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Abstract: Genetic variations have a multitude of effects on proteins. A substantial number of
variations affect protein–solvent interactions, either aggregation or solubility. Aggregation is often
related to structural alterations, whereas solubilizable proteins in the solid phase can be made again
soluble by dilution. Solubility is a central protein property and when reduced can lead to diseases.
We developed a prediction method, PON-Sol2, to identify amino acid substitutions that increase,
decrease, or have no effect on the protein solubility. The method is a machine learning tool utilizing
gradient boosting algorithm and was trained on a large dataset of variants with different outcomes
after the selection of features among a large number of tested properties. The method is fast and has
high performance. The normalized correct prediction rate for three states is 0.656, and the normalized
GC2 score is 0.312 in 10-fold cross-validation. The corresponding numbers in the blind test were
0.545 and 0.157. The performance was superior in comparison to previous methods. The PON-Sol2
predictor is freely available. It can be used to predict the solubility effects of variants for any organism,
even in large-scale projects.

Keywords: protein solubility prediction; prediction; machine learning; variation interpretation;
artificial intelligence; variation; mutation; PON-Sol2

1. Introduction

Genetic variations have numerous effects. The largest portion of known disease-
causing and disease-related variations is in protein-coding regions. In variation interpreta-
tion, the goal is to detect the harmful variants. There are numerous prediction methods
available for this purpose, e.g., [1–4]. These tools are useful; however, they do not reveal
any details about the causative mechanism and thereby of possible countermeasures, such
as drugs and others. Other types of tools have been released for predicting alterations to
protein properties, such as solubility.

Solubility of a protein is one of its fundamental characteristics [5]. Solubilities
vary widely among proteins and protein forms. Proteome-wide analysis of solubility
in Caenorhabditis elegans indicated that about 75% of proteins appear in cells in abundances
close to their solubility limits [6]. There has not been evolutionary pressure to make the
proteins more soluble.

Two concepts are related to protein–solvent interactions. Solubility is usually defined
as the concentration in which intact protein is in equilibrium with solid phase [7–10].
Precipitated solubilizable protein in solid phase can be made again soluble by dilution. The
other phenomenon is aggregation. When proteins aggregate, they bind together, which is
often accompanied by irreversible alteration to conformation, leading to the formation of
insoluble high-molecular-weight forms [5].

Protein solubility depends on many factors. Intrinsic properties of the protein, sol-
vent, and additives are important along with physical conditions. Relevant protein factors
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include the amino acid sequence and its composition, three-dimensional structure, accessi-
bility, and intramolecular interactions within the protein as well as protonation status. Salt
bridges, electrostatic and hydrophobic interactions, and weak hydrogen bonds all affect
solubility. Whether a protein is monomeric or multimeric has also an effect. Important
solvent properties include polarity, its bond and interaction-forming ability, density and
included additives and constituents, such as excipients, salts, and organic solvents. Con-
centrations of these compounds have significant contributions to protein solubility. Of the
environmental parameters, pH and temperature can affect both the protein and solvent.

Alterations to proteins can affect their properties. Single amino acid alterations can
profoundly alter protein solubility and lead to diseases. Severe complex V deficiency [11]
and cataract [12] are examples.

To address the effects of protein variants, some prediction methods have been released.
These include CamSol [13], OptSolMut [14], PON-Sol [9], SODA [15], and SolubiS [16]
and have been reviewed in [10]. CamSol uses a residue-specific solubility profile. Only
the algorithm has been described; no method has been made available. OptSolMut was
trained with 137 single and multiple variants affecting solubility or aggregation. Weights
were optimized for a scoring function with linear programming. PON-Sol, a random
forest-based method, was trained this far on the largest dataset of 406 single amino acid
substitutions. It grouped variants into three classes: solubility decreasing and increasing
variants and those not affecting solubility. SODA has been recommended to predict variants
decreasing solubility [15]. It was developed with PON-Sol data. It can predict in addition
to substitutions also effects of insertions and deletions. SoluBis is a tool for the optimization
of multiple variants to increase protein solubility [16]. It is based on the detection of
aggregation prone segments to modify them. The prediction is a combination of interaction
analysis with FoldX [17], aggregation prediction with TANGO [18], and structural analysis
with YASARA [19].

We have previously developed several high-performance prediction methods for
variation effects, mainly based on machine learning (ML) algorithms. These include
pathogenicity/tolerance prediction methods PON-P (Olatubosun et al. 2012) and PON-P2
(Niroula et al. 2015) for filtering harmful variants from sequencing datasets. We developed
the first generic variation phenotype severity predictor (Niroula and Vihinen, 2017). To
investigate the mechanisms and effects of amino acid substitutions, there are PON-Diso
(Ali et al. 2014) for protein disorder, PON-Tstab for protein stability (Yang et al. 2018),
PROlocalizer (Laurila and Vihinen, 2011) for protein localization, and PON-Sol (Yang et al.
2016) for protein solubility affecting variants.

Since the publication of PON-Sol, a substantial amount of new cases has been pub-
lished and warranted the development of an entirely new predictor, PON-Sol2, which
has superior performance in comparison to the previous tools. We collected by far the
largest set of experimentally verified variants and used them to train an ML predictor
and tested it in an independent test dataset. The developed tool can be used for variation
interpretation and analysis of the mechanisms in disease-related variants and to design
variants for protein engineering, protein crystallization, and other applications.

2. Results

We developed a novel machine learning-based predictor for effects of single AASs on
protein solubility. We collected a large dataset of over 10,000 cases, which was reduced to
6328 variations to due to class imbalance. There was still imbalance, which was mitigated
in the method performance assessment.

