
sensors

Letter

An Acridine-Based Fluorescent Sensor for Monitoring
ClO− in Water Samples and Zebrafish

Su Chan Lee 1, Soyoung Park 1, Haeri So 1, Gyudong Lee 2, Ki-Tae Kim 2,* and Cheal Kim 1,*
1 Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 136-741, Korea;

rlthro456@naver.com (S.C.L.); pp113833@hanmail.net (S.P.); gofl0988@naver.com (H.S.)
2 Department of Environmental Engineering, Seoul National University of Science and Technology,

Seoul 136-741, Korea; rbehd8024@gmail.com
* Correspondence: ktkim@snut.ac.kr (K.-T.K.); chealkim@snut.ac.kr (C.K.); Tel.: +82-2-960-6683 (K.-T.K. & C.K.);

Fax: +82-2-971-9139 (C.K.)

Received: 30 July 2020; Accepted: 20 August 2020; Published: 23 August 2020
����������
�������

Abstract: A novel acridine-based fluorescent chemosensor, BK ((E)-2-((acridine-9-ylimino)methyl)-
N-benzhydrylhydrazine-1-carbothioamide), for monitoring ClO− was prepared. The sensor BK was
synthesized by introducing a new synthetic route of making aldehyde group using formic hydrazide.
Probe BK displayed notable fluorescence quenching in the presence of ClO− and showed a great
selectivity over other guest analytes. The detection limit was calculated to be 7.65 µM. Additionally,
BK was satisfactorily applied for sensing ClO− in water samples and zebrafish.
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1. Introduction

Interest in quantification of reactive oxygen species (ROS) has grown owing to the indispensable
role played by ROS in pathological and physiological processes [1–5]. For instance, recent research
revealed that cancer cells steadily produce high concentrations of intracellular ROS, owing to
carcinogenic deformation [6–8]. Hypochlorite (ClO−) is one of the ROS, which was produced
from the oxidation reaction of Cl− and H2O2 catalyzed by the heme protein myeloperoxidase [9–11].
Hypochlorite is well known as a bactericidal agent because of the capability to kill the deleterious
bacteria and pathogens [12–15]. However, the abnormal levels of ClO− in life systems are related to
various diseases like cystic fibrosis, neuron degeneration, kidney disease, arthritis, atherosclerosis,
and cancer [16–20]. Hence, there is urgent need to develop effective and dependable sensors for
detecting ClO− to understand the role of hypochlorite in organisms.

Until now, various analytical methods for the sensing of ClO− have been established, such as
electrochemistry, colorimetry assays, spectrophotometry and fluorescent chemosensors [21–24].
Among the methods for detecting ClO−, fluorescence imaging techniques have various virtues like
specificity, superior sensitivity, manageability and fast response times [25–28]. Hitherto, several probes
having fluorophores have been developed for sensing ClO− like 1,8-diaminonaphthalene,
phenanthrene, BODIPY, anthracene, rhodamine, 1,8-naphthalimide, coumarin and fluorescein [29–36].
However, some of them have disadvantages like complicated synthetic routes, poor water solubility
and being unsuitable for biological application. Thus, there is still a need to further exploit new
fluorescent chemosensors for sensing ClO− in vitro as well as in biological systems [37–39].

Acridine and its derivatives have been interesting subjects to researchers for a long time because of
their ability to bind DNA and act as a good fluorophore [40–44]. In addition, benzhydryl isothiocyanate
is water-soluble and used for a linker [45]. Therefore, we linked acridine moiety with benzhydryl
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isothiocyanate to develop a sensor having the unique photophysical, water-soluble and biocompatible
properties for the detection of ClO−.

Herein, we represent a novel acridine-based fluorescent probe, BK, for detecting ClO−. The reaction
of BK with ClO− showed a fluorescent quenching in aqueous media. The sensing ability of the probe
was investigated by fluorescent and UV-visible titrations. The sensing mechanism of BK towards ClO−

was also demonstrated via ESI-mass spectrometry and theoretical calculations. In addition, the BK
probe was satisfactorily examined to monitor ClO− in environmental water samples and zebrafish.

