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In the attention schema theory (AST), the brain constructs a model
of attention, the attention schema, to aid in the endogenous control
of attention. Growing behavioral evidence appears to support the
presence of a model of attention. However, a central question
remains: does a controller of attention actually benefit by having
access to an attention schema? We constructed an artificial deep
Q-learning neural network agent that was trained to control a sim-
ple form of visuospatial attention, tracking a stimulus with an at-
tention spotlight in order to solve a catch task. The agent was tested
with and without access to an attention schema. In both conditions,
the agent received sufficient information such that it should, theo-
retically, be able to learn the task. We found that with an attention
schema present, the agent learned to control its attention spotlight
and learned the catch task. Once the agent learned, if the attention
schema was then disabled, the agent’s performance was greatly
reduced. If the attention schema was removed before learning be-
gan, the agent was impaired at learning. The results show how the
presence of even a simple attention schema can provide a profound
benefit to a controller of attention. We interpret these results as
supporting the central argument of AST: the brain contains an at-
tention schema because of its practical benefit in the endogenous
control of attention.
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For at least 100 y, the study of how the brain controls move-
ment has been heavily influenced by the principle that the

brain constructs a model of the body (1–10). Sometimes the model
is conceptualized as a description (a representation of the shape
and jointed structure of the body, including how it is currently
positioned and moving). Sometimes it is conceptualized as a pre-
diction engine (generating predictions about the body’s likely states
in the immediate future and how motor commands are likely to
manifest as limb movements). Both the descriptive and predictive
components are important and together form the brain’s complex,
multicomponent model of the body, sometimes called the body
schema. The body schema is probably instantiated in a distributed
manner across the entire somatosensory and motor system, in-
cluding high-order somatosensory areas such as cortical area 5 and
frontal areas such as premotor and primary motor cortex (2,
11–14). Without a correctly functioning body schema, the control
of movement is virtually impossible. Even beyond movement
control, the realization that any good controller requires a model
of the thing it controls has become a general principle in engi-
neering (15–17). Yet the importance of a model for good control
has been mainly absent, for more than 100 y, from the study of
attention—the study of how the brain controls its own focus of
processing, directing it strategically among external stimuli and
internal events.
Selective attention is most often studied as a phenomenon of the

cerebral cortex (although it is not limited to the cortex). Sensory
events, memories, thoughts, and other items are processed in the
cortex, and among them, a select few win a competition for signal
strength and dominate larger cortical networks (18–23). The process

allows the brain to strategically focus its limited resources, deeply
processing a few items and coordinating complex responses to them,
rather than superficially processing everything available. In that
sense, attention is arguably one of the most fundamental tricks that
nervous systems use to achieve intelligent behavior. Attention has
most often been studied in the visual domain, such as in the case of
spatial attention, in which visual stimuli within a spatial “spotlight” of
attention are processed with an enhanced signal relative to noise (23,
24). That spotlight of attention is not necessarily always at the
fovea, in central vision, but can shift around the visual field to
enhance peripheral locations. Classically, that spotlight of atten-
tion can be drawn to a stimulus exogenously (such as by a sudden
change that automatically attracts attention) or can be directed
endogenously (such as when a person chooses to direct attention
from item to item).
The attention schema theory (AST), first proposed in 2011

(25–28), posits that the brain controls its own attention partly by
constructing a descriptive and predictive model of attention. The
proposed “attention schema,” analogous to the body schema, is a
constantly updating set of information that represents the basic
functional properties of attention, represents its current state,
and makes predictions such as how attention is likely to transi-
tion from state to state or to affect other cognitive processes.
According to AST, this model of attention evolved because it
provides a robust advantage to the endogenous control of at-
tention, and in cases in which the model of attention is disrupted
or makes errors, then the endogenous control of attention should
be impaired (28–30).
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Attention, the deep processing of select items, is one of themost
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monitor and predict the changing state of attention. Here, we
show that an artificial neural network agent can be trained to
control visual attention when it is given an attention schema,
but its performance is greatly reduced when the schema is not
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of attention because of the profound practical benefit for the
control of attention.
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An especially direct way to test the central proposal of AST
would be to build an artificial agent, provide it with a form of
attention, attempt to train it to control its attention endoge-
nously, and then test how much that control of attention does or
does not benefit from the addition of a model of attention. Such
a study would put to direct test the hypothesis that a controller of
attention benefits from an attention schema. At least one pre-
vious study of an artificial agent suggested a benefit of an at-
tention schema for the control of attention (31).
Here, we report on an artificial agent that learns to interact with

a visual environment to solve a simple task (catching a falling ball
with a paddle). The agent was inspired by Mnih et al. (32), who
demonstrated that deep-learning neural networks could achieve
human or even superhuman performance in classic video games.
We chose a deep-learning approach because our goal was not to
engineer every detail of a system that we knew would work but to
allow a naïve network to learn from experience and to determine
whether providing it with an attention schema might make its
learning and performance better or worse. The agent that we
constructed uses deep Q-learning (32–34) on a simple neural net-
work with three connected layers of 200 neurons each. It is equip-
ped with a spotlight of visual attention, analogous to (though much
simpler than) human visual spatial attention. Many artificial atten-
tion agents have been constructed in the past, including some that
use deep-learning networks (31, 35–41). Here, we constructed an
agent that we hoped would be as simple as possible while capturing
certain basic properties of human visual spatial attention. These
properties include a moving spotlight within which the visual signal
is enhanced relative to background noise, the initial exogenous at-
traction of the spotlight of attention to the onset of a visual stimulus,
and the endogenous control of the spotlight to maintain it on the
stimulus. The agent was introduced to its task with no a priori in-
formation (the neural network was initialized with random weights)
and was given only pixels and reward signals as input. Using this
artificial agent, we tested the hypothesis, central to AST, that the
endogenous control of attention is greatly enhanced when the agent
has access to a model of attention.
AST also proposes a specific relationship between the atten-

tion schema and subjective awareness, at least in the human
brain. In the final section of this article, we discuss the possible
relationship between the artificial agent reported here and
subjective awareness.