The dataset included variants from altogether 77 proteins and represented all substi-
tution types. The distribution of the AASs (Table 1) indicates that leucine (659), alanine
(564), and isoleucine (506) are the most common original residues. The most common
substitution is by proline (420). The most common amino acid substitutions are L > S (59),
L > T (49), L > A (47), and L > E (44) alterations. There were up to 43 variants of a certain
substitution type.
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Table 1. Distribution of amino acid residues in the dataset. The original amino acids are in rows and variant residues are in
columns.

A C D E F G H I K L M N P Q R S T V W Y Total

A 0 20 37 30 27 32 29 35 25 34 11 30 43 35 40 29 28 35 17 27 564
C 16 0 2 5 1 1 5 5 6 5 4 4 6 3 2 11 2 1 1 3 83
D 23 22 0 28 26 19 16 25 23 30 10 29 33 20 33 29 27 14 18 13 438
E 29 21 29 0 18 25 10 20 22 25 13 18 24 18 19 23 21 19 22 17 393
F 30 11 16 9 0 17 15 6 10 6 2 13 20 14 18 7 18 6 11 8 237
G 29 16 25 23 22 0 27 27 16 33 9 18 38 17 31 23 30 12 20 22 438
H 13 5 7 3 8 8 0 11 6 6 5 7 10 10 6 11 11 10 6 10 153
I 38 19 35 29 11 33 31 0 27 17 15 20 39 30 36 36 22 26 19 23 506
K 26 8 18 29 12 18 18 10 0 15 9 14 24 18 23 18 14 17 6 8 305
L 47 33 35 44 21 41 36 26 41 0 30 37 25 23 34 59 49 28 21 29 659
M 15 13 13 11 9 12 14 14 8 21 0 16 15 17 10 12 5 10 9 9 233
N 10 11 13 14 9 14 9 7 9 10 6 0 16 8 9 7 10 10 7 6 185
P 14 11 12 14 7 17 21 10 7 11 7 6 0 8 11 14 9 21 8 8 216
Q 14 12 14 11 9 12 12 8 14 12 4 11 15 0 14 18 15 14 5 11 225
R 26 21 25 21 22 22 27 18 17 23 11 21 26 29 0 28 28 28 17 14 424
S 18 8 13 9 11 15 7 6 6 9 4 11 8 9 16 0 15 10 9 11 195
T 26 13 17 20 15 25 17 12 12 22 21 24 25 17 22 32 0 20 11 13 364
V 17 19 21 18 13 19 25 25 24 23 15 22 32 19 33 42 26 0 14 15 422
W 9 5 3 9 6 4 1 2 7 4 3 2 6 4 5 6 5 5 0 2 88
Y 14 7 11 13 13 15 11 9 11 14 6 6 15 7 15 9 10 12 2 0 200

total 414 275 346 340 260 349 331 276 291 320 185 309 420 306 377 414 345 298 223 249 6328

2.1. Feature Selection and Method Training

We started with 1081 features in the categories of amino acid propensities and char-
acteristics, conservation, variation type, neighborhood features, and chain length. RFE
was applied in feature selection. GOSS down samples the instances on the basis of gra-
dients [20]. Instances with small gradients are well trained and have a small training
error, while those with large gradients are undertrained. GOSS retains instances with large
gradients while performing random sampling on instances with small gradients. EFB
reduces the number of features by regrouping mutually exclusive features into bundles
and then treating them as a single feature [20]. This is beneficial especially in sparse feature
space where many features are (almost) exclusive and very seldom have non-zero values
simultaneously. Thus, these kinds of features can be safely bundled.

An initial comparison of random forest, XGBoost, and LightGBM indicated that the
gradient boosting algorithms had better performance. LightGBM was chosen due to its
speed to train and run; the performance was almost identical with XGBoost. Results for
predictors with all features, 100, 50, and 20 features were very similar; however, they were
somewhat better when using a smaller number of features.

We tested two architectures for the predictor implementation. In one of them, single
predictor distributes the cases to three categories. The other one is combination of two
two-layer predictors. The reasoning for testing the two-layer predictor was our earlier
experience with variant severity predictor PON-PS [21], and variant stability predictor
PON-Stab [22] indicated that a combination of two-layer predictions could be beneficial.
For the two-layer three-class classifier we generated binary classifiers for both the layers
(Figure 1). For the first layer, we marked the variations increasing or having no effect
on solubility as “not-decreasing” and trained a “decreasing/not-decreasing” classifier.
The second layer only used the variations increasing and having no effect to train an
“increasing/no effect” classifier. We chose to use 20 features per predictor in the two-layer
predictor and 30 in the single-layer predictor to have as small a set of features as possible
and thereby covering the space of feature distribution better.
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When we trained the two-layer three-class LightGBM classifier, RFE was used to select
20 features for each layer. As the predictors shared six features, 34 different features were
selected (Tables 2 and 3). Among them there are 22 amino acid features, 11 neighborhood
features, and the length of protein sequence. This method was finally chosen as it showed
somewhat better performance than the single three-class predictor, its CPR in 10-fold CV
was 0.747 (Tables 4 and 5).

2.2. Performance Assessment

The method performance was assessed according to published guidelines [23,24]; also,
the other items of the guidelines were followed. Due to the uneven distribution of cases
in the three solubility categories, we normalized the calculated results in Tables 4–6. The
first figure indicates the number of cases, the second one is for normalized values for cases
in categories TP to FN. For performance measures, the first one is without normalization,
the latter one is with normalization, and these are the numbers that we compared. Table 4
lists the 10-fold cross-validation (CV) performance for four classifiers. As the scores were
equal or better for predictors with smaller feature sets, we chose the 34-feature two-layer
three-class classifier and call it PON-Sol2. The two-layer predictor is marginally better
than the single-layer one. Its normalized CPR is 0.656, which is significantly improved
compared with 0.491 for the original PON-Sol.