2. Experiments

2.1. Materials and Equipment

All reagents and solvents were purchased from Sigma-Aldrich. 13C NMR (100 MHz) and 1H
NMR (400 MHz) data were provided on a Varian spectrometer. UV-vis and fluorescence measurements
were performed on Perkin Elmer UV/Vis and fluorescence spectrometers. ESI-mass data were obtained
by a single-quadrupole liquid chromatography detector (ACQUITY QDa).

2.2. Synthesis of KT (N-benzhydryl-2-formylhydrazine-1-carbothioamide)

An amount of 2 mmol of formic hydrazide and 2 mmol of benzhydryl isothiocyanate were
dissolved in 5 mL of EtOH. The mixture was stirred until a white-colored powder was gained.
The resultant powder was filtered and washed with ether. 1H NMR (deuterated DMSO, 400 MHz) δ
(ppm): 11.4 (s, 2H), 10.7 (m, 2H), 8.35 (m, 4H), 8.25 (t, 2H), 8.15 (s, 2H), 8.05 (d, 2H), 7.95 (t,1H).

2.3. Synthesis of Sensor BK
((E)-N”-(acridine-9-yl)-N’-((benzhydrylamino)(oxo-l4-sulfanylidene)methyl)formimidohydrazide)

An amount of 1 mmol of KT and 1 mmol of 9-aminoacridine (ACR) were dissolved in 5 mL
ethanol. After the solution was stirred at 23 ◦C overnight, the yellowish powder was filtered and
washed with methanol and ether. 1H NMR in DMSO-d6, δ: 8.51 (s, 1H), 8.43 (s, 1H), 8.39 (s, 1H),
7.8 (d, 2H, J = 8.8 Hz), 7.65 (t, 2H), 7.5 (m, 10H), 7.3 (m, 5H), 7.2 (s, 1H). 13C NMR: δ = 142.90, 140.87,
138.05, 132.82, 128.90, 128.26, 128.21, 128.02, 127.73, 124.05, 123.51, 122.71, 112.19, 61.93, 61.05 ppm.
ESI-Mass: m/z calcd for [C28H23N5S – H+ + 2 Na+ + 2 Cl−]−: 576.08 found, 575.92.

2.4. General Procedure for the Spectroscopic Studies

Probe BK stock solution (1 mM) was prepared in DMF. ClO− stock solution was prepared by
diluting NaClO (500 µmol, 12%, dissolved in H2O) in distilled water to make 100 mM. All anion and
ROS stock solutions (1.0 × 10−1 M) were prepared in bis-tris buffer. The fluorescence and UV-vis data
were measured in near 100% aqueous solution (bis-tris, 1 × 10−2 M, pH 7.0).

2.5. Calculation of Quantum Yield

Quantum yield (Φ) was calculated by using quinine as a standard fluorophore (ΦF: 0.54 in 0.1 M
H2SO4). Equation for quantum yield is:

ΦF(X) = ΦF(S) (AS FX /AX FS) (nX / nS)2

(ΦF(X): fluorescent quantum yield, x: unknown, s: standard, A: absorbance, n: refractive index of the
solvent and F: the area of fluorescence emission curve).

2.6. Imaging Experiments in Zebrafish

Zebrafish embryos were cultured under the former conditions [46]. The 6-day-old embryos were
incubated in E2 media replenished with 2 × 10−5 M of BK for 15 min and rinsed with E2 media to get
rid of the remnant BK. One was a control group and the other group further treated with 50 µM of
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ClO− for 15 min was prepared and washed with E2 media. Zebrafish were anesthetized by adding
ethyl-3-aminobenzoate. The image of zebrafish was achieved by a fluorescence microscope.

2.7. Cytotoxicity in Zebrafish

Zebrafish larvae at 6-day old were exposed to 0 and 20 µM of BK and 20 µM of 9-aminoacridine
in E2 media at 0.05% of DMSO for 20 min. Later they were diverted into 10 µg/mL of AO reagent
(Sigma-Aldrich, St. Louis, MO, USA) in E2 media for 60 min. After the larvae were washed with
E2 three times, the prepared larvae were mounted and photographed under a Leica fluorescence
microscope (MZ10F, Singapore). Apoptosis was identified as an obvious bright spot.