Methods
Deep Q-learning is a method of applying reinforcement learning to artificial
neural networks that have hidden layers. It was developed by researchers at
Google DeepMind (32) who found that such networks could effectively learn
to play video games at human and even superhuman performance levels. It is
now widely used, and a toolbox, the TF-Agents library for Python, is available
(33, 34). Because of its standardization and public availability, we do not
provide a detailed description of the neural network methods here. Instead,
we provide only the choices specific to our agent that, in combination with the
resources cited here, will allow an expert to replicate our study. In the fol-
lowing sections, we first describe the artificial environment (inputs and action
space) within which the agent operates. Then, we describe the game that the
agent plays within that environment. Then, we describe the specific parameter
choices that define the internal details of the agent itself. Finally, we describe
the steps by which the agent learns.

The Agent’s Environment and Action Space. Fig. 1 shows the environment of
the agent, including two main components: a visual field and an attention
schema. The top panel shows the visual field: a 10 × 10 array of pixels where
black indicates a pixel that is “on” and gray indicates a pixel that is “off.”
When a “ball” is presented in the visual field, its location is indicated by a black
pixel. If the agent had perfect, noise-free vision, the ball would display as an
isolated black pixel. Over a series of timesteps, a sequence of pixels would turn
on across the display, tracking the motion of the ball. However, we gave the
agent noisy vision. Where the ball is present, the pixel is black, and where the
ball is not present, each pixel, on each timestep, has 50% probability of being
black or gray, thus rendering the array a poor source of visual information. In

one region of the array, in a 3 × 3 square of pixels that we termed the “at-
tention spotlight” (indicated by the red outline in Fig. 1), all noise was re-
moved and the agent was given perfect vision. Within that attention spotlight,
if no ball is present, all nine pixels are gray, and if the ball is present, the
corresponding pixel is black while the remaining eight pixels are gray. In ef-
fect, outside the attention spotlight, vision is so contaminated by noise that
only marginal, statistical information about ball position is available, whereas
inside the attention spotlight, the signal-to-noise ratio is perfect and infor-
mation about ball position can be conveyed. In this manner, the attention
spotlight mimics, in simple form, human spatial attention, a movable spotlight
of enhanced signal-to-noise within the larger visual field.

In Fig. 1, within the upper 10 × 10 visual array, the bottom row of pixels
contains no visual noise. Instead, it doubles as a representation of the hori-
zontal space in which the paddle (represented by three adjacent black pixels)
can move to the left or right. The paddle representation is, in some ways, a
simple analogy to the descriptive component of the body schema. It provides
an updating representation of the state of the agent’s movable limb.

The bottom field in Fig. 1 shows a 10 × 10 array of pixels that represents
the state of attention. The 3 × 3 square of black pixels on the otherwise gray
array represents the current location of the attention spotlight in the visual
field. This array serves as the agent’s simple attention schema. Note that the
attention schema does not represent the object that is being attended (the
ball). It does not convey the message “attention is on the ball” and provides
no information about the ball. Instead, it represents the state of attention
itself. As the attention spotlight moves around the upper visual array, the
representation of attention moves correspondingly around the lower at-
tention schema array. Note also that it is only a descriptive model of at-
tention. It represents the current spatial location of attention (and, with the
memory buffer described in The Agent, recent past states of attention as
well) but does not represent predictive relationships between the state of
attention on adjacent time steps or predictive relationships between at-
tention and other aspects of the game. It contains no information indicative
of the improved signal-to-noise that attention confers on vision—i.e., a
prediction about how attention affects task performance. Any predictive
component of an attention schema must be learned by the agent and would
be represented implicitly in the agent’s neural network.

During each game that the agent plays, 10 timesteps occur. On each
timestep, the agent selects actions (movements of the attention spotlight and
of the paddle) that are implemented on the next timestep. The agent canmove
its attention spotlight in any of eight possible ways: one step to the left, right,
up, or down or one step in each diagonal (e.g., up-and-right motion entails
moving one step up and one step right). If the edge of the spotlight touches
the edge of the visual array, further movement in that direction is not allowed.
For example, when the spotlight touches the top edge of the array, if the
agent then selects an upward movement, the spotlight does not move, and if
the agent selects an up-and-to-the-right movement, the spotlight moves only
to the right.

The agent can also move its paddle in either of two directions: one step to
the left or one step to the right. If the paddle touches the edge of the
available space, no further movement in that direction is possible. For ex-
ample, if the paddle touches the left edge of the array, and the agent then
choses a leftward movement, the paddle will remain at the same location for
the subsequent timestep.

The Game and the Reward. In this section we describe the game, and in the
following sections we describe our choices for constructing the agent itself
such that it can learn to play the game.

The agent is trained on a game of catch, illustrated in Fig. 2. At the be-
ginning of each game, a ball appears at the top of the 10 × 10 visual array,
moves downward one row of pixels on each timestep, and reaches the
bottom row of the visual array in 10 timesteps. The trajectory is not fully
predictable. For each game, the ball’s start position (at one of 10 possible
locations in the top row) and end position (at one of 10 possible locations in
the bottom row) are chosen randomly. Thus, the start position is not pre-
dictive of the end position. To pass from start to end, the ball moves on a
diagonal trajectory until it is directly vertically above its end point. In the
remaining timesteps, the ball moves vertically downward to reach its final
position. The effect of the bent trajectory is to introduce unpredictability.
When the ball is first presented in timestep 1, though its initial position is
now revealed, its direction is unpredictable. When the ball begins to move,
though its direction is now revealed, the timestep at which the trajectory
changes from diagonal to vertical, and thus the ball’s final position, is un-
predictable. This unpredictability prevents the agent from learning to solve
the game in a trivial manner by relying on information gleaned in the first
few timesteps.
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To succeed at the game, the agent must learn to move its attention
spotlight to track the ball’s trajectory since reliable visual information is not
present outside the spotlight. At the start of each game, the spotlight is
initialized to a location at the top of the visual array, overlapping the ball. If
the ball is initialized in an upper corner (left or right), the attention spotlight
is initialized in the same upper corner (left or right). If the ball is initialized in
a middle pixel of the upper array, the attention spotlight is initialized at the
upper edge such that it is vertically centered on the ball. Thus, on the first
timestep, when the ball appears, the agent’s attention is automatically
placed on the ball.

