

Mineral Melting Temperatures: Structure and
Deep Time Correlations

There are currently more than 5,700 approved minerals (25),
all naturally occurring compounds which include phases identi-
fied exclusively in meteorites and formed during geological pro-
cesses on Earth. While the composition and structure of all
minerals are known (as required for approval of new mineral
species), thermodynamic properties, such as melting or decom-
position temperatures, are only available for a small fraction of
them. The field of mineral evolution, pioneered by Hazen et al.
(26), studies occurrence of new mineral species and their increas-
ing chemical and structural complexity as a function of geologic
time (26, 27). Recently, the oldest known ages were assigned for
4,828 mineral species based on more than 190,000 dated min-
eral locality occurrences (28, 29). The dataset is constantly
updated and made openly available to promote data-driven dis-
covery in mineralogy (30, 31).
We employed our melting temperature database and model

(based on 9,375 compounds) to analyze the mineral dataset, as
well as a subset of 412 minerals containing rare earth elements
(lanthanides, Y and Sc). Approximately 6% of the minerals in
the dataset have direct matches in our melting temperature
database. For them, experimentally measured values were used

in the analysis. For the rest of the minerals, melting tempera-
ture (ML Tm) was predicted based on our ML model. Since
the majority of minerals are ternary and higher order com-
pounds, containing structural water and carbonate groups, they
are unlikely to melt congruently and in this case ML Tm corre-
lates with their decomposition temperature. We interpret ML
Tm as the upper boundary of decomposition temperature, as
these materials decompose before melting. The dataset is
included in the SI Appendix.

Fig. 3A shows the average ML Tm versus oldest known age,
grouped with an interval of 250 million years. As expected, the
oldest minerals, interstellar and solar nebula condensates predat-
ing Earth formation 4.5 billion years ago, are the most refractory,
with average and median melting temperatures around 1700 K.
The gradual overall decrease in ML Tm of minerals formed dur-
ing Earth history is interrupted with two anomalies, which are
distinctly pronounced in average and medium ML Tm using 250
or 500 Ma binning. The spike at 3.75 Ga correlates to the pro-
posed timing of late heavy bombardment, hypothesized exclu-
sively from dating of lunar samples and currently debated
(32, 33). The dip at 1.75 Ga is related to the first known occur-
rences of a large number of hydrous minerals and correlates with
the Huronian glaciation (34), the longest ice age and thought to
be the first time Earth was completely covered in ice.

The rise in average ML melting temperature with increase in
symmetry from triclinic to cubic structures (Fig. 3B) is consistent
with the observations of the predominant stability of high sym-
metry structures at high temperatures, as suggested by established
experimental phase diagrams. Low symmetry minerals with com-
plex composition typically do not melt congruently, but instead
decompose, often to phases with higher symmetry. Analysis of
melting temperatures of 412 rare earth containing minerals gives
a higher average ML Tm compared to the overall mineral dataset
(1,296 vs. 1,005 K, respectively). This is expected due to high
melting temperatures of rare earth oxides. Consistent with the
full dataset, cubic and tetragonal rare earth minerals represent the
smallest fraction, and the highest average melting temperatures,
but there is not a clear sequence among monoclinic, hexagonal,
and orthorhombic minerals (SI Appendix, Fig. S2).

A B

Fig. 2. (A) rmse during model training. The training process was completed after 2,000 epochs. (B) Predicted vs. actual melting temperatures in the testing
dataset. The rmse are 110 and 160 K for the training and testing sets, respectively. Compounds with large errors are labeled for further investigation.
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The approach based on Shannon’s entropy (35) is increas-
ingly used in thermodynamic modeling (36, 37). Krivovichev’s
index (38) provides a quantitative evaluation of structural com-
plexity in bits of Shannon’s information per atom. In addition
to symmetry, it accounts for the size of the unit cell and chemi-
cal diversity. The higher the bit/atom values, the lower the
entropy of the structure (39). For rare earth containing miner-
als, predicted melting temperature shows a strong negative cor-
relation with the structure complexity index (Fig. 3C). The rare
earth minerals with index below 2.5 bits/atom have predicted
melting temperatures above 1,500 K.