Table 2. Features selected by RFE for two-layer three-class LightGBM decreasing/not decreasing classifier sorted by
importance. Features shared by to the two predictors are underlined.

Rank Name Feature Description

1 FUKS010101 Amino acid feature Surface composition of amino acids in intracellular proteins of
thermophiles (percent) [25]

2 JOND920102 Amino acid feature Relative mutability [26]

3 PONP800107 Amino acid feature Accessibility reduction ratio [27]

4 NonPolarAA Neighborhood feature Number of nonpolar residues in the neighborhood window

5 PolarAA Neighborhood feature Number of polar residues in the neighborhood window

6 QIAN880134 Amino acid feature Weights for coil at the window position of [28]

7 AA20D.T Neighborhood feature Number of threonine residues in the neighborhood window
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Table 2. Cont.

Rank Name Feature Description

8 PosAA Neighborhood feature Number of positively charged residues in the
neighborhood window

9 AA20D.L Neighborhood feature Number of leucine residues in the neighborhood window

10 GEOR030102 Amino acid feature Linker propensity from 1-linker dataset [29]

11 OOBM850102 Amino acid feature Optimized propensity to form reverse turn [30]

12 length Protein type feature Number of amino acids in the protein sequence

13 AA20D.I Neighborhood feature Number of isoleucine residues in the neighborhood window

14 AA20D.P Neighborhood feature Number of proline residues in the neighborhood window

15 KOSJ950115 Amino acid feature Context-dependent optimal substitution matrices for all
residues [31]

16 ARGP820102 Amino acid feature Signal sequence helical potential [32]

17 PRAM820103 Amino acid feature Correlation coefficient in regression analysis [33]

18 AA20D.V Neighborhood feature Number of valine residues in the neighborhood window

19 ZIMJ680104 Amino acid feature Isoelectric point [34]

20 CHOP780209 Amino acid feature Normalized frequency of C-terminal beta-sheet [35]

Table 3. Features selected by RFE for two-layer three-class LightGBM increasing/no effect classifier sorted by importance.
Features shared by to the two predictors are underlined.

Rank Name Feature Description

1 VASM830102 Amino acid feature Relative population of conformational state C [36]

2 PRAM820103 Amino acid feature Correlation coefficient in regression analysis [33]

3 DAYM780201 Amino acid feature Relative mutability [37]

4 ChargedAA Neighborhood feature Number of charged residues in the neighborhood window

5 DOSZ010102 Amino acid feature Normalized version of SM_SAUSAGE [38]

6 NonPolarAA Neighborhood feature Number of nonpolar residues in the neighborhood window

7 PRAM820101 Amino acid feature Intercept in regression analysis [33]

8 BROC820102 Amino acid feature Retention coefficient in HFBA [39]

9 PolarAA Neighborhood feature Number of polar residues in the neighborhood window

10 MIRL960101 Amino acid feature Statistical potential derived by the maximization of the harmonic
mean of Z scores [40]

11 AA20D.D Neighborhood feature Number of aspartic acid residues in the neighborhood window

12 VASM830101 Amino acid feature Relative population of conformational state A [36]

13 SUYM030101 Amino acid feature Linker propensity index [41]

14 length Protein type feature Number of amino acids in the protein sequence

15 FASG760103 Amino acid feature Optical rotation [42]

16 CHOP780213 Amino acid feature Frequency of the 2nd residue in turn [35]

17 AA20D.L Neighborhood feature Number of leucine residues in the neighborhood window

18 LIFS790102 Amino acid feature Conformational preference for parallel beta-strands [43]

19 PosAA Neighborhood feature Number of positively charged residues in the neighborhood
window

20 AA20D.G Neighborhood feature Number of glycine residues in the neighborhood window
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The performance figures are shown separately for the three categories, and there
are clear differences between them. Normalized positive predictive value is the best for
solubility decreasing cases (0.781) followed by solubility increasing variants (0.714), while
those having no effect have the lowest score (0.534). In the case of normalized NPV, the
three categories are predicted almost equally well (0.855 to 0.891). Sensitivity again shows
big differences; this time, the solubility decreasing cases have the lowest score. Specificity
values, although variable, are closer to each other than those for sensitivity. Normalized
CPR of 0.656 shows good performance. Note that a random three-class predictor would
have a score of 0.333. The normalized GC2 score is 0.312.

Table 4. Comparison of different three-class LightGBM classifier designs on 10-fold cross-validation.

Performance Measure

Predictor

Single Three-Class Classifier Two-Layer Three-Class Classifier

All Features 30 Features
Selected by RFE All Features 34 Features

Selected by RFE

TP
− 257.1/177.2 253.6/174.8 249.6/172.1 249.2/171.8
no 135.3/135.3 138.4/138.4 139.7/139.7 142.4/142.4
+ 30.9/63.5 30.6/62.9 31.6/64.9 31.9/65.5

TN
− 238.4/323.8 236.6/320.7 250.9/340.5 249.0/337.3
no 303.3/268.9 301.5/268.9 293.2/257.4 296.1/261.5
+ 448.2/362.0 451.1/365.2 443.4/357.5 445.0/359.6

FP
− 48.4/62.0 50.2/65.1 35.9/45.3 37.8/48.5
no 70.4/116.9 72.2/116.9 80.5/128.4 77.6/124.3
+ 24.5/23.8 21.6/20.6 29.3/28.3 27.7/26.2