2.8. Theoretical Calculations

DFT/TDDFT calculations on the basis of the hybrid exchange-correlation functional B3LYP were
accomplished with the Gaussian 09 W program [47,48]. The 6-31G basis set was applied for all elements
(C, S, N, O and H) [49,50]. Frequency calculations of BK and ACR (9-aminoacridine) were achieved to
prove that the optimized forms displayed local minima, and imaginary frequencies were not observed
at all. Cossi and Barone’s CPCM was employed to consider solvent effect of water [51,52]. To study the
electronic properties of singlet excited states, TD-DFT was conducted for the ground state forms of
BK and ACR. The twenty singlet-singlet excitations were quantitatively analyzed. GaussSum 2.2 was
used to analyze the contributions of MOs [53].

3. Results and Discussion

The synthetic route for chemosensor BK is outlined in Scheme 1 and it was successfully
characterized by 1H and 13C NMR and ESI-MS. Sensing behavior of BK toward ClO− was investigated
by using several analytical tools like UV-visible and fluorescent spectroscopy, 1H NMR titration,
and calculations.
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3.1. Spectroscopic Investigations of BK to ClO−

Selectivity was one of the essential indicators for measuring capacity of fluorescent probe.
Reactivity of BK to diverse analytes (N3

−, Cl−, H2O2, CN−, S2−, I−, tBuOOH, SCN−, OAc−, Br−,
AcOOH, H2PO4

−, BzO−, F−, NO2
− and ClO−) in bis-tris buffer (1 × 10−2 M, pH 7.0, Figure 1) was tested

to evaluate the selectivity for ClO−. With excitation at 350 nm, free sensor BK displayed a markedly
strong fluorescence emission at 455 nm (Φ = 0.6659). Upon addition of each analyte into BK solution,



Sensors 2020, 20, 4764 4 of 13

only ClO− induced the prominent fluorescent decrease (Φ = 0.0047) whereas other analytes did not
show any noticeable changes. Therefore, the sensor BK could serve as a preeminent fluorescent sensor
for ClO−.
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Figure 1. Fluorescence spectra of BK (1 × 10−5 M) with varied analytes (220 equiv). ROS: Reactive
oxygen species.

To examine the response of BK to ClO−, the spectral titrations were carried out (Figure 2). On the
addition of different ClO− amounts to BK, the fluorescence emission of 455 nm constantly decreased
and was saturated at 220 equiv. The measured limit of detection (CDL = 3σ/k) for ClO- was 7.65 µM
(Figure S1 in the Supplementary Materials). The UV-visible titration displayed that the absorbance of
280 nm constantly increased and the bands at 260 nm and 400 nm reduced with an obvious isosbestic
point at 370 nm (Figure 3).

To elucidate the detecting mechanism of ClO−, we conducted the ESI-mass experiment (Figure S2).
The peak of 322.08 (m/z) was indicative of [ACRO + Cl− + MeCN + 2H2O]− [calcd, 322.10], indicating
the cleavage reaction product of BK by ClO−. 1H NMR titration was carried out to observe the
formation of ACR (Figure 4). With gradual addition of ClO− to BK, the imine proton H5 disappeared,
and the amine proton HA of ACR and the aldehyde proton HB of KT appeared.

