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Information about myocardial motion and deformation is key to differentiate normal

and abnormal conditions. With the advent of approaches relying on data rather

than pre-conceived models, machine learning could either improve the robustness of

motion quantification or reveal patterns of motion and deformation (rather than single

parameters) that differentiate pathologies. We review machine learning strategies for

extracting motion-related descriptors and analyzing such features among populations,

keeping in mind constraints specific to the cardiac application.
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1. INTRODUCTION

1.1. Myocardial Motion and Deformation Analysis: What For?
Pump efficiency can discriminate failing from healthy hearts, as quantified by volume and ejection
fraction. Clinicians are well aware of the limitations of these simple measurements to face the
complexity of heart disease, and recommend finer markers of cardiac mechanical dysfunction (1).
Myocardial motion (displacement or velocity) and deformation (strain or strain rate) are richer
descriptors of (ab)normal cardiac function (2, 3). They can provide characteristic spatiotemporal
signatures for disease at each location of the myocardium and each instant of the cardiac cycle.
They are often projected onto anatomically-relevant directions to facilitate interpretations (4).
Interestingly, they can be estimated from routine modalities such as echocardiography and
magnetic resonance (MR) (5), and have therefore been thoroughly investigated for a wide range
of applications.

1.2. Machine Learning for Myocardial Motion and Deformation
Analysis: What For?
Machine learning builds upon models whose optimal parameters are learnt from a set of samples
representative of the studied population. This data-driven approach ismore flexible than traditional
methods (e.g., variational), as demonstrated for myocardial segmentation (6, 7), and has strong
potential for the analysis of complex descriptors such as myocardial motion and deformation.
In essence, machine learning seeks to learn data representations (either explicit or hidden) for
better solving a supervised problem or for characterizing the data distribution. This often involves
dimensionality reduction to facilitate the analysis of high-dimensional descriptors, and requires
navigating between the low-dimensional/latent space and high-dimensional/original space for
better interpretation.
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1.3. Which Data Approach for Learning?
Over the years, researchers have gained detailed knowledge of the
complexity of cardiac mechanics, and proposed physiologically-
relevant motion and deformation descriptors, from global strain
in a single anatomical direction to richer representations such
as 3D+t vector or tensor fields. Most approaches decompose
the analysis into two steps (Figure 1A): the extraction of
motion/deformation descriptors from image sequences, followed
by their analysis over a population of interest. Machine learning
can address both parts, and we discuss these topics separately
(sections 2 and 3). Deep neural networks (8) may address the
two parts in Figure 1A, but also enable the analysis of population
data directly from the image sequences by looking for image
features not necessarily interpretable or visualizable, but optimal
to answer the clinical question of interest (Figure 1B). We
specifically comment on this strategy, which is more recent and
preliminary, in section 4.7.

2. MOTION AND DEFORMATION
ESTIMATION

Traditionally, myocardial motion fields have been estimated
from images using standard image registration techniques
such as optical flow (9), free-form deformation (10), or block
matching (11). Naturally, this depends on the algorithm ability
to catch motion-related structures, which strongly varies with
the imaging modality. Tags and speckles can directly be tracked
within the myocardium in tagged MR and 2D/3D echography
(within the limits of tag fading, speckles temporal consistency,
and out-of-plane motion), contrary to cine MR where algorithms
tend to approximatemotion from endocardial/epicardial contour
tracking. A dedicated review (5) details the standards for spatial
and temporal resolution and the influence of imaging parameters
on the estimation of myocardial deformation.

Approaches based on neural networks challenge the
variational formulation of motion estimation, as shown on

FIGURE 1 | Two possible approaches for analyzing myocardial motion and deformation from image sequences using machine learning: (A) extraction of descriptors

followed by their analysis, and (B) both parts addressed at once.

video image sequences with the FlowNet2 convolutional neural
network (CNN) architecture (12) that focuses on optical flow.
Similar approaches have been applied to cardiac imaging
(13, 14), but raise several methodological questions. First, the
generalization ability of the trained networks to estimate a wide
range of deformations at multiple scales still needs to be verified.
This is critical for specific disease traits of lower prevalence.
Furthermore, robustness to a variety of routine clinical imaging
conditions (different image qualities, fields of view, devices, etc.)
needs to be established. Second, supervised CNN-based motion
estimators such as FlowNet2 do not embed any regularization,
and are therefore sensitive to imaging noise if it differs from the
training database. This not the case for unsupervised approaches
like (13), which use an intensity-based loss, combined with a
regularization term as in classical image registration. Finally,
motion features can boost segmentation performances (15–17),
as looking at several frames improves the manual segmentation
of physicians. Further details are given in a review dedicated to
deep learning for motion estimation in medical imaging (18).