In analogy to the human case, one could say that the attention spotlight is
exogenously attracted to the ball, similar to when the sudden appearance of a
stimulus captures a person’s spatial attention in an automatic, bottom-up
manner. After the first timestep, the agent must learn to engage the equiv-
alent of endogenous attention; it must learn to control its attention internally,
keeping it aligned with the ball. Thus, the game involves an initial exogenous
movement of attention to a stimulus and a subsequent endogenous control of
attention with respect to that stimulus. The agent is rewarded by gaining 0.5
points on each timestep that the attention spotlight includes the ball and is
punished by losing 0.5 points on each timestep that the attention spotlight
does not include the ball. The positive and negative rewards that the agent
can earn are balanced for better learning (32).

At the start of each game, the paddle is initialized to a position near the
center of the paddle array, with three blank spaces to the left and four blank
spaces to the right. By timestep 10, when the ball reaches its final position, if the
paddle is aligned with the ball (if the ball location overlaps any of the three
pixels that define the paddle), then the agent is rewarded by gaining 2 points
for “catching” the ball. If the paddle is not aligned with the ball, then the
agent is punished by losing 2 points. The largest number of points possible for
the agent to earn in one game is therefore 7, including 5 for perfect atten-
tional tracking of the ball over 10 timesteps and 2 for catching the ball with
the paddle.

What the Agent Must Learn. As noted previously, the agent receives rewards
for accomplishing two goals. The first goal is to track the ball with the at-
tention spotlight. The second is to catch the ball with the paddle. If the agent
fails at the first goal, the second goal becomes more difficult because, outside
the attention spotlight, visual information about the ball is masked by noise.

To accomplish these goals, the agent presumablymust learn basic properties
of the environment. First, although Fig. 1 displays the pixels in a spatial ar-
rangement, with a top and bottom, right and left, adjacency relationships
between pixels, and neat division between two different functional fields, the
agent begins with no such information. Pixels in its input array simply turn on
and off. It has no a priori information that pixels can have meaningful cor-
relational relationships, that the visual array has a spatial organization, or that
the visual array is distinct from the attention schema array. It must learn every
aspect of the environment needed to solve the task.

Second, the agent must learn, in essence, that it has a body part, a paddle,
under its control. It must learn to move the paddle to the left or right in a
manner correlated with the trajectory of the ball to earn rewards.

Third, to perform the task, the agent must learn to move its attention
spotlight to track the ball along a partially unpredictable trajectory.

The Agent. We used a deep Q-learning agent implemented through the TF-
Agents library for Python (33), which allows for computationally efficient
training of reinforcement learning models using TensorFlow (34). The agent
was built on top of a standard Q-Network as provided in the TF-Agents library.
The agent was defined as a deep Q-learning network using the Adam optimizer
with a learning rate of 0.001.We employed an “epsilon-greedy” policy (e = 0.2),
to ensure exploration of the action space. We chose a network composed of
three fully connected layers of 200 neurons each.

Because of the nonpredictable behavior of the ball, the agent’s task was
non-Markov, meaning task performance depended on information about
the trajectory of the ball, which could only be inferred by observing a se-
quence of timesteps (not all the information needed to make an appropriate
response was included in each timestep). Therefore, we equipped the model

Visual
Array

Attention
Schema

Representation
of Attention

Spotlight

Paddle

Ball

Location of
Attention
Spotlight

Fig. 1. Diagram of the agent’s environment. (Top array) A 10 × 10 pixel visual field. Black pixels are “on,” gray pixels are “off.” The visual field contains noise
(each pixel with 50% chance of turning black or gray on each timestep). The 3 × 3 pixel attention spotlight (orange outline) is shown here centered at visual
field coordinates X = 4, Y = 3. Within the attention spotlight, all visual noise is removed. In this example, the ball is located within the spotlight, at visual
coordinates X = 4, Y = 2. The lowest row of the visual array contains no visual noise and represents the space in which the paddle (three adjacent black pixels)
moves. (Bottom array) A 10 × 10 pixel attention schema. The 3 × 3 area of black pixels represents the current state of the agent’s attention spotlight.
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with a short-term memory. At the beginning of each game, the agent had an
empty 200 × 10 pixel short-term memory buffer (corresponding to the 20 × 10
input array shown in Fig. 1 over 10 timesteps). On each timestep, the state of the
environment was placed into the short-term memory buffer (with each obser-
vation containing 20 × 10 pixels of information). Subsequent timesteps in the
same game were appended to previously observed timesteps, such that, by the
end of the game, the short-term memory buffer contained every observation
made during the game. Since the short-term buffer contained information not
just from the current timestep, but from previous timesteps, the trajectory of the
ball could be inferred and the task was rendered solvable. Note that the agent
operated within an environment of two 10 × 10 input arrays (the visual array
and the attention schema array, as shown in Fig. 1); but because the agent was
given a 10-timestep memory, it made decisions on the basis of information from
ten times as many inputs.

The Training Procedure. The agent was trained over the course of 1,500 itera-
tions. In each iteration, the agent played 100 simulated games of catch, storing
the results in a replay buffer. After completing its 100 plays, the agent was
trained on the contents of the replay buffer in batches of 100 pairs of tem-
porally adjacent timesteps, following standard training procedure for deep
Q-learning (32–34).

After the 100 training games, the performance of the network was
measured on 200 test games, to collect data on the progress of learning. The
results of the test games were not stored in the replay buffer and therefore
did not contribute to training. Thus, the test games sampled the model’s
ability to perform without contaminating the ongoing learning process.
After the 200 test games, the ability to learn was reinstated for another
iteration of 100 training games. This sequence (100 training games followed
by 200 test games) was repeated until all 1,500 iterations of training were
complete. Thus, in total, the agent was trained on 150,000 games and tested
on 300,000 games.