FN
− 22.7/15.7 26.2/18.1 30.2/20.8 30.6/21.1
no 57.6/57.6 54.5/54.5 53.2/53.2 50.5/50.5
+ 63.0/129.4 63.3/130.0 62.3/128.0 62.0/127.4

PPV
− 0.842/0.742 0.835/0.729 0.875/0.793 0.869/0.781
no 0.657/0.536 0.658/0.543 0.635/0.521 0.647/0.534
+ 0.563/0.730 0.586/0.752 0.520/0.696 0.538/0.714

NPV
− 0.913/0.954 0.901/0.947 0.893/0.942 0.891/0.941
no 0.841/0.824 0.847/0.832 0.847/0.829 0.855/0.838
+ 0.877/0.737 0.877/0.738 0.877/0.736 0.878/0.739

Sensitivity
− 0.919/0.919 0.906/0.906 0.892/0.892 0.891/0.891
no 0.701/0.701 0.717/0.717 0.724/0.724 0.738/0.738
+ 0.329/0.329 0.326/0.326 0.336/0.336 0.340/0.340

Specificity
− 0.831/0.839 0.825/0.831 0.875/0.883 0.868/0.874
no 0.812/0.697 0.807/0.697 0.785/0.667 0.792/0.678
+ 0.948/0.938 0.954/0.947 0.938/0.927 0.941/0.932

CPR 0.747/0.650 0.746/0.650 0.743/0.651 0.747/0.656

GC2 0.317/0.298 0.309/0.289 0.322/0.313 0.323/0.312

2.3. Performance on Blind Test Set

The obtained cases were initially partitioned to generate a blind test set. This dataset
was tested only after the training phase was finished. In the generation of these data, we
took into account that in the levoglucosan kinase and β-lactamase, there were several
variants that changed the same original residue. To avoid bias in testing, data partition was
made so that all substitutions within a position were either in the training or test set.

The blind test set contained 662 variants, of which 338 decreased solubility, 237
increased, and 87 had no effect on solubility. The results in Table 5 are well in line with
those for CV in Table 4. The overall scores are somewhat smaller, but otherwise, the results
are very similar to CV results. Normalized CPR was 0.545 and normalized CG2 0.157. The
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differences in individual measures for the three solubility categories are very similar to CV
data, indicating that e.g., the PPV and sensitivity of solubility increasing cases are more
difficult to predict than the two other classes.

Table 5. Comparison of different three-class LightGBM classifier designs on blind test dataset.

Performance Measure

Predictor

Direct Three-Class Classifier Two-Layer Three-Class Classifier

All Features 30 Features
Selected by RFE All Features 34 Features

Selected by RFE

TP
− 288.0/201.9 282.0/197.7 272.0/190.7 271.0/190.0
no 154.0/154.0 151.0/151.0 160.0/160.0 159.0/159.0
+ 11.0/30.0 7.0/19.1 10.0/27.2 14.0/38.1

TN
− 235.0/341.9 238.0/343.2 247.0/355.6 258.0/368.3
no 329.0/303.5 323.0/293.2 313.0/288.3 319.0/298.5
+ 551.0/451.5 541.0/442.4 544.0/445.1 529.0/431.3

FP
− 89.0/132.1 86.0/130.8 77.0/118.4 66.0/105.7
no 96.0/170.5 102.0/180.8 112.0/185.7 106.0/175.5
+ 24.0/22.5 34.0/31.6 31.0/28.9 46.0/42.7

FN
− 50.0/35.1 56.0/39.3 66.0/46.3 67.0/47.0
no 83.0/83.0 86.0/86.0 77.0/77.0 78.0/78.0
+ 76.0/207.0 80.0/217.9 77.0/209.8 73.0/198.9

PPV
− 0.764/0.605 0.766/0.602 0.779/0.617 0.804/0.643
no 0.616/0.475 0.597/0.455 0.588/0.463 0.600/0.475
+ 0.314/0.571 0.171/0.376 0.244/0.485 0.233/0.472

NPV
− 0.825/0.907 0.810/0.897 0.789/0.885 0.794/0.887
no 0.799/0.785 0.790/0.773 0.803/0.789 0.804/0.793
+ 0.879/0.686 0.871/0.670 0.876/0.680 0.879/0.684

Sensitivity
− 0.852/0.852 0.834/0.834 0.805/0.805 0.802/0.802
no 0.650/0.650 0.637/0.637 0.675/0.675 0.671/0.671
+ 0.126/0.126 0.080/0.080 0.115/0.115 0.161/0.161

Specificity
− 0.725/0.721 0.735/0.724 0.762/0.750 0.796/0.777
no 0.774/0.640 0.760/0.619 0.736/0.608 0.751/0.630
+ 0.958/0.953 0.941/0.933 0.946/0.939 0.920/0.910

CPR 0.684/0.543 0.665/0.517 0.668/0.532 0.671/0.545

GC2 0.173/0.150 0.165/0.141 0.162/0.141 0.181/0.157

2.4. Comparison to Other Tools

Of the previous methods, only SODA and the original PON-Sol could be compared
with PON-Sol2. SODA is designed to predict in addition to AASs also insertions and
deletions. It is a binary classifier that predicts variations increasing solubility or decreasing
solubility. The score of SODA is calculated from the weighted sum of five score differences.

In an effort to test whether SODA could be used in three-state prediction, we applied
different thresholds at 5, 10, and 17 to include a class for variants with no effect on solubility.
The threshold at 17 gave the best result (Table 6); however, the normalized CPR is only
0.356, and the normalized GC2 is 0.016. The corresponding scores are 0.389 and 0.011 for
PON-Sol. PON-Sol2 is significantly better, the scores being 0.545 and 0.157, respectively.
Furthermore, PON-Sol2 is clearly a more balanced predictor, the two other tools showing
larger differences for the scores of the different types of solubility effects.
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Table 6. Comparison of the prediction performance of PON-Sol2 with SODA and PON-Sol2.

