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Abstract: A serious viral infectious disease was introduced to the globe by the end of 2019 
that was seen primarily from China, but spread worldwide in a few months to be a pandemic. 
Since then, accurate prevention, early detection, and effective treatment strategies are not yet 
outlined. There is no approved drug to counter its worldwide transmission. However, 
integration of nanostructured delivery systems with the current management strategies has 
promised a pronounced opportunity to tackle the pandemic. This review addressed the 
various promising nanotechnology-based approaches for the diagnosis, prevention, and 
treatment of the pandemic. The pharmaceutical, pharmacoeconomic, and regulatory aspects 
of these systems with currently achieved or predicted beneficial outcomes, challenges, and 
future perspectives are also highlighted. 
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Introduction
The end of 2019 came with a serious viral infectious disease which was seen 
primarily from China, but spread worldwide and was declared as a pandemic in a 
few months. The outbreak officially became a pandemic in March 2020.1,2 The 
World Health Organization (WHO) termed this novel and vastly spreading disease 
as “coronavirus disease-2019” (COVID-19), and the viral agent as “severe acute 
respiratory syndrome – coronavirus-2” (SARS-CoV-2). Since then, it has been a 
massively challenging global epidemic with combined health-related and economic 
destitution worldwide.3,4 SARS-CoV-2 seriously affects the respiratory system by 
triggering an acute immunological response which is the main cause of death with a 
fatality rate per country of 0.05–19.4%. The SARS-CoV-2 results in an increased 
mucous secretion, which then clogs the alveoli and prevents blood oxygenation. Its 
endocytosis and replication in the lungs generates an acute immune response and 
tissue inflammation by triggering the signal cascade through cytokine storms. The 
virus can also spread to the digestive system and other major organs like the kidney 
and liver. It has the potential to access every tissue that expresses angiotensin- 
converting enzyme-2 (ACE2) receptor.5–7 Structural analyses of SARS-CoV-2 
showed that it has spike (S), envelope (E), membrane (M), and nucleocapsid (N) 
proteins which are responsible for its cell attachment and entry mechanisms. 
Management strategies are based on these structural features. More than 80% of 
SARS-CoV-2 and host cell membrane interactions occur due to the presence of the 
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S protein that is a special characteristic of the pathogenic 
cell for treatment strategies.8,9 Human coronaviruses 
(HCoVs) are among the top 10 fatal viruses. SARS-CoV, 
one of the HCoVs, has a mortality rate of up to 10%. 
Currently, there are approximately 176 million confirmed 
cases and about 3,811,561 SARS-CoV-2 related deaths 
worldwide.10

Main Symptoms and Related Problems
Fever (85.6%), cough (68.7%), and fatigue (39.4%) are 
among the major reported symptoms. Dyspnea, headache, 
loss of appetite, loss of taste and smell, panting, sore 
throat, vomiting, diarrhea, rhinorrhea, and abdominal 
pain are the less common symptoms of the disease. The 
presence of comorbidities such as hypertension, diabetes, 
and coronary heart disease may further complicate the 
problem.11 There may be a two-week incubation period 
with mild to moderate symptoms followed by a high 
infection rate. Reports showed that there are also asympto-
matic transmissions. Currently, the viral outbreak has cre-
ated a global crisis related to disastrous live losses and 
financial collapses.1,12

Mode of Transmission and Prevention
The two main ways of COVID-19 transmission are direct 
air-to-air transmission during sneezing, talking, and 
coughing; and direct contact with contaminated surface/ 
object.13,14 Personal hygiene, personal protective equip-
ment (PPE), sanitizers, and surface disinfectants such as 
ethanol (62–71%), hydrogen peroxide (0.5%), and sodium 
hypochlorite (0.1%) are the main ways of prevention.15–17 

Moreover, vaccine and drug development is the most eye- 
catching option to completely fight COVID-19. There is a 
continuous global effort to explore and decode the exact 
genome structure, identify the way of infection and trans-
mission, draw effective prevention and immunomodula-
tion approaches, and develop the most effective 
therapeutics.18 However, accurate prevention, early detec-
tion, and effective treatment strategies are not yet outlined. 
There is no approved drug and a free access vaccine to 
counter its worldwide spread. The various claims on the 
therapeutic and vaccine development, under various clin-
ical trial phases, did not reach the market yet.19 At present, 
the health care and clinical research approaches are being 
negatively impacted by the pandemic through restrictions 
in funding and mobility which necessitate innovative life- 
saving ideas and alternative funding sources.20