On the other hand, as 9-aminoacridine was highly fluorescent in nature, we examined the
interaction of 9-aminoacridine with ClO−. As shown in Figure S3, ClO− quenched the fluorescence of
9-aminoacridine, most likely due to an oxidation reaction. These observations led us to propose that the
probe BK was cleaved by ClO− via the cleavage process of the C=N bond to produce 9-aminoacridine.
Then, the fluorescent 9-aminoacridine was subsequently quenched by ClO− (Scheme 2).
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To further comprehend the cleavage sensing mechanism of BK by ClO−, computational calculations
were achieved. Energy-optimized forms of BK and ACR were analyzed with DFT/B3LYP/6-31G (d,p)
basis sets (Figure 5). Using the optimized forms of BK and ACR, TD-DFT calculations were performed
for analyzing transition energies and molecular orbitals (Figures S4–S6). The MOs of BK at the first
lowest excited state were identified as the HOMO→ LUMO transitions (391.73 nm, Figure S5), which
turned out to be π→ π* transitions. For ACR, the MOs at the first lowest excited state were identified
as the HOMO→ LUMO (391.84 nm, Figure S6), which turned out to be π→ π* transitions. In addition,
the decreased oscillator strength of ACR was corresponded with the decreased UV-vis absorbance.
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These outcomes drove us to elucidate that fluorescent sensor BK was quenched due to the cleavage of
the C=N bond.
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Another vital indicator in the sensing process is the ability of the fluorescent probe not to be
disturbed by the competitive analytes. When BK was exposed with both ClO− and diverse analytes
(N3

−, Cl−, H2O2, tBuOOH, OAc−, Br−, AcOOH, H2PO4
−, BzO−, F− and NO2

−), the guest analytes
did not hinder the sensing of ClO− (Figure 6). Only, the presence of tBuOOH and OAc− showed
slight interference in determining ClO−. CN−, S2−, I− and SCN− were excluded from the competition
because they reacted directly with ClO−.
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The pH was a vital condition related with physiological processes and even cellular behaviors.
Thus, we checked the effect of pH on sensing property of BK for ClO− at pH ranging from six to nine
(Figure 7). BK displayed significant fluorescence intensity at the pH range of six to nine. The intensity
of BK treated with ClO− was completely quenched at pH six to nine. These observations indicated
that BK could be applicable as a probe for detecting ClO− at pH six to nine.

To explore practical utility of BK, the application of BK in real samples was accomplished in both
tap and drinking water samples. The reliable R.S.D. values and recoveries demonstrated that sensor
BK had a valuable potential for being used as a dependable tool to monitor ClO− in real water samples
(Table 1).
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Table 1. Determination of ClO−.a.

Sample. ClO− Added (µM) ClO− Found (µM) Recovery
(%)

R.S.D. (n = 3)
(%)

Drinking water 0.00 0.00

60.00 b 62.88 104.80 0.32

Tap water 0.00 0.00

60.00 b 62.16 103.60 0.41
a Conditions: [BK] = 10 µM in bis-tris buffer. b 60.00 µM of ClO− was artificially added.

3.2. In Vivo Imaging in Zebrafish

To test whether the probe BK is applicable under biological conditions, zebrafish were incubated
with BK (20 µM) and sequentially treated with two different concentrations of ClO− (0 and 50 µM)
for imaging (Figure 8). Zebrafish incubated with BK exhibited a green fluorescence image, but the
green fluorescence was eliminated in the presence of ClO−. Meanwhile, the cytotoxicity test of BK
was examined by AO staining (Figure S7). The AO stained results showed that no apoptosis was
observed in control and the presence of BK and 9-aminoacridine. Zebrafish experiments proved that
BK was organism-permeable and can monitor ClO− in living organisms. Importantly, BK is the first
fluorescent turn-off sensor capable of sensing ClO− in zebrafish (Table S1) [1,38,54–59].
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and λem = 526 nm). (a1–a3): BK only; (b1–b3): BK with 5 × 10−5 M ClO−. [BK] = 2 × 10−5 M. Scale bar:
0.89 mm.

4. Conclusions

We have synthesized an acridine-based chemosensor for monitoring ClO− in a near-perfect
aqueous media. Probe BK selectively detected ClO− over other relevant species including ROS, and its
intense blue fluorescence was notably quenched with the addition of ClO−. The detection limit of BK
for ClO− was analyzed to be 7.65 µM. BK was employed for quantitative measurement of ClO− in
real water samples and zebrafish. Significantly, BK is the first fluorescent turn-off sensor capable of
sensing ClO− in zebrafish to date. The promising outcomes indicate that BK can serve as a potential
chemosensor for monitoring ClO- in chemical, environmental and biological systems. We believe that
these results will be merited for further development of ClO− sensors.
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