Performance Measure
PON-Sol SODA SODA (5 as

Threshold)
SODA (10 as
Threshold)

SODA (17 as
Threshold) PON-Sol2

TP
− 89.0/62.4 165.0/115.7 66.0bb/46.3 33.0/23.1 23.0/16.1 271.0/190.0
no 108.0/108.0 0.0/0.0 180.0/180.0 210.0/210.0 226.0/226.0 159.0/159.0
+ 39.0/106.2 22.0/59.9 6.0/16.3 5.0/13.6 4.0/10.9 14.0/38.1

TN
− 263.0/390.6 103.0/140.9 281.0/412.0 308.0/447.7 316.0/462.6 258.0/368.3
no 280.0/301.5 425.0/474.0 181.0/161.3 106.0/96.6 61.0/54.9 319.0/298.5
+ 355.0/295.5 321.0/271.7 452.0/380.3 496.0/413.5 538.0/446.6 529.0/431.3

FP
− 61.0/83.4 221.0/333.1 43.0/62.0 16.0/26.3 8.0/11.4 66.0/105.7
no 145.0/172.5 0.0/0.0 244.0/312.7 319.0/377.4 364.0/419.1 106.0/175.5
+ 220.0/178.5 254.0/202.3 123.0/93.7 79.0/60.5 37.0/27.4 46.0/42.7

FN
− 249.0/174.6 173.0/121.3 272.0/190.7 305.0/213.9 315.0/220.9 67.0/47.0
no 129.0/129.0 237.0/237.0 57.0/57.0 27.0/27.0 11.0/11.0 78.0/78.0
+ 48.0/130.8 65.0/177.1 81.0/220.7 82.0/223.4 83.0/226.1 73.0/198.9

PPV
− 0.593/0.428 0.427/0.258 0.606/0.428 0.673/0.468 0.742/0.585 0.804/0.643
no 0.427/0.385 nan/nan 0.425/0.365 0.397/0.357 0.383/0.350 0.600/0.475
+ 0.151/0.373 0.080/0.229 0.047/0.149 0.060/0.184 0.098/0.284 0.233/0.472

NPV
− 0.514/0.691 0.373/0.537 0.508/0.684 0.502/0.677 0.501/0.677 0.794/0.887
no 0.685/0.700 0.642/0.667 0.761/0.739 0.797/0.782 0.847/0.833 0.804/0.793
+ 0.881/0.693 0.832/0.605 0.848/0.633 0.858/0.649 0.866/0.664 0.879/0.684

Sensitivity
− 0.263/0.263 0.488/0.488 0.195/0.195 0.098/0.098 0.068/0.068 0.802/0.802
no 0.456/0.456 0.000/0.000 0.759/0.759 0.886/0.886 0.954/0.954 0.671/0.671
+ 0.448/0.448 0.253/0.253 0.069/0.069 0.057/0.057 0.046/0.046 0.161/0.161

Specificity
− 0.812/0.824 0.318/0.297 0.867/0.869 0.951/0.944 0.975/0.976 0.796/0.777
no 0.659/0.636 1.000/1.000 0.426/0.340 0.249/0.204 0.144/0.116 0.751/0.630
+ 0.617/0.623 0.558/0.573 0.786/0.802 0.863/0.872 0.936/0.942 0.920/0.910

CPR 0.356/0.389 0.282/0.247 0.381/0.341 0.375/0.347 0.382/0.356 0.671/0.545

GCC 0.010/0.011 nan/nan 0.041/0.045 0.022/0.022 0.016/0.016 0.181/0.157

2.5. Large-Scale Variant Prediction

As PON-Sol2 is a fast predictor, it allows large-scale analyses of solubility effects,
such as protein-wide effects. Figure 2 shows predictions for all possible single amino
acid substitutions in the Bruton tyrosine kinase (BTK) kinase domain [44]. Loss of func-
tion variations in BTK cause X-linked agammaglobulinemia (XLA), which is a primary
immunodeficiency due to a block in the B cell maturation pathway. BTK is a central sig-
naling molecule during B cell development, and its activity is crucial for maturation of
the cells. Gain of function variants in the B cell receptor signaling pathway, where BTK
is involved, appear in B cell malignancies, such as chronic lymphocytic leukaemia and
Waldenström macroglobulinemia. XLA-causing variants are collected to BTKbase [45];
there are currently over 1800 variants, amino acid substitutions being among the most
common alterations. However, the effects of the variants on solubility are not known, apart
from some individual cases.
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Figure 2. Predicted solubility and disease-related variations in BTK kinase domain (PDB id 5p9j (69), covalent inhibitor
at the ATP binding site is in yellow. (A) Numbers of variations increasing solubility, (B) numbers of variations having no
effect on solubility, (C) numbers of variants decreasing solubility, and (D) numbers of XLA-causing variants. Predictions
were made for all 19 single amino acid substitutions at every position. bPathogenicity-related variants were predicted with
PON-P2. Keys in the bottom show the numbers of variants predicted to have the effect.

Figure 2A–C shows predictions for alterations that increase, decrease, or have no
effect on solubility. In addition, the tolerance/pathogenicity predictions were obtained
for all substitutions with a reliable PON-P2 predictor [4]. The method classifies variants
in three categories: pathogenic, benign, and unclassified variants. Colour coding was
used to indicate the numbers for predicted disease-causing variants, which are shown in
Figure 2D. The numbers of predicted solubility decreasing alterations in Figure 2C imply
certain correlation with 2D. Since many effects lead to XLA, we cannot even expect to see a
1:1 correlation with one effect. Solubility is just one of the effects of variations that lead to
XLA. There are substantially more solubility-affecting variants in many positions where
there are many disease-related variants.