Diagnostic and Management Approaches
The laboratory diagnosis of this viral infection is based on the 
techniques like polymerase chain reaction (PCR) and 
sequencing (smears taken from the oral cavity and throat); 
computer tomography, which reveals ground-glass opacity in 
the lungs, indicating viral pneumonia; plain chest radiogra-
phy which investigates inflammatory foci caused by the 
virus, fibrosis, and connective tissue occlusions in the lungs 
that may develop after the disease; ultrasound investigation 
of the lungs for the visualization of pulmonary and pleural 
conditions in patients with suspected COVID-19; immunoas-
says which reveal the substances of protein nature including 
viruses, and general and biochemical blood test detecting 
changes in blood parameters related to the infection.9 Three 
main steps for an effective management approach consider-
ing the interaction of the virus when invading the host cells: 
cell attachment and entry, replication and protein expression, 
then finally, assembly, maturation, and exocytosis.21 Based 
on this concept, there are four medical approaches: vaccina-
tion, cell entry (cell cycle) inhibition, immune response 
modulation, and prophylactic treatment.22

There are two major drug therapy strategies against the 
virus: drug repurposing and novel drug discovery. Drug 
repurposing is trying to combat the pandemic with primar-
ily discovered drugs for other known therapeutic purposes. 
This is a feasible strategy since it shortens the drug dis-
covery time. In this regard, lividomycin, quisinostat, spir-
ofylline, burixafor, pemetrexed, edotecarin, diniprofylline, 
fluprofylline, chloroquine (CQ), hydroxychloroquine 
(HCQ), remdesivir, tocilizumab, lopinavir/ritonavir, iver-
mectin, and azithromicin demonstrated potential anti- 
COVID effects. In addition, combined zinc supplements 
with CQ, drugs like silibinin and doxepin, and some glu-
cocorticoids (betamethasone, dexamethasone, hydrocorti-
sone, fludrocortisone, ciclesonide, and triamcinolone) 
showed promising effects.23–25 Figure 1 demonstrates 
their mechanism of action and interaction at different 
stages of the viral cell cycle.26 Repurposed drugs have 
previously established safety profiles which facilitate 
their clinical transition, and result in less risky and more 
rapid applications. Different insilico tools can be com-
bined with large drug databases for selecting “possible 
candidates” from the available pharmaceutical and phar-
macological substances.27,28 Molecular dynamics simula-
tions of HCQ and azithromycin dual therapy demonstrated 
a promising effectiveness with different potential mechan-
isms of action against the open and closed viral protein 
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forms.29–31 HCQ-azithromycin combination approach 
showed a better clinical outcome in terms of mortality 
rates among elderly patients, intensive care unit transfers, 
length of hospital stay, and duration of viral shedding.30 A 
systematic review, meta-analysis, and trial sequential ana-
lysis of ivermectin indicated that, using ivermectin for the 
prevention and treatment of COVID-19 is an equitable, 
acceptable, and feasible approach. The study strongly 

suggested that thehealth professional should consider its 
use both in therapeutic and prophylaxis approaches.32 

Remdesivir, lopinavir/ritonavir, lopinavir/ritonavir with 
interferon beta-1 and CQ or HCQ are being assessed in 
clinical trials. However, these are associated with statisti-
cally insignificant clinical outcomes, complicated mortal-
ity/morbidity data reports, and unconfirmed clinical effects 
which prohibited the trustful use of those drugs.33,34 In 

Figure 1 COVID-19 entry point and possible target point of repurposed drug. Copied from Ahmad MZ, Ahmad J, Aslam M, Khan MA, Alasmary MY, Abdel-WAHAB BA. 
Repurpuse drugs against COVID-19: nanomedicine aas an approach for finding new hope in old medicines. Nano Express. 2021;2:022007. doi:10.1088/2632-959X/abffed.26
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contrast, the new drug discovery approach is more com-
plicated and time-consuming. However, it has the highest 
potential to find new pharmaceuticals which have unique 
advantageous properties for unique viral pandemic 
events.25