Statistical models learnt from data can act as regularizers for
tracking algorithms. (19) used dictionary learning as a sparse
basis for cardiac motion fields to feed the regularization. Within
deep learning, auto-encoders can encode spatial transformations
into a low-dimensional space and provide powerful projection
and reconstruction operators to connect with the tracking in the
original image space (20).

Additional constraints specific to the cardiac application can
provide more plausible registration outputs, such as invertibility
(the myocardium does not fold) and incompressibility, as
investigated for the diffeomorphic LogDemons (21) and free-
form-deformation algorithms (22). Temporal consistency has
been enforced through 4D representations of motion (23, 24),
for multiple pairwise transformations simultaneously (25), or
for intra/inter-subject mappings (26). Motion and deformation
estimation with machine learning should also consider these
aspects for better consistency and robustness.
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3. MOTION AND DEFORMATION ANALYSIS

3.1. Before the Analysis: Data
Normalization
Cardiac image data often need to be normalized in terms of
anatomy, frame rate or cycle phases, before any statistical or
machine learning analysis.

Image sequences can be registered using a 4D transformation
model based on e.g., free-form deformation (10) or demons (26).
This approach quantifies the spatiotemporal differences between
the image sequences, analyzed statistically afterwards through
deformation-based morphometry methods.

Motion or deformation descriptors (or any other data) from a
given individual can also be transported to a reference template
(generally, a central case at end-diastole). This involves local
reorientation of the motion/deformation fields (27, 28), adjusted
to the addressed clinical question (29). Temporal differences
between sequences can also be normalized by resampling before
the motion extraction [e.g., piece-wise linear interpolation
(30)]. Recent approaches transport the whole subject-specific
trajectory instead of the descriptors of interest, with specific
computational considerations (31, 32). Automatically estimating
multiple templates across the sequence may also be well adapted
to the cardiac circular/periodic dynamics (33).

In both strategies, existing data correspondences
facilitate the normalization. Spatial alignment can rely on
anatomical landmarks (apex, valve ring, etc.) or point-to-point
correspondences obtained from model-based tracking of the
anatomy. Temporal alignment can use physiologically-relevant
instants, such as the maximum contraction (10) or QRS and
valve events (28).

3.2. Learning From Motion and
Deformation Data
Machine learning can benefit a wide range of clinical problems.
Unsupervised approaches learn a data representation that
uncovers useful insights into the data distribution, but without
explicit reference to a particular clinical question. Clustering
and dimensionality reduction techniques fall into this category.
Supervised approaches train a model for a specific task, and
labels/annotations are provided as supervision. For example,
diagnosing disease may involve binary labels for supervision
(disease/healthy) and the task would be to predict these
labels from the motion data. The type of labels determines
the task addressed by the model: categorical labels mean
classification, whereas discrete or continuous labels imply
regression. Supervised approaches also involve learning a (lower
dimension) representation of the data that facilitates the
classification/regression, but this representation can be formed
in an unsupervised or supervised way, as described below.

3.2.1. Unsupervised Learning
Unsupervised motion and deformation analysis shares objectives
with statistical atlases, regarding how to characterize variability
across a population. Pioneering works directly applied a principal
component analysis (PCA) on myocardial displacements at each
spatiotemporal location (34) over a healthy population, later

extended through the estimation of local abnormalities in the
myocardial velocities of a given subject compared to a reference
population (28, 35). However, these analyses consider each spatial
location and temporal instant independently from the others.
The statistical analysis can also consider the motion patterns
over the entire cardiac cycle as high-dimensional objects, as
simply demonstrated through a PCA on temporal strain traces
concatenated over the heart segments (36, 37). This approach
reminds earlier work on Active Appearance Motion Models
(38), which statistically analyzed both displacement and image
intensity information over the entire cardiac cycle.