2.6. PON-Sol2 Web Application

PON-Sol2 web application is freely available at http://structure.bmc.lu.se/PON-Sol2/
(accessed on 26 July 2021) and http://139.196.42.166:8010/ (accessed on 26 July 2021). There
is a user-friendly web interface. It accepts variations in two formats: sequence and identifier
formats. Sequence submission is for FASTA format amino acid sequence(s) and amino
acid substitutions in it (them). Identifier submission requires amino acid substitutions
and one of UniProtKB/Swiss-Prot accession ID, Entrez gene ID, or Ensemble ID. For
these submissions, PON-Sol2 makes predictions only for variations leading to amino acid
substitutions. Batch submission including all variants and proteins of interest is accepted
and recommended. PON-Sol2 provides a complete report, which is sent to the user by
email when ready.

3. Discussion

Amino acid substitutions can have widely differing effects; for a recent discussion of
protein function affecting effects and mechanisms, see [46]. Solubility is one factor that
can contribute to changes to function. Some single amino acid changes are responsible for
substantially decreased or improved solubility. Many proteins are expressed in concen-
trations close to their maximal solubility [6]. Predictions of solubility effects have several
applications. They can be used in variation interpretation in diseases. Protein engineering
could benefit from reliable predictions of solubility alterations due to variations. Know-
ing which residue to change and how the properties could be changed can be used to
design proteins that could be expressed in large quantities in various host organisms and
expression systems.

http://structure.bmc.lu.se/PON-Sol2/
http://139.196.42.166:8010/
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Protein crystallization is another application area for more soluble proteins. X-ray
crystallography is based on highly ordered crystals. Despite extensive trials, all proteins
are not amenable for crystallization. There are many reasons; one of the common ones is
that the protein is not soluble in the required concentrations. This could be improved by
modifying the protein to increase its solubility. Even Nuclear Magnetic Resonance (NMR)
studies of protein structures in solution require high protein concentrations and would
thus benefit from solubility-increasing variants.

PON-Sol2 shows clearly improved performance in comparison to the original PON-
Sol. This is expected from much larger training data, 5666 vs. 406 cases. Despite the
substantial growth of data, it would still be possible to increase the performance with
even bigger sets of experimental cases originating from larger number of proteins. We
would need data for variations in different types of proteins and in different structural and
sequence contexts.

The single and two-layer implementations did not show marked differences in predic-
tion performance. When training the method, the selected features had relatively small
significance scores, unlike in the pathogenicity/tolerance predictor PON-P2 [4]. It was
possible to reduce the number of features to 34 in the two-layer predictor. The performance
improvement in comparison to a predictor with all the features was not very high. The
major benefit comes from the fact that with the limited set of features, representativeness of
the variant space may be significantly better. The method is fast and reliable and facilitates
predictions even for large numbers of variants.

4. Materials and Methods
4.1. Data

The dataset contains all the original PON-Sol cases of 443 single amino acid sub-
stitutions in 71 proteins [9]. In addition, we collected based on an extensive literature
search 10,758 variants in six additional proteins: 10 amino acid substitutions (AASs) in
ThreeFoil [47], 76 in Escherichia coli cytotoxin [48], 6 in aminoacyl-tRNA synthetase [49],
3 in α-spectrin SH3 domain [50], 6298 in levoglucosan kinase [51], and 4365 inTEM-1 β-
lactamase [51]. Altogether, there were 11,201 AASs in 77 proteins. We paid special attention
to detect cases affecting (or not) solubility. The literature for aggregation-related variants is
substantially larger.

The variants were grouped into three categories: solubility increasing and decreasing
cases and those having no effect on solubility. The classifications were obtained from
original publications, except for the last two proteins. For those, solubility scores of yeast
surface display (YSD) and twin-arginine translocation (Tat) were considered. In the end,
only YSD data were used, since the Tat data contained lots of false negatives. As the
threshold, we used 0.15 in YSD data to define the three types of variations [51]. Since the
dataset was heavily biased toward solubility-decreasing cases, we randomly excluded
solubility decreasing cases in levoglucosan kinase and TEM-1 β-lactamase data, so that we
finally had 6328 variations, 3136 of which decreased solubility, 1026 increased solubility,
and 2166 had no effect, with the ratio of 1:0.69:0.34.

The variants were randomly partitioned into training and test sets. In the case of
levoglucosan kinase and TEM-1 β-lactamase, the division was made position wise; i.e.,
all variations in a certain position were used either for training or testing. In total, 5666
variants (2798 solubility decreasing, 1929 increasing, and 939 without effect on solubility)
were used for training. The blind test contained 662 variants, of which 338 decreased
solubility, 237 increased solubility, and 87 had no effect.

The datasets are freely available in VariBench database [52,53] at http://structure.bmc.
lu.se/VariBench/ponsol2.php (accessed on 26 July 2021).

4.2. Features

We collected as large a set of features as possible, since it is not possible to know
beforehand which features and their combinations are useful for predictions. We started

http://structure.bmc.lu.se/VariBench/ponsol2.php
http://structure.bmc.lu.se/VariBench/ponsol2.php
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with 1081 features of which 617 were amino acid features, 2 were conservation features,
436 were variation type features, 25 were neighborhood features, and 1 was a protein-type
feature.