Biomaterials can endorse the fight against COVID-19 
by enhancing immunomodulation and anti-inflammatory 
effects. Monoclonal antibodies can cross-react with 
SARS-CoV-2, block the viral attachment by disrupting 
the receptor-binding interface, and inactivate the virus by 
binding to S proteins.35,36 Tocilizumab (monoclonal anti-
body against interleukin (IL)-6), sarilumab (IL-6 receptor 
antagonist), HCQ, and CQ (blockers of pro-inflammatory 
cytokines) can be used as immunomodulators to counter-
act the systemic hyperinflammation.37–39 Biologicals are 
the foremost approaches in COVID-19 management. 
Convalescent plasma therapy (CPT) can neutralize 
SARS-CoV-2 in newly infected patients.40 Different inac-
tivated and recombinant vaccines are now being developed 
from viral DNA fragments and they are being evaluated in 
different phases of many clinical trials.41

Scientists are still searching for the most appropriate, 
efficient, and effective diagnostic, therapeutic, and preven-
tive strategies, including the use of new nano-based tech-
nologies. Nanotechnology-based research and 
development now appears to be essential to end the pan-
demic effectively and shortly.34 Nano-based detection with 
nanowire biosensor chips, graphene derivatives, and other 

types of nanostructures have been developed.9 Nano-based 
systems are effective for inhibiting pathogens and mini-
mizing drug resistance profiles.42 Carbon nanotubes that 
demonstrated a noble nanocarrier property and enhanced 
drug release towards target cells in cancer therapy can be 
potential therapeutic alternatives against SARS-COV- 
2.43,44 Currently, many pharmaceutical research and man-
ufacturing companies are turning to the use of nanotech-
nology for vaccine and drug development. Nanoparticles 
(NPs) are being increasingly investigated and used as new 
anti-SARS-CoV agents, vaccine carriers or adjuvants, and 
nanoscale biorecognition elements with a promising indi-
cation of nanomedicine as a potentially suitable option to 
end the fight against this pandemic.34,45

Nanostructure-based COVID-19 
Management
Nanostructured material is a type of material with at least 
one nanometric dimension (usually less than 100 nm). 
They can be organic, inorganic, biomaterial-based, and 
carbon-based46 as shown in Figure 2. Their physicochem-
ical properties such as, chemical reactivity, size-dependent 
transport, biocompatibility, and reduced toxicity attracted 
scientists in many fields. Medicine is one such fields with 
rising attention in applying nanotechnology.42 

Nanostructure-based delivery systems demonstrated 
improved specificity and bioavailability over the tradi-
tional system. Much of the added value is related to NP 

Figure 2 Different nanomaterials used against COVID-19.
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physicochemical properties which include controllable 
size, great surface area to mass ratio, and easily functio-
nalizable structure. They can stabilize the drug in the 
systemic circulation for targeted, controlled, and sustained 
delivery, which, as a result, can increase the therapeutic 
advantage.47 Multiple targeting, in vivo imaging, and com-
bined drug delivery are also their potential advantages.48 

All these principles can be applied to fighting the COVID- 
19 pandemic.

Why Nanostructure-based COVID-19 
Management?
As the pandemic continues to cause an enormous global 
crisis, there is still an unmet need to discern a favorable, 
safe, and typically effective approach for diagnosis, treat-
ment, vaccination, and prevention to prohibit super- 
spreading of the virus and a mortality crisis.49 Diverse 
nanotechnological strategies have shown a promising 
capacity to address many of those unmet needs in the 
fight against the pandemic as stated in the next sections.

Challenges in Biosafety
COVID-19 exposed the world for too many discrepancies 
including an absence of effective vaccines and therapeu-
tics, lack of rapid or real-time detection methods, shortage 
of protective equipment, and limitation in accessibility of 
support for infected patients. These biosafety problems 
arise mainly from limited research and considerations in 
materials science. A variety of nanostructured materials, 
such as polymers, inorganic-organic frameworks, bioma-
terials, graphene derivatives, and carbon nanotubes are 
radically transforming the way of countering biosafety 
challenges.50

Detection Time, Accuracy and Sensitivity
Time-consuming detection processes like quantitative real- 
time PCR can be eradicated by applying NP-mediated 
sensing alternatives which can provide a rapid diagnosis.51 

Limitations in antibody tests like technical production and 
identification problems, lack of suitability, and false posi-
tive or negative findings are reported from the conven-
tional tests. Early stage detection, no or minimized 
contamination, and protected risk of error are also ques-
tions to be answered with more appropriate advances of 
testing.52