After training, the agent was reinitialized and run through the training
procedure five times, to generate data from five different artificial subjects.
Since the initial synaptic weights were random, each subject was initialized
differently, and therefore testing five subjects provided a way to check the
reliability of the learning results. Some researchers use only one artificial
subject, because of high reliability in the results (32), but testing several
subjects is a useful, common way to assess the variance in the result (39),
including testing five artificial subjects (41). Unlike human subjects, for
which large numbers are required due to large statistical variation, artificial

agents can have more reliability. As described in subsequent sections, the
small SE among the five artificial subjects shows that the present results have
good reliability.

Results
Experiment 1: Baseline Performance. The purpose of experiment 1
was to determine whether the agent was capable of learning the
task, and, if so, whether the agent was leveraging its spotlight of
visual attention in order to do so. We therefore trained the agent
with a functioning attention window, and then tested it both with
and without a functioning attention window. As noted in the
previous section, the agent was trained on 1,500 iterations. After
each training iteration, the agent played 200 test games. The test
games were divided into four categories of 50 games, each cate-
gory testing a different aspect of the agent’s performance. In the
following, we describe each of the four tests. See Table 1 for a
summary of training and testing conditions.
First, we tested the agent on its ability to track the ball with its

attention spotlight. In this category of test games, the agent re-
ceived points only for attention tracking, not for ball catching.
Note, again, that these test games did not contribute to the
agent’s learning; the agent was never trained on this reduced
reward contingency; learning only occurred during training
games for which the full reward structure was implemented.
Instead, the points earned by the agent in this category of test
game served solely as a measure of how well the agent performed
at tracking the ball with its attention. The agent received 0.5
points for successfully keeping the ball within the spotlight on
each timestep, and lost 0.5 points for failing to do so. It could
earn a maximum of 5 points across all 10 timesteps on a perfectly
played game. Negative scores indicate that the agent lost more
points than it gained during a game.
The blue line in Fig. 3A shows the learning curve for this first

test condition (Attention Score, Normal Agent). At the start of
the 1,500 training iterations, the agent scored below zero, indi-
cating that it lost more points than it gained (it made more errors
than it made correct choices). Note that chance performance is,
by definition, the performance of the agent when its network
weights are randomized and its actions are random, at the start
of learning. During training, the agent increased the points it was
able to earn for attention tracking, passing zero (making more
correct choices than errors), and approaching a performance of
∼3.5 points. The curve shows the mean and SE among the five
artificial subjects (see SI Appendix for curve fits and quantifica-
tion of learning rates). Note that the performance at the end (by
1,500 iterations) was far above the chance performance levels at
the start of learning, and that the difference is well outside the
extremely small SE.
In a study with highly variable human behavioral data, one

would typically perform statistical tests to determine if the ob-
served differences between means can be assigned a P value below
the benchmark of 0.05. With the highly reliable performance of
artificial agents, such statistical tests are often not relevant (32).
Here, the difference between initial, chance level of performance
and final, trained level is so far outside the measured SE that the
corresponding P is vanishingly small (P < 1 × 10−10). Because the
effects described here are so much larger than the measured SE,
we will not present the statistical tests typical of human behavioral
experiments but will instead adhere to the convention of showing
the SE.
The orange line in Fig. 3A shows the results for the second

category of test games (Attention Score, Attention-Disabled).
For these test games, the agent’s attention spotlight was altered.
We adjusted the rules such that visual noise was applied both
inside and outside the attention spotlight. All other aspects of
the agent remained the same. The agent still had an attention
spotlight that could move about the visual field, and a func-
tioning attention schema array that signaled the location of the

Start Position

End Position
Fig. 2. Trajectory of the ball across the visual field in a typical game. The
start position (at one of 10 possible locations in the top row) and end po-
sition (at one of 10 possible locations in the bottom row) are chosen ran-
domly. The start position is therefore not predictive of the end position.
From the start position, on each timestep, the ball moves to an adjacent
pixel on a diagonal trajectory until directly vertically above its end point. In
the remaining timesteps, the ball moves vertically downward to reach its
final position.
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attention spotlight. However, the attention spotlight itself was
rendered inoperable, filled with the same level of visual noise as
the surrounding visual space. The only change, therefore, was to
the level of noise present within the spotlight. Note that the
agent was still trained with functioning attention—only during
the test games was the attention window disabled. In principle,
an agent could perform the task with its attention spotlight dis-
abled. The visual array, though filled with noise, does contain
some visual information. In the region where the ball is located,
the likelihood of a black pixel increases marginally above the
background noise level of 50%. Likewise, the agent could in
principle leverage other information. For example, on every
timestep, for good performance, the agent should lower its at-
tention window by one row. It should never raise its attention
window. On these grounds, we expect the agent’s performance to
improve with training. As shown by the orange line in Fig. 3A,
over the course of the 1,500 iterations, the agent’s score did rise
above the initial, chance level. It even rose above 0, indicating
that the agent was able to gain more points than it lost on the
attention tracking aspect of the task. However, performance was
much worse without functioning attention than with functioning
attention (orange line versus blue line in Fig. 3A). Note that the
difference between the curves is much greater than the SE within
each curve. These results demonstrate that the agent learned the
task, and also that it used its attention window to help perform

the task, since when its attention was disabled, it could no longer
perform as well.
The blue line in Fig. 3B shows the results for the third category

of test games (Catch Score, Normal Agent). Here we tested the
agent’s ability to catch the ball with the paddle. Success earned 2
points per game and failure earned −2 points. The agent began
by scoring below zero (failing more often than succeeding). Over
the course of the 1,500 training iterations, the agent’s score rose,
approaching ∼0.8 points (of the maximum possible 2 points). In
comparison, the orange line in Fig. 3B shows the results for the
final, fourth category of test games (Catch Score, Attention-
Disabled). Here, we tested the agent’s ability to catch the ball
with the paddle while the attention spotlight was disabled (visual
noise was applied both inside and outside the spotlight). The
agent’s performance on the catch task was worse without a func-
tioning attention spotlight than with one (orange line versus blue
line, Fig. 3B). The difference was, again, well outside the range of
the SE.
An alternative perspective on the efficacy of the attention

window may be possible. Consider Fig. 3A. The data show im-
proved performance in the blue line (representing the agent with
all noise removed from within the attention window) over the
orange line (representing the agent without a functioning atten-
tion window). Noise was created by randomly turning on 50% of
the pixels across the visual array. On average, within the 9-pixel
area subtended by the attention window, 4 to 5 pixels should be