Amino acid features were from the AAindex database (accessed on 2 March 2020) [54]
and selected as previously described for PON-P2 [4] and PON-MMR2 [55] predictors.
Conservation features included the SIFT score and the number of hits. Protein sequences
were used as queries in a DIAMOND v0.9.29 [56] search against the NCBI (accessed on 2
March 2020) bnon-redundant database to find homologous sequences. Then, the sequences
with percentage of identical matches greater than 90% were aligned by BLAST [57] and
used to calculate the SIFT score (v6.2.1) [58] for each variation.

Variation-type features contained a 20 × 20 matrix for substitutions. Another 6 × 6
matrix was built according to amino acid grouping to hydrophobic (V, I, L, F, M, W, Y, and
C), negatively charged (D, E), positively charged (R, K, H), conformational (G, P), polar (N,
Q, S), and others (A, T), as previously described [59].

Neighborhood features were defined with a 20-dimensional vector of neighboring
residues that counts the occurrences of each amino acid type within a window of 23
positions; the variant position was in the middle. Features for NonPolarAA, PolarAA,
ChargedAA, PosAA, and NegAA denote the numbers of nonpolar, polar, charged, pos-
itively charged, and negatively charged neighborhood residues [60], respectively. The
protein-type feature is for the length of the protein sequence.

4.3. Algorithms

Three machine learning algorithms were initially tested—random forests [61], XG-
Boost [62], and LigthGBM [20]. All the algorithms were implemented in Python in the
standard scikit-learn package [63].

Random forests is an ensemble algorithm. It applies several decision trees on the
subset of the dataset and uses the average accuracy of each decision tree to improve the
performance and to reduce overfitting. The gradient boosting model evaluates the output
features based on the combination output result of weak prediction learner models. It
minimizes a loss function to optimize the model. Sequential models are constructed using
the decision trees until maximum accuracy is achieved.

XGBoost and LigthGBM are implementations of gradient boosting and based on
decision trees. Initial results for LightGBM and XGBoost were similar and better than
for random forests. As a result of similar performance, we chose LightGBM, which is
faster due to utilizing Gradient-based One-Side Sampling (GOSS) and Exclusive Feature
Bundling (EFB).

4.4. Feature Selection

Features were chosen with Recursive Feature Elimination (RFE) [64]. In the beginning
of feature selection, RFE was used to train a classifier with all features and to define the
importance of all features. Then, the least important feature was eliminated. This was
repeated recursively to reduce the features until the specified number was reached. The
numbers of features tested were all features, 100, 50, and 20 features. Then, predictors were
trained with the selected features and tested. As the results were very similar for different
numbers of features, we chose the predictor with the smallest number of features to avoid
the curse of dimensionality.

4.5. Performance Evaluation

For single group classification of solubility, measures were determined as previously
suggested [23,24]. We included positive predictive value (PPV), negative predictive value
(NPV), sensitivity, and specificity. Of the recommended measures, accuracy and Matthews
correlation coefficient were not used, as the tool predicts three classes. TP, TN, FP, and FN
represent the numbers of true positives, true negatives, false positives, and false negatives,
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respectively. The standard performance measures were computed by using the following
Equations (1)–(7):

PPV =
TP

TP + FP
(1)

NPV =
TM

TN + FN
(2)

Sensitivity =
TP

TP + FP
(3)

Speci f icity =
TN

TN + FP
. (4)

To evaluate the overall performance, the correct prediction ratio (CPR) and the gen-
eralized squared correlation (GC2) were used, the latter has been suggested for K-class
classification [65]. CPR is the percentage of correct predictions. GC2 represents the cor-
relation coefficient of the classification ranging from 0 to 1; larger values show better
performance. CPR and GC2 are defined as

CPR =
∑i zii

N
, and (5)

GC2 =
∑ij

(zij−eij)
2

eij

N(K − 1)
, (6)

where K is the number of classes and N is the number of cases. zij represents the number of
cases of class i to class j, xi = ∑jzij represents the number of the inputs associated with class
I, and yi = ∑jzij represents the number of inputs predicted to be in class i. The expected
number of cases in cell i, j of the confusion matrix can be defined as

eij =
xi × yj

N
. (7)

As the numbers of variants were not balanced in the three solubility categories, the
values were normalized to allow the calculation of reliable performance measures.
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44. Vetrie, D.; Vořechovský, I.; Sideras, P.; Holland, J.; Davies, A.; Flinter, F.A.; Hammarström, L.; Kinnon, C.; Levinsky, R.J.; Bobrow,

M.; et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nat.
Cell Biol. 1993, 361, 226–233. [CrossRef]

45. Väliaho, J.; Smith, C.I.E.; Vihinen, M. BTKbase: The mutation database for X-linked agammaglobulinemia. Hum. Mutat. 2006, 27,
1209–1217. [CrossRef] [PubMed]

46. Vihinen, M. Functional effects of protein variants. Biochimie 2021, 180, 104–120. [CrossRef] [PubMed]
47. Broom, A.; Jacobi, Z.; Trainor, K.; Meiering, E.M. Computational tools help improve protein stability but with a solubility tradeoff.