More advanced strategies estimate a low-dimensional
space that encodes the high-dimensional myocardial
motion/deformation data and navigate through this space,
although this requires specific care. Myocardial shapes across
a population can be considered as originating from one
or several references under the action of a transformation
such as a diffeomorphic warping. In this case, the space
of myocardial shapes is related to the (known) non-linear
high-dimensional space of diffeomorphic transformations.
This space is a manifold, and known tools exist to perform
statistics on such transformations and therefore on myocardial
shapes while preserving this data structure (39, 40). Myocardial
motion/deformation patterns may also be considered as
originating from a non-linear high-dimensional manifold,
but in this case the manifold is unknown. Machine learning
allows estimating this space from data, and can overcome the
limitations of linear techniques such as PCA that ignore this
known structure. A general framework (41) groups the vast
variety of existing manifold learning techniques. A graph is
built across high-dimensional samples to approximate the
manifold, and diagonalization, and dimensionality reduction
processes provide a low-dimensional space that encodes the
data. Techniques generally differ on how input samples are
related within the graph, either locally (e.g., distance between
neighbors, or local structure variations expressed in the graph
Laplacian) or globally (e.g., geodesic distance). These techniques
improve the statistical analysis of myocardial motion and
deformation patterns. They can represent the continuum of
disease from normality while preserving the data structure (42).
The unsupervised representation of populations is particularly
interesting when existing labels are not fully trusted, as in heart
failure with preserved ejection fraction (43, 44) or when a
supervised formulation of the clinical problem is uncertain, such
as outcome from cardiac resynchronization therapy (45).

Nonetheless, these techniques normally lack explicit
mappings between the high-dimensional and low-dimensional
spaces, which are typically approximated using out-of-sample
reconstruction/regression (46) and are therefore inexact. Deep
learning auto-encoders explicitly address this by simultaneously
learning how to encode and decode high-dimensional data
with a limited number of parameters while minimizing the
reconstruction error. However, this also requires constraining
the distribution of samples in the latent space so that a statistical
analysis can still be performed on it afterwards, as in variational
auto-encoders (47). These techniques are promising for the
analysis of myocardial motion and deformation and start
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being used in cardiac imaging for segmentation (48, 49) or
segmentation-based biomarkers (50).

3.2.2. Supervised Learning
As noted above, designing a supervised learning model
traditionally consists of two steps (Figure 1A). First, the input
data are transformed to a new representation that facilitates the
task performance. Second, a classification or regression model is
trained to predict the label given the new representation. More
recent techniques such as deep learning combine these two steps:
the representation is learnt and optimized during the model
training (Figure 1B). Below, we first summarize works using
supervised learning in the traditional way and then we briefly
review more recent deep learning approaches.

The new data representation can be estimated using
knowledge of the labels (supervised way) or without such
knowledge (unsupervised). In other words, although the
final classification or regression model is supervised, the
transformation to a new representation can be unsupervised.
Examples include the dimensionality reduction methods
reviewed in section 3.2.1, such as PCA (51–53) or non-linear
manifold learning (53, 54). The use of hand-crafted features
such as volumes/diameters/strains (55) and radius/thickness
(56, 57) also falls into this category, although one could argue
that knowledge of the task was also used to design these features.
A supervised approach was taken in Dawes et al. (58), in which
supervised PCA was used to find the principal components of
displacement data related to survival.

Classification or regression come once the new representation
is obtained. Many classification algorithms have been used,
including support vector machines (SVM) (55, 59), random
forests (55), variants of dictionary learning (59–61) and ridge
logistic regression (57). Regression applications rely on svm (62)
and multiscale kernel regression (54).

Recent research has increasingly focused on deep learning for
both classification and regression from dynamic imaging data.
In these approaches, the activations of intermediate network
layers can stand as a transformed representation formed in a
supervised way. Inputs to these models are commonly dynamic
image intensity data, but segmentation data has also been used
(63). For classification, variants of auto-encoders have been a
common architecture choice. An auto-encoder is a deep learning-
based dimensionality reduction technique, and classification
can be performed in the low-dimensional latent space learnt
without supervision (53), or in a supervised way by including
classification accuracy into the loss function (48, 63, 64). Auto-
encoders are attractive as they allow examining the classification
features in the original image space, leading tomore interpretable
analyses. CNNs have also been proposed for classification (65),
and a challenge on automated diagnosis was recently organized
(7). Regression tasks such as estimating volume and/or ejection
fraction may also involve CNNs (66), as tested on the recent
Kaggle Challenge data1. Variational auto-encoders have also been
used to perform regression in the latent space (50).