Table 1. Training and testing configurations for all three experiments

Training Test 1 Test 2 Test 3 Test 4

Experiment 1 Attention window Intact Intact Disabled Intact Disabled
Attention schema Intact Intact Intact Intact Intact

Experiment 2 Attention window Intact Intact Intact Intact Intact
Attention schema Intact Intact Disabled Intact Disabled

Experiment 3 Attention window Intact Intact Disabled Intact Disabled
Attention schema Disabled Disabled Disabled Disabled Disabled

For each experiment, the attention window and the attention schema could be intact or disabled during the
training trials and during the testing trials. The testing trials were grouped into four tests. Test 1 and 2 involved
measuring the agent’s performance on the attention tracking component of the task. Tests 3 and 4 involved
measuring the agent’s performance on the ball-catching component of the task. For example, in experiment 1,
the attention window was intact during training and during test 1 and test 3 and was disabled during test 2 and
test 4.
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Fig. 3. Results of experiment 1. Training occurred over 1,500 iterations. Each iteration included 100 training games (during which the agent learned),
followed by 200 test games to evaluate performance (during which the agent did not learn). The 200 test games were divided into four categories of 50
games each. Each data point shows the mean score among the 50 test games within a test category, and among 5 simulated subjects, spatially smoothed with
a 10-iteration moving average. Lighter margin around darker line reflects SE of intersubject variability. (A) Performance on attention tracking task (how well
the attention spotlight remained aligned on the ball through the game), for which the agent could earn a maximum of 5 points per game. The blue line
denotes performance under normal conditions, identical to the conditions experienced in training. The orange line denotes performance under attention-
disabled conditions, wherein the attention spotlight did not reduce visual noise in the subtended area. (B) Performance on ball-catching task (whether the
paddle was aligned with the ball by the end of the game), for which the agent could earn a maximum of 2 points per game. The blue line denotes per-
formance under normal conditions, identical to the conditions experienced in training. The orange line denotes performance under attention-disabled
conditions, wherein the attention spotlight did not reduce visual noise in the subtended area.
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turned on, but that noise was removed to make attention func-
tional. Consider a manipulation in which, instead of removing
those noise pixels from the attention window, we remove 5 noise
pixels randomly from the entire visual array. With a marginal re-
duction in noise spread everywhere, instead of a total removal of
noise within the restricted attention window, would the agent
perform as well as in the blue line in Fig. 3A? The answer is no. In
a separate test, we found that under these conditions the agent
performed similarly to the orange line in Fig. 3A, with a peak score
of about 0.5. Thus, reducing the background noise by an incre-
mental amount everywhere does not provide an equivalent per-
formance advantage as does clearing the noise within a controllable
spotlight of attention.
The results of experiment 1 confirm that the agent can improve

on the game through training, and that it does so partly by relying
on the visual information obtainable in its high signal-to-noise
attention spotlight, since removing the functionality of the spot-
light causes a substantial reduction in performance. These results
enable us to proceed to the next experiment, testing how well the
agent can control its attention spotlight when its attention
schema fails.

Experiment 2: Necessity of the Attention Schema for Performance. In
experiment 2, we performed similar tests as in experiment 1.
However, instead of testing the effect of disabling the attention
spotlight, we tested the effect of disabling the attention schema.
To disable the attention schema, we fixed every pixel in the at-
tention schema array (lower array in Fig. 1) to an inactive state,
such that the array no longer provided any information. The agent
was trained with a functioning attention schema (trained under
the same conditions as in experiment 1) but was tested both with
and without the attention schema. Once again, we used four cat-
egories of test game, enumerated in the following. See Table 1 for
the training and testing conditions.
The blue line in Fig. 4A shows the results from the first test

category (Attention Score, Normal Agent). In this category, we
measured the points that the agent received for tracking the ball
with its attention spotlight. This test is a replication of the first
test of experiment 1 (blue line in Fig. 3A). Just as in experiment
1, at the start of the 1,500 training iterations, with randomized
weights, the agent scored at a chance level that was below zero,
indicating that it lost more points than it gained. Over training,

the agent showed a rising learning curve, approaching ∼3.5
points (of the maximum possible 5 points).
In comparison, the orange line in Fig. 4A shows the results from

the second test category (Attention Score, Attention Schema
Disabled). For these test games, the agent still had an attention
spotlight that afforded noise-free vision within it, and the agent
could still select movements of that attention spotlight. However,
the attention schema (lower array in Fig. 1) was turned off (filled
entirely with gray pixels). No signal was presented within it. Note
that the agent was still trained with a functioning attention schema,
but its performance was probed with its attention schema tempo-
rarily turned off. Performance was much worse without a func-
tioning attention schema than with one (orange line versus blue
line in Fig. 4A).
The blue line in Fig. 4B shows the results for the third test

category (Catch Score, Normal Agent). Here, we tested the agent’s
ability to catch the ball with the paddle. Replicating experiment 1,
the agent showed a rising learning curve, approaching ∼0.8 points
(of the maximum possible 2 points). In comparison, the orange line
in Fig. 4B shows the results for the fourth test category (Catch
Score, Attention Schema Disabled). Here, we tested the agent’s
ability to catch the ball with the paddle, while, once again, the
attention schema was disabled. Performance was worse without a
functioning attention schema than with one (orange line versus
blue line in Fig. 4B).
The results of experiment 2 confirm that when the agent is

trained on the game with an attention schema available to it, it can
learn the task. The results also show that the agent’s performance
relies on the attention schema, since deactivating the attention
schema on test trials results in a greatly reduced performance.