J. Biol. Chem. 2017, 292, 14349–14361. [CrossRef]
48. Tripathi, A.; Gupta, K.; Khare, S.; Jain, P.C.; Patel, S.; Kumar, P.; Pulianmackal, A.J.; Aghera, N.; Varadarajan, R. Molecular

Determinants of Mutant Phenotypes, Inferred from Saturation Mutagenesis Data. Mol. Biol. Evol. 2016, 33, 2960–2975. [CrossRef]
[PubMed]

49. Sauter, C.; Lorber, B.; Gaudry, A.; Karim, L.; Schwenzer, H.; Wien, F.; Roblin, P.; Florentz, C.; Sissler, M. Neurodegenerative
disease-associated mutants of a human mitochondrial aminoacyl-tRNA synthetase present individual molecular signatures. Sci.
Rep. 2015, 5, 17332. [CrossRef] [PubMed]

50. Espargaró, A.; Castillo, V.; De Groot, N.S.; Ventura, S. The in Vivo and in Vitro Aggregation Properties of Globular Proteins
Correlate With Their Conformational Stability: The SH3 Case. J. Mol. Biol. 2008, 378, 1116–1131. [CrossRef]

51. Klesmith, J.R.; Bacik, J.-P.; Wrenbeck, E.E.; Michalczyk, R.; Whitehead, T.A. Trade-offs between enzyme fitness and solubility
illuminated by deep mutational scanning. Proc. Natl. Acad. Sci. USA 2017, 114, 2265–2270. [CrossRef] [PubMed]

52. Sarkar, A.; Yang, Y.; Vihinen, M. Variation benchmark datasets: Update, criteria, quality and applications. Database 2020, 2020.
[CrossRef]

53. Nair, P.S.; Vihinen, M. VariBench: A Benchmark Database for Variations. Hum. Mutat. 2013, 34, 42–49. [CrossRef]
54. Kawashima, S. AAindex: Amino Acid index database. Nucleic Acids Res. 2000, 28, 374. [CrossRef]
55. Niroula, A.; Vihinen, M. Classification of Amino Acid Substitutions in Mismatch Repair Proteins Using PON-MMR2. Hum. Mutat.

2015, 36, 1128–1134. [CrossRef]
56. Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [CrossRef]
57. Boratyn, G.M.; Camacho, C.; Cooper, P.; Coulouris, G.; Fong, A.; Ma, N.; Madden, T.L.; Matten, W.T.; McGinnis, S.D.; Merezhuk,

Y.; et al. BLAST: A more efficient report with usability improvements. Nucleic Acids Res. 2013, 41, W29–W33. [CrossRef]
58. Sim, N.-L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT web server: Predicting effects of amino acid substitutions

on proteins. Nucleic Acids Res. 2012, 40, W452–W457. [CrossRef]
59. Shen, B.; Vihinen, M. Conservation and covariance in PH domain sequences: Physicochemical profile and information theoretical

analysis of XLA-causing mutations in the Btk PH domain. Protein Eng. Des. Sel. 2004, 17, 267–276. [CrossRef] [PubMed]
60. Lockwood, S.; Krishnamoorthy, B.; Ye, P. Neighborhood Properties Are Important Determinants of Temperature Sensitive

Mutations. PLoS ONE 2011, 6, e28507. [CrossRef]
61. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

http://doi.org/10.1093/protein/8.7.641
http://doi.org/10.1111/j.1432-1033.1982.tb07002.x
http://www.ncbi.nlm.nih.gov/pubmed/7151796
http://doi.org/10.1021/ma00230a022
http://doi.org/10.1016/0022-5193(68)90069-6
http://doi.org/10.1002/9780470122921.ch2
http://doi.org/10.1021/ma00241a004
http://doi.org/10.1093/bioinformatics/17.8.686
http://doi.org/10.1016/0003-2697(82)90238-X
http://doi.org/10.1006/jmbi.1996.0704
http://www.ncbi.nlm.nih.gov/pubmed/9000638
http://doi.org/10.1093/bioinformatics/btg031
http://doi.org/10.1038/282109a0
http://www.ncbi.nlm.nih.gov/pubmed/503185
http://doi.org/10.1038/361226a0
http://doi.org/10.1002/humu.20410
http://www.ncbi.nlm.nih.gov/pubmed/16969761
http://doi.org/10.1016/j.biochi.2020.10.009
http://www.ncbi.nlm.nih.gov/pubmed/33164889
http://doi.org/10.1074/jbc.M117.784165
http://doi.org/10.1093/molbev/msw182
http://www.ncbi.nlm.nih.gov/pubmed/27563054
http://doi.org/10.1038/srep17332
http://www.ncbi.nlm.nih.gov/pubmed/26620921
http://doi.org/10.1016/j.jmb.2008.03.020
http://doi.org/10.1073/pnas.1614437114
http://www.ncbi.nlm.nih.gov/pubmed/28196882
http://doi.org/10.1093/database/baz117
http://doi.org/10.1002/humu.22204
http://doi.org/10.1093/nar/28.1.374
http://doi.org/10.1002/humu.22900
http://doi.org/10.1038/nmeth.3176
http://doi.org/10.1093/nar/gkt282
http://doi.org/10.1093/nar/gks539
http://doi.org/10.1093/protein/gzh030
http://www.ncbi.nlm.nih.gov/pubmed/15082835
http://doi.org/10.1371/journal.pone.0028507
http://doi.org/10.1023/A:1010933404324


Int. J. Mol. Sci. 2021, 22, 8027 15 of 15

62. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, San Francisco, CA, USA, 13–17
August 2016; pp. 785–794.

63. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

64. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn.
2002, 46, 389–422. [CrossRef]

65. Baldi, P.; Brunak, S.; Chauvin, Y.; Andersen, C.A.F.; Nielsen, H. REVIEW Assessing the Accuracy of Prediction Algorithms for
Classification: An Overview. Bioinformatics 2000, 16, 412–424. [CrossRef]

http://doi.org/10.1023/A:1012487302797
http://doi.org/10.1093/bioinformatics/16.5.412

	Introduction 
	Results 
	Feature Selection and Method Training 
	Performance Assessment 
	Performance on Blind Test Set 
	Comparison to Other Tools 
	Large-Scale Variant Prediction 
	PON-Sol2 Web Application 

	Discussion 
	Materials and Methods 
	Data 
	Features 
	Algorithms 
	Feature Selection 
	Performance Evaluation 

	References