1Available online at: https://www.kaggle.com/c/second-annual-data-science-

bowl/data

A wide set of classification applications involved myocardial
motion or deformation, including identifying abnormal wall
motion (59, 61), predicting therapy response (67) and survival
(58, 64), and diagnosing myocardial infarct (16, 60, 65, 68)
or pathology (7, 48, 57, 63). Regression applications aimed at
localizing myocardial infarct (54), grading myocardial motion
defects (62), and estimating volumes (66).

Detecting some form of abnormality is a common theme
for supervised learning applications, for which two main
strategies exist. In the first one, the transformed representation
only involves healthy subjects: the distribution of samples
in the low-dimensional space therefore represents healthy
variations, and subsequent subjects who fall away from the
healthy distribution are considered abnormal, as investigated on
myocardial velocities (28, 35) and shapes (69). The other strategy
learns a low-dimensional representation from both healthy and
pathological subjects, where supervised classification can be
applied afterwards (70).

4. SPECIFICITIES OF THE CLINICAL
CONTEXT

4.1. Physiological Consistency
Learning algorithms utilize a low-dimensional representation
of the high-dimensional motion/deformation data, where the
population variability is either rendered through diagonalization
according to inter-subject distances, or correlated to labels
of interest. Transforming to and from this representation
involves interpolation between samples. Regularizing the low-
dimensional space ensures smoother interpolation and generates
new samples that are physiologically plausible (49, 71). In both
of these works, the low-dimensional space produced by the
encoding part of a CNN was regularized to map smoothly to
a set of input shapes, labeled images, or slice locations. This
notion of joint projection from the image and label space is also
inherently present in more classical manifold learning techniques
such as partial least squares. Similar notions need to be extended
to motion fields, whilst mapping similar pathological conditions
to close locations in the latent space.

4.2. Spatiotemporal Analysis
Most learning techniques consider high-dimensional inputs as
high-dimensional column vectors or a set of patches, and
disregard the spatiotemporal characteristics of motion and
deformation. Few works explicitly addressed this issue for
the statistical analysis of populations. A bilinear statistical
model was used on cardiac shapes (72) to distinguish inter-
subject variations from individual heart dynamics. (73, 74)
explicitly addressed the problem through spatiotemporal tensor
decomposition. Duchateau et al. (75) tuned up the contributions
of the spatial, temporal, and magnitude dimensions to analyze
changes in deformation patterns through registration. Jia et al.
(31) and Guigui et al. (32) transported temporal trajectories
without explicitly extracting motion or deformation descriptors
beforehand. These strategies, limited to variability analyses, pave
the ground for better considering spatiotemporal aspects with
machine learning.
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FIGURE 2 | Database sizes (left) and distribution of imaging modalities, application purposes, and target populations for the studies cited in this paper that use

machine learning for myocardial motion or deformation analysis.

4.3. Interpretability
Many tasks may benefit from somehow “interpretable” learnt
models, i.e., a user should have ways to inspect the input data
characteristics that led to the output prediction or representation.
The recent trend toward more complex learning models (such
as deep learning) has raised the interest for this property, since
these models are generally harder to interpret than simpler
ones. One approach consists in defining a simpler model that
is “locally similar” to the global complex model (i.e., it has
similar performance for similar inputs) (76). For deep learning
based approaches, “saliency maps” can be produced, which show
which parts of the input data were important in producing the
output. Alternatively, regression or autoencoders can be used
to reconstruct cases from the low-dimensional latent space and
examine features in the original-high dimensional space, with
clear benefits for interpretability as demonstrated in Clough et al.
(48), Puyol-Anton et al. (53), Biffi et al. (63), and Bello et al. (64).

4.4. Database Size and Heterogeneity
Traditionally, difficulties in accessing and reliably annotating
databases of medical images have led to smaller databases in
medical imaging compared to computer vision applications.
Recent initiatives such as the UK Biobank project2 (77) now
provide large-scale annotated imaging databases, fuelling a rise
in more data-intensive methods such as deep learning. Figure 2
illustrates this high increase over recent years for the studies
reported in this paper. The impact of these large databases is high:
reporting reference ranges for cardiac functional biomarkers is
now possible with much greater confidence (78, 79), in addition
to detecting effects otherwise hidden with smaller databases,
as shown for genome data (77). Data heterogeneity is also
crucial when choosing or curating a database for a specific task,
i.e., the database should include sufficient subjects to cover a

2Available online at: https://www.ukbiobank.ac.uk/
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range of values for the output label and guarantee the model
generalizability. More pathology-focused databases such as those
in the Cardiac Atlas Project3 (80) have an important role to play
in this respect.