Experiment 3: Necessity of the Attention Schema for Learning. In
experiment 2, described previously, we showed that as the agent
learns to control its attention, if its attention schema is temporarily
disabled during a test game, the agent’s performance is reduced.
However, suppose the agent were trained, from the start, without
an attention schema, such that it never learned to rely on that
source of information. Would the agent be incapacitated, or would
it learn to play the game through an alternate strategy?
In principle, one might think the agent could learn the tracking

task and the catch task without an attention schema informing it
about the state of its attention. The reason is that the visual array
itself already contains information about the attention spotlight.
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Fig. 4. Results of experiment 2. Training occurred over 1,500 iterations. Each iteration included 100 training games (during which the agent learned),
followed by 200 test games to evaluate performance (during which the agent did not learn). The 200 test games were divided into four categories of 50
games each. Each data point shows the mean score among the 50 test games within a test category, and among 5 simulated subjects, spatially smoothed with
a 10-iteration moving average. Lighter margin around darker line reflects SE of intersubject variability. (A) Performance on attention tracking task (how well
the attention spotlight remained aligned on the ball through the game), for which the agent could earn a maximum of 5 points per game. The blue line
denotes performance under normal conditions, identical to the conditions experienced in training. The orange line denotes performance under
attention-schema-disabled conditions, wherein all pixels in the attention schema array were fixed to the off state. (B) Performance on ball-catching task
(whether the paddle was aligned with the ball by the end of the game), for which the agent could earn a maximum of 2 points per game. The blue line
denotes performance under normal conditions, identical to the conditions experienced in training. The orange line denotes performance under
attention-schema-disabled conditions, wherein all pixels in the attention schema array were fixed to the off state.

6 of 10 | PNAS Wilterson and Graziano
https://doi.org/10.1073/pnas.2102421118 The attention schema theory in a neural network agent: Controlling visuospatial

attention using a descriptive model of attention

https://doi.org/10.1073/pnas.2102421118


Consider the visual array in Fig. 1 (upper 10 × 10 array). The array
is filled with noise except in one 3 × 3 window, revealing, at least
statistically, where the attention spotlight is likely to be. All nec-
essary information to know the state of its attention and to per-
form the task is therefore already present in the visual array. Thus,
it is not a priori obvious that the added attention schema array is
necessary for the agent to learn the task. Moreover, the added
attention schema could, in principle, even harm performance,
because adding extra inputs to a limited neural network might
slow the rate of learning. Thus, it is an empirical question whether
supplying the agent with an added attention schema will help,
harm, or make no significant difference to learning. The purpose
of experiment 3 was to answer that question. It is the central ex-
periment of the study. When the agent must learn the task without
an attention schema present from the outset, is learning helped,
harmed, or unaffected, as compared to learning with an attention
schema present?
In experiment 3, in all games, whether training games or test

games, the attention schema was disabled. To disable it, we turned
off all the pixels in the attention schema array. The agent therefore
never received any information from the attention schema array
about the state of its attention. The blue line in Fig. 5A shows the
results from the first test category (Attention Score, Attention
Normal). This test measured the points received for tracking the
ball with the attention spotlight. The agent had a normal attention
spotlight (no visual noise within the spotlight), and retained the
ability to move its attention spotlight, but lacked a functioning
attention schema. Over the 1,500 training iterations, the agent
showed some degree of learning, improving from its initial negative
score to a final level of about 0.4 points. Compared, however, to
the agent in experiment 1 that was trained with a functioning at-
tention schema (Fig. 3A, blue line), the agent in experiment 3
(Fig. 5A, blue line) was severely impaired. The difference in per-
formance is large compared to the SE.
The orange line in Fig. 5A shows the results from the second

category of test games (Attention Score, Attention-Disabled).
Here, not only was the attention schema disabled, but the atten-
tion spotlight itself was also disabled. All pixels in the visual array,
whether in or out of the spotlight, were subject to the same visual
noise. Again, the agent showed some learning, improving over its
initial negative score. Comparing the orange and blue lines in
Fig. 5A shows that the agent must have relied partly on the

visual information available in its attention spotlight, since
without that spotlight, it performed consistently worse. How-
ever, performance was poor in both conditions compared to the
performance of the fully intact agent. Without its attention
schema, the agent was impaired.
Fig. 5B shows the results from the third and fourth category of

test games. Here we measured the points that the agent received
for catching the ball with its paddle when its attention schema
was disabled. The blue line shows the results when the attention
spotlight was normal, and the orange line shows the results when
the attention spotlight was disabled. Again, comparing the or-
ange and blue lines shows that the agent must have relied partly
on the visual information available in its attention spotlight, since
without that spotlight, it performed worse. However, the key
finding here is that performance was poor in both conditions
compared to the performance of the fully intact agent.
Experiment 3 shows that when the agent is trained from the

outset without an attention schema, it does not learn well com-
pared to its performance when trained with an attention schema.
Perhaps because the agent learns to use the available informa-
tion in the visual input array, performance does improve over the
1,500 training iterations. The results show that some of the
agent’s minimal improvement in performance must depend on the
proper functioning of its attention spotlight, since learning was
reduced when the spotlight was disabled. However, in all condi-
tions tested in experiment 3, the agent was severely impaired at
learning the task—either tracking the ball with its attention
spotlight or catching the ball at the end of each game—as com-
pared to the intact agent. Without an attention schema, the agent
was compromised.

Discussion
The Usefulness of an Attention Schema. The present study demon-
strates the advantage of adding a model of attention to an at-
tention controller. An artificial agent, with a simple version of a
moving spotlight of visual attention, benefitted from having an
updating representation of its attention. The difference was
drastic. With an attention schema, the agent learned to perform.
Without an attention schema, the machine was comparatively
incapacitated. When the machine was trained to control its at-
tention while it had an attention schema, and then tested while its
attention schema was disabled (experiment 2), performance was
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Fig. 5. Results of experiment 3. All games, both training and test games, were run under attention-schema-disabled conditions, wherein all pixels in the
attention schema array were fixed to the off state. Training occurred over 1,500 iterations. Each iteration included 100 training games (during which the
agent learned), followed by 200 test games to evaluate performance (during which the agent did not learn). The 200 test games were divided into four
categories of 50 games each. Each data point shows the mean score among the 50 test games within a test category, and among 5 simulated subjects, spatially
smoothed with a 10-iteration moving average. Lighter margin around darker line reflects SE of intersubject variability. (A) Performance on attention tracking
task (how well the attention spotlight remained aligned on the ball through the game), for which the agent could earn a maximum of 5 points per game. The
blue line denotes performance under conditions in which the agent had a functioning attention spotlight. The orange line denotes performance under
attention-disabled conditions, wherein the attention spotlight did not reduce visual noise in the subtended area. (B) Performance on ball-catching task
(whether the paddle was aligned with the ball by the end of the game), for which the agent could earn a maximum of 2 points per game. The blue line
denotes performance under conditions in which the agent had a functioning attention spotlight. The orange line denotes performance under attention-
disabled conditions, wherein the attention spotlight did not reduce visual noise in the subtended area.
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drastically reduced. When the machine was trained from the outset
without an attention schema available (experiment 3), learning was
drastically reduced. These findings lend computational support to
the central proposal of AST: the endogenous control of attention is
aided by an internal model of attention (25–30). We argue that
evolution arrived at that solution in the brain because it provides a
drastic benefit to the control system.
One possible criticism of the present findings might be that,