Discovery of New High Temperature Materials

Based on this moderately accurate but extremely rapid model, we
run simulations to showcase its possible applications. Here, we
present one potential application in the design and discovery of
high-melting-point materials. We run Monte Carlo (MC) simu-
lations to generate a list of ternary compounds, which are pre-
dicted by the model as top candidates for high-melting-point
materials. Since the model takes inputs in the form of elements
and compositions, there are only five variables, three elements,
and two compositions (the sum of mole fractions must equal 1),
to describe a ternary compound. Any combination of any ele-
ment and composition is allowed in our simulation (i.e., any
element in the periodic table). The Metropolis algorithm and

simulated annealing technique are employed to maximize melting
temperature. The simulation explores the surface of melting tem-
perature and searches for the global maximum of the surface,
which is defined by the elements and composition and estimated
by the GNN model. The initial MC temperature is set to 100 K,
sufficiently high to allow the exploration to escape local minima.
The temperature is linearly decreased to 0 K over 10,000 MC
steps. We allow changes in both elements and compositions.
After each MC run, we obtain a candidate, which presumably is
the global maximum of the melting temperature surface as long
as the MC trajectory is sufficiently long. In order to generate a
list of top high-melting-temperature materials, we run a series of
MC simulations in sequence, in which we exclude materials
already found from the search in the next iterations, i.e., in the
(n + 1)th iteration, the top n material systems already discovered
in the previous n iterations are excluded from the search, in order
to encourage the exploration of new materials. After this series of
MC simulations, we generate a list of top candidates, ranked by
their melting temperatures.

As illustrated in SI Appendix, Fig. S3, the top 20 candidates are
overwhelmingly carbides and nitrides (i.e., two metallic elements
plus C or N), with the only exception being the Hf-C-N system,
exactly the carbonitride we previously predicted as the material
with the world’s highest melting temperature, based on DFT
molecular dynamics (MD) calculations using the SLUSCHI pack-
age (23). This discovery was also later confirmed independently
from experiment (24–26). We note that the DFT melting points
of the Hf-C-N system were deliberately excluded from the database
and the GNNmodel, in order to challenge the model and examine
its predictive capability. The outcome, that the model accurately
discovers the Hf-C-N system, is promising and this approach
arguably outperforms our human intuition: when we found the
Hf-C-N system from DFT, we searched among possible combina-
tions of five elements, Hf, Ta, B, C, and N, and discovered
Hf-C-N as the best compound. In contrast, the model correctly
predicts Hf-C-N as the most promising candidates, which could
have saved us significant time and effort in DFT MD simulations.
This capability suggests the model’s potential application in materi-
als design and discovery. The melting temperature predicted by the
GNN model is at least 500 K lower than that from DFT, which is
not surprising since there is no explicit information of the new
material system in the dataset and this melting temperature must
be pieced together from other similar material systems.

In the next step, we will include DFT melting temperature of
the Hf-C-N system, retrain and improve the ML model, and
repeat the MC simulations to search for even higher melting
temperatures. As summarized in Fig. 4, the new list of top candi-
dates now suggests possibilities with other nonmetals in addition
to C and N. We plan to calculate DFT melting temperatures for
these materials, which will not only corroborate the discovery of
high melting temperature, if indeed favorable, but also further
improve our melting temperature database when we include the
new DFT results. This work is beyond the scope of this paper
but it will be carried out in the near future.

Summary and Future Directions

We built a melting temperature database and an ML GNN
model to predict melting temperature from chemical formula.
We demonstrated the utility of prediction of melting temperature
by providing correlations for mineral evolution and directions for
further experimental and computational search for new high tem-
perature materials. The model is openly available through web
interface and will be updated as new data for neural network
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training will be collected. We have built a next version of the
model, which further improves the performance and deployed it
online at our webpage. The model is an ensemble model of 30
GNN models based on reshuffling training and testing datasets
using bootstrap, which further reduces overfitting.

Data Availability. All study data are included in the article and/or SI Appendix.
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