4.5. Validation and Standardization
Initiatives
As analyzing the tracking output is sensitive to processing errors,
in particular for multi-centric data, tracking algorithms should be
benchmarked to prevent bias due to different manufacturers or
settings/practices. To ensure reproducibility of clinical decision-
making from these data, standardization initiatives arose from
academic, clinical, and industrial actors of cardiac imaging.
Strain estimation was compared across vendors for synthetic
and real images (81). Outputs were consistent regarding the
differentiation between pathological and healthy regions, and
the identification of ambiguous zones. However, statistically
significant differences among vendors were reported, including
differences around 15% for the biggest scars. These differences
call for benchmarks on more realistic datasets (both regarding
geometry and image quality), obtained e.g., from simulation
frameworks thatmix image formation and biomechanical models
with real images (82).

Complementary standardization of imaging are also
investigated through deep learning, for the control of e.g.,
the full coverage of the ventricles (83), the view/plane (84, 85),
and the image quality in general (78) or due to motion-related
artifacts (86).

4.6. Multiple Modalities/Descriptors
Most studies only consider a single type of motion or
deformation descriptor at once from a single acquisition
and a single modality, unlike clinical reasoning, which repeats
acquisitions in the same or different modality and uses different
types of measurements and descriptors. Recent works addressed
these limitations within the framework of manifold learning.
(30) enforced the complementarity of multimodal acquisitions
(tagged MR and 3D echocardiography) using canonical
correlation analysis and partial least squares methods. (87)
used a similar strategy to better relate myocardial shape and
deformation descriptors. Puyol-Anton et al. (70) investigated
multi-view linear discriminant analysis for classification
purposes. Finally, the more generic framework of multiple kernel
learning allows reducing the dimensionality and examining
the weights attributed to each descriptor. It was applied to
supervised (67) and unsupervised (43–45, 88) problems, to
investigate multiple descriptors among which motion-based
ones, which could come from different modalities or different
views of a single modality.

4.7. Complexity of the Models and Data
Descriptors
Machine learning relies on models whose complexities should
be adjusted to the question being answered. Researchers should
keep in mind that such models only provide an approximation

3Available online at: https://www.cardiacatlas.org/

of reality, and try to minimize this error (e.g., by refining the
model, adding more data or relevant descriptors, or estimating
uncertainties). We strongly recommend to start with simple data
descriptors and models, and carefully benchmark the retained
methods against simpler models or even standard statistics.

Deep learning approaches allow circumventing the design
of hand-crafted features (Figure 1B), and therefore go beyond
a substantial limitation of standard machine learning. They
mainly have been used for supervised problems and avoiding
segmentation. The ACDC challenge (7) included a diagnosis
challenge not necessarily requiring segmentation, although all
participants opted for segmentation-based diagnosis. Regression-
based estimation of cardiac parameters directly from images
was proposed in (66, 89, 90), and may also strengthen
the segmentation-based estimation of such parameters (91).
However, as already pointed out, this direct strategy may also
limit interpretability, and therefore transfer to clinical practice.

5. CONCLUSION

Machine learning offers wide possibilities to automate
processing, and notably extract and analyze myocardial
motion and deformation. Driven by advances in cardiac
segmentation and large databases collection, there is potential
for substantially improving the characterization of the cardiac
function and impacting clinical practice. Changes cover the
automation of time-consuming and user-dependent tasks
such as feature extraction, higher performance on supervised
problems such as (earlier) diagnosis, prognosis, and risk
stratification, and new unsupervised data representations
for knowledge discovery such as clustering or phenotyping.
Nonetheless, motion and deformation are rich but complex
high-dimensional data. Efforts need to be continued to reduce
uncertainties, approximations, and crucial misinterpretations
along the analysis pipeline, from careful problem definition,
compliance with the mathematical and physiological data
properties, algorithms benchmarking/validation/testing, and
health actors’ education.
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