when the artificial agent was robbed of its attention schema, it
did not have sufficient information to solve the game, and
therefore its failure to perform was inevitable. Thus, the results
are no surprise. This argument is not correct. In principle, an
agent could solve the game without being given an attention
schema. The reason is that complete information about the lo-
cation of the attention window is present, though implicit, in the
visual array. The patch of clear pixels in an otherwise noisy array
provides information about where the attention spotlight is lo-
cated. Therefore, in principle, the agent is being supplied with
the relevant information. Moreover, adding the extra 100 input
signals needed for an attention schema could, arguably, harm
learning and performance by adding more inputs for the limited
neural network to learn about. Based on a priori arguments like
these, one could hypothesize that the attention schema might
help, might do little, or might even harm performance. The
question is therefore an empirical one. The results confirmed the
prediction of AST. The addition of an attention schema dra-
matically boosted the ability of the agent to control its attention.
When the agent was not given an attention schema, could it

have learned to perform well with more training? It is always
possible. We can only report on the 150,000 training games that
we tested, and do not know what might have happened with much
more training. Moreover, a more powerful agent, with more
neurons or layers, might have been able to learn to control its
attention without being given an explicit attention schema. We do
not argue that because our particular agent was crippled at the
task when it was given no attention schema, therefore all agents
would necessarily be so as well. We do suggest, however, that
adding an attention schema makes the control of attention dras-
tically easier, and the lack of an attention schema is such a liability
that it greatly reduced the performance of our simple network.

Descriptive versus Predictive Models of Attention. When the agent
contained all its components (a functioning attention spotlight
and an attention schema), in order to perform, it must have
learned some of the conditional relationships between the cur-
rent state of its attention, past and future states, its own action
options, the trajectory of the ball, and the possibility of reward.
Therefore, arguably, the agent’s attention schema had two broad
components: a simple descriptive component (depicting the
current state of attention) that was supplied to it in the form of
the attention schema array, and a more complex, subtle, and
predictive component that was learned and encoded in an im-
plicit manner in the agent’s synaptic weights. Without the de-
scriptive component, the agent could not effectively learn the
predictive component. Essentially, the present study shows the
usefulness of giving the agent an explicit, descriptive attention
schema as a foundation on which the agent can learn a predictive
attention schema.
The type of attention that we built into the artificial agent is

extremely simple: a square window that removes all visual noise
within it, and that can move in single-increment steps. The de-
scriptive attention schema that we supplied to the agent is,
therefore, correspondingly simple: it informs the agent about the
location of the attention window. Real human attention is obvi-
ously more complex (18–23). Human spatial attention is graded at
the edges, the intensity can be actively enhanced or suppressed,
the shape and size of the spotlight can change, it may be divisible
into multiple areas of focus, and it can move around the visual

field in more complex ways than in stepwise increments. Beyond
spatial attention, one can attend to features such as color or shape,
to other sensory modalities such as audition or touch, or to in-
ternal signals such as thoughts, memories, decisions, or emotions.
Moreover, human attention has predictable influences on far
more than just a simple catch task; it influences memory, emotion,
planning, decision-making, and action. Human attention is obvi-
ously of much higher dimensionality and complexity than a square
spotlight that impacts one task. If humans have an attention
schema as we propose, it must be correspondingly more complex,
representing the great variety of ways that attention can vary and
impact other events. We acknowledge the simplicity of the agent
tested here, but we suggest that similar underlying principles may
be at work in the artificial and biological cases.

The Relationship between the Attention Schema and Subjective
Awareness. We previously proposed that the human attention
schema has a relationship to subjective awareness (25–28). To un-
derstand how, first consider the analogy to the body schema. You
can close your eyes, thus blocking vision of your arm, and still
“know” about your arm, because higher cognition has access to the
automatically constructed, lower-order body schema. Even people
who lack an arm due to amputation can still have a lingering body-
schema representation of it, which they report as a phantom limb
(42). The ghostly phantom limb phenomenon illustrates a property
of the body schema: the schema contains a detail-poor, simplified
description of the body, a “shell” model, lacking any implementa-
tion details about bones, muscles, or tendons.
In the same manner, according to AST, we “know” about how

our cortex is allocating resources to select items, because higher
cognition has access to some of the information in the auto-
matically constructed, lower-order attention schema. In AST,
because the attention schema is a simplified model of attention,
a kind of shell model that lacks the implementation details of
neurons and synapses and pathways in the brain, it provides us
with the unrealistic intuition that we have a nonphysical essence
of experience, a feeling, a kind of mental vividness, that can shift
around and seize on or take possession of items. In AST, the
information in the attention schema is the source of our certainty
that we have a nonphysical essence of experience.
Logically, everything that we think is true about ourselves, no

matter how certain we are of it, must derive from information in
the brain, or we would not be able to have the thought or make
the claim. AST proposes that the attention schema is the specific
set of information in the brain from which derives our common
belief and claim to subjective awareness. In AST, when we say
that we have a subjective awareness of an item, it is because the
brain has modeled the state of attending to that item, the model
is not perfectly physically detailed or accurate, and based on
information contained in the model, higher cognition reports a
physically incoherent state. In this approach, visual awareness of
an apple, for example, depends on at least two models. First, a
model of the apple constructed in the visual system supplies
information about the specifics of shape and color. Second, a
model of attention supplies the information underlying the ad-
ditional claim that an ineffable, subjective experience is present.
If AST is correct—if subjective awareness in people indicates

