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Coupling industrial development and environmental protection is one of the most
important challenges for the coming years. During the industrial revolution in the early
nineteenth century, both the continuously growing population and the industrialization
of processes provoked an associated increase in energy demand, waste generation and
pollutant emissions in both water resources and the atmosphere [1]. This human impact
on the environment needs to be mitigated in the coming years in order to ensure better
sustainability. Among the most popular proposals recommended by scientists as roadmaps,
the substitution of the current energy model based on fossil fuels by renewable energies
and hydrogen, the reduction of current energy requirements and the valorization of waste
into new materials and/or new energy resources can be highlighted [2,3]. However, CO2
capture processes and wastewater treatments will also be necessary in the meantime to
recover previous levels of pollutants in the environment [4,5]. Of course, the improvement
in efficiency in current processes, especially inside the chemical industry, would clearly
help to achieve all these goals. In this context, the use of membranes and membrane
reactors appears as an attractive technology to be taken into account for ensuring high-
purity products with relatively low energy requirements. In fact, membrane reactors are
able to integrate both chemical reaction and separation steps in a unique device, providing
multiple benefits such as the reduction in the amount of equipment in industrial plants
and the possibility to overcome the thermodynamic equilibrium restrictions [6,7]. In this
context, the current Special Issue provides some of the most recent advances in this field,
covering membrane and membrane reactor designs, as well as particular applications in
which the use of this technology provides clear advantages compared to other conventional
processes. In short, seven different research studies are published in this Special Issue.

First, B.A. Bishop and V. Lima [8] present a general overview of both design and
control challenges typically occurring in membrane reactors caused by the integration of
phenomena and reducing degrees of freedom. They propose a novel approach in which
smaller modules based on specific phenomena (i.e., heat or mass transfer processes and
chemical reactions) are consecutively combined in series to produce the final modular
membrane-based unit. This approach is analyzed by using a process operability analysis
to maximize the operability index, demonstrating a clear improvement in the original
membrane reactor design when using this strategy. Going into detail about particular
applications of membrane reactors, J. Corredor et al. [9] try to improve the production
of hydrogen from a 20% vol. methanol solution by using new membranes in which
2% rGO/TiO2 composite photo-catalysts are supported over polymer membranes made
of NafionTM. Different immobilization techniques of the active catalysts on the base
membrane (solvent-casting, spraying and dip-coating) are compared by analyzing their
experimental performance for hydrogen production under UVA light irradiation, in some
cases for long operation times. The most relevant insights reached from these experiments
will improve knowledge of the use of photocatalytic membranes for hydrogen production
processes while facilitating larger-scale applications.
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In contrast, several contributions of the current Special Issue address diverse aspects
related to hydrogen production or purification through metal membranes, particularly fully
dense palladium membranes. In this context, P. Parvasi et al. [10] analyze a theoretical on-
board membrane reactor containing H2-selective Pd-Ag membranes to produce ultra-pure
hydrogen by methane steam reforming to directly feed a fuel cell vehicle. Under this config-
uration, 5 kg/day of pure H2 can be produced with a consumption of around 250 and 350 kg
of methane and steam water, respectively; achieving an estimated autonomy for the vehicle
up to 500 km and reducing the overall CO2 emissions in comparison with a conventional
gasoline-powered vehicle. A. Fernández et al. [11] present a computational fluid dynamics
model for the separation of H2/N2 binary mixtures in a membrane permeator module
containing a composite Pd-membrane prepared by Electroless Pore-Plating (ELP-PP) onto
a porous stainless steel (PSS) support. The membrane is modeled by considering PSS and
palladium stacked layers in a sandwich-type structure and analyzing the hydrogen flow per-
meation on contrary directions (in–out and out–in modes), as well as multiple other typical
operating conditions (i.e., temperature, pressure, and H2-concentration in the inlet stream).
In all conditions, an excellent agreement between both predicted and experimental data is
obtained, evidencing that concentration–polarization effects near the membrane surface
were not a limit for the hydrogen permeation. D. Martinez-Diaz et al. [12] reveal the results
reached when using ELP–PP membranes in which a graphite intermediate layer was incor-
porated to modify the original surface properties of the raw PSS support. This membrane
exhibits an excellent mechanical resistance with a very high ideal selectivity to hydro-
gen (≥10,000), H2-permeances between 3.24 × 10−4 and 4.33 × 10−4 mol m−2 s−1 Pa−0.5,
and an average estimated thickness around 17 µm. However, in contrast to the above-
mentioned work, the permeance progressively decreases up to around 33% for binary
H2–N2 mixtures containing 40 vol% N2 due to concentration–polarization phenomena.
This topic is completed with the work published by T.A. Peters et al. [13], in which they
analyze the flux-reducing tendency of Pd–Ag alloy membranes when operating with hy-
drogen mixtures containing certain hydrocarbons (butane and butylene) in a wide range of
operating conditions. A slight decrease in the H2 permeance is produced in the presence
of butane, although the effect is almost immediately recovered when the hydrocarbon
is removed from the mixture. However, the general flux-reducing tendency is notice-
ably greater in the presence of butylene, being further affected by parameters such as the
H2/butylene ratio, temperature and time of exposure. For these experiments, in which
hydrogen mixtures containing butylene are evaluated, an optimal temperature in the range
250–300 ◦C is selected to reach the highest hydrogen flux. Lower temperatures make
the competitive adsorption of butylene over hydrogen more pronounced, thus noticeably
decreasing initial permeate flux.

Finally, a different type of porous membranes is also presented to be used in membrane
reactors for the oxidative coupling of methane (OCM) in the work carried out by A.
Cruellas et al. [14]. In particular, the performance reached by a traditional packed-bed
reactor containing Mn-Na2WO4/SiO2 as a catalyst is compared with the equivalent one
working with a membrane reactor in which a symmetrical MgO porous membrane is
incorporated. The presence of a membrane in the system provokes a better distribution
of feeding oxygen along the axial direction, although the overall performance remains
almost constant due to adverse effects of back-permeation. The authors conclude the study
with a sensitivity analysis of the effective diffusion coefficient, suggesting the necessity
of properly tuning the membrane properties to achieve a real improvement of the OMC
system performance.

In conclusion, the current Special Issue, dedicated to research on novel reactors aim-
ing at real process intensification, collects several relevant insights about the technology
itself and some useful critical discussions focused on the importance of diverse membrane
materials for each particular application, including both porous and dense membranes. Nu-
merous materials and processes have already demonstrated their performance in various
novel separation applications, and recent findings are under investigation for the in-depth
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characterization and upscaling for practical applications. This Special Issue introduces
guidelines for the sustainable development of these separation processes.
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