the presence of a model of attention—then the control of at-
tention should depend on awareness. There ought to be situa-
tions in which the human attention schema makes a mistake—in
which attention and awareness become dissociated—and in that
case, the control of attention should break down. A growing set
of behavioral data supports this prediction. Subjective awareness
and objective attention usually covary, awareness encompassing
the same items that attention encompasses. The two can become
dissociated, however. When a person has no subjective awareness
of a visual stimulus, attention can still be exogenously attracted
to the stimulus, and the degree of attention is not necessarily
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diminished (29, 30, 43–53). In that case, the person can no longer
effectively control that focus of attention. Without subjective
awareness of a stimulus, people are unable to strategically enhance
or sustain attention on the stimulus, even if it is task-relevant (29);
people cannot suppress attention on the stimulus, even if it is a
distractor (54); and people cannot adjust attention to one or the
other side of the stimulus, even if that controlled shift of attention is
of benefit to the task at hand (30). Without awareness of a visual
stimulus, the endogenous control of attention with respect to that
stimulus is severely impaired. These findings lend support to the
hypothesis that awareness is indicative of a functioning control
model for attention. When the control model is compromised, the
control of attention breaks down.
Many processes in the brain function outside of awareness.

Blindsight patients have (very limited) visual ability, responding and
even pointing to objects of which they are not subjectively aware
(55). Patients suffering hemispatial neglect show high-level cognitive
and emotional reactions to stimuli that they do not consciously see,
such as recognizing that a flaming house is undesirable even though
they are not aware of the flames (56). In healthy subjects, uncon-
scious vision routinely influences decision-making and behavior,
sometimes in striking ways (57). So many complex mental processes
have been shown to occur without awareness of the relevant items,
that sometimes it seems as if awareness must do nothing, or, at
least, cognitive processes that require it must be the exception
rather than the rule. The ability to endogenously control attention
may be one of the few internal processes that are known to cate-
gorically break down without awareness of the relevant stimuli.
Suppose you are planning and executing the sequence of getting

a knife out of a drawer, an apple out of the refrigerator, and
peeling the apple. If you are not conscious of the drawer, knife,
refrigerator, or apple, your exogenous attention might automati-
cally flicker to one or another of those items, and you might even
be able to reach for one of them (as blindsight patients do), but
you will probably not coordinate or execute the whole plan. We
suggest that creating a cognitive plan and executing it requires a
strategic, sequential movement of attention from one item to the
next. According to AST, that ability to control attention collapses
without awareness of the items, and it is for this reason that our
complex planning and behavior depends on awareness.

Is the Artificial Agent Conscious? Yes and No. If consciousness is
linked to an attention schema, and if the artificial agent described
here has an attention schema, then is the agent conscious? We
suggest the answer is both yes and no.
Suppose one could extract and query all the information that the

agent contains about attention. As noted previously, that informa-
tion set has two components: a descriptive component (the lower
array of inputs that was supplied to the agent, that describes the
state of attention) and a predictive component (the information that
the agent learns about the relationship between attention, vision,
action, and reward—this predictive information is represented in an
implicit manner in the connectivity within the neural network). Now
suppose we ask the following: “There is a ball that moves. There is a
paddle that moves. What else is present?” The machine presumably
contains information about attention that, if extracted, systematized,
and put into words, could be articulated as: “Another component is
present. Like the ball and the paddle, it can move. It can be

directed. When it encompasses the ball, rewarded performance
with respect to the ball can occur. When it does not encompass
the ball, the ball is effectively absent from vision, and any
rewarded performance is unlikely.”
Now consider human consciousness, which could be described

something like this: “It is not the objects in the external world; it
is not my physical body that interacts with the world. It is
something else. It shifts and moves; it can be directed; it en-
compasses items. When it does so, its signature property is that
those items become vivid, understood, and choices and actions
toward those items are enabled.”
Given all of that discussion, does the agent have consciousness

or not? Yes and no. It has a simple version of some of the in-
formation that, in humans, may lead to our belief that we have
subjective consciousness. In that sense, one could say the agent
has a simple form of consciousness, without cognitive complexity
or the ability to verbally report. Our hope here is not to make an
inflated claim that our artificial agent is conscious, but to deflate
the mystique of consciousness to the status of information and
cognitive operations.
Many other theories of consciousness have been proposed (e.g.,

refs. 58–70). We argue that most belong to a particular approach.
They propose a condition under which the feeling of consciousness
emerges. They posit a transition between the physical world of
events in the brain and a nonphysical feeling. From this typical
approach stems a common reluctance of scientists to study con-
sciousness, perceiving it to be something outside the realm of the
physical sciences. In contrast, AST is an engineering theory that
operates only within the physical world. It proposes that the brain
constructs a specific, functionally useful set of information, the at-
tention schema, a rough depiction of attention, from which stems at
least two properties: first, the brain gains the ability to effectively
control attention; and second, we gain a distorted self-caricature.
That caricature leads us to believe that we have a mysterious,
magical, subjective consciousness.
Theories like AST are sometimes called “illusionist” theories,

in which conscious experience is said to be an illusion (71, 72).
While we agree with the concept behind that perspective, we
argue that consciousness is probably better described as a cari-
cature than an illusion. A caricature implies the presence of
something real that is being caricatured. In AST, human sub-
jective awareness is a useful caricature of attention. We cannot
intellectually choose to turn the caricature on or off, because it is
constructed by the brain automatically. Moreover, according to
AST, the caricature is of essential importance; the model of at-
tention helps to control attention. While not all aspects of AST
have been tested yet, the present study supports at least one key
part of the theory. A descriptive model of attention does appear
to benefit the control of attention.

Data Availability. All data and code for this study are publicly
available and have been deposited in Princeton DataSpace
(http://arks.princeton.edu/ark:/88435/dsp01kp78gk430).
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