The Gap Between Diagnostics and Therapy
Recently, the application of NPs has emerged as ground-
breaking in the medical field that allows accurate diagnosis 

and specific treatment of a disease at once (theranostic 
approach). Nanotheranostics involve virus detection and 
simultaneous neutralization by using nanodrugs that target 
diagnostics and therapy.53 This approach helps to fill the 
existing gap between diagnostics and therapy. It has been 
widely demonstrated in cancer chemotherapeutic investi-
gations and there have been substantial struggles to extend 
this advantage to other areas of medicine including infec-
tious diseases.54

Unsupported Benefits of Repurposed Drugs
Even though drug repurposing is a time-saving approach, 
the benefits of the repurposed drugs could not be fully 
supported with clinical outcomes and respective authori-
ties. Unsatisfactory results from CQ and CQ, hepatotoxi-
city of remdesivir, unestablished harm or benefits of 
ACEIs, challenging safety/efficacy issues from the non-
specific mechanism of CPT, and safety concerns on corti-
costeroid use were reported. Application of nanostructures 
to the repurposed drugs can help develop efficient thera-
peutic strategies with minimal safety/efficacy concerns.52

Targeting and Controlling Release
SARS-CoV-2 mainly affects the respiratory tract, especially 
the lungs, with expanded effects on other organs such as the 
gut, kidney, and vasculatures.55 Therefore, the lungs are the 
most important organ for COVID-19 drug delivery. 
Targeting such sites and controlling drug release at target 
organs with conventional approaches is very difficult. 
Advances in inhalable NPs overwhelm such disadvantages, 
such as side effects from high serum drug concentrations and 
target inaccessibility. Nanotechnology-based intranasal drug 
delivery systems can overcome various limitations of muco-
sal administration.34 More accurate and controlled crossing 
of the blood–brain barrier (BBB) can be achieved with nano-
biomaterials that can improve cell retention, survival, differ-
entiation, and integration inside the CNS.56 Nanodelivery 
through the nasal cavity is not only simple and inexpensive, 
but also noninvasive and rapidly absorptive.57 In addition, 
biocompatible nanomaterials such as boron nitride oxide 
nanosheets can improve the adsorption of drugs towards 
different parts of the viral protein; help the drug diffuse 
rapidly to the viral protein, and improve drug–virus 
interaction.31

Vaccine Effectiveness, Stability and Release
Conventional vaccines have limited efficacy against novel 
pathogens due to their low blood stability as well as short 
and insufficient immune response that drives the need for 
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higher doses.58 In addition, they are associated with short 
half-life, poor immunogenicity, non-targeting, slow 
absorption, and high storage and delivery requirements. 
Nanobiomaterials can be used as adjuvants for vaccines 
with special characteristics of reduced systemic toxicity 
and better targeting.59 There are also associated challen-
ging issues, such as high pathogenic variety, high viral 
mutation rate, and complex host-related failures, resulting 
in an inappropriate immune response.52 Nanovaccinology 
comes with an effective alternative that results in strong 
immunostimulatory effects, manageable size and surface 
properties, controllable drug release, and strong stimula-
tion of humoral and cellular responses.60

Surface Disinfection Efficacy and Duration
Disinfecting all surfaces and objects all the time is practically 
impossible, and one cannot be sure that the surface/object 
will not be contaminated again. Surface coating with nano-
materials that can inactivate the viral cell can be an advanta-
geous advance for designing contamination-free equipment. 
Self-disinfecting surfaces can be prepared using nanomater-
ials with intrinsic antipathogenic effects.9,61 Surfaces with 
inherent virucidity, antimicrobial releasing self-sanitizing 
surfaces, and surface topologies with viral self-deactivation 
are some among the novel surface nanodisinfecting 
applications.62

Protective Efficiency, Safety and Duration
As PPE plays the greatest role in combating the pandemic, 
it is equally essential to critically consider their sufficient 
supply, storage, waste management, and appropriate use.63 

Actually, the current trend of applying the PPE could not 
eliminate the viral transmission as expected which neces-
sitates a modification for their production and use.64 

Environmental safety and waste management related to 
PPE is another complicated issue during the pandemic 
season as it becomes burdensome, resulting in a health 
compromising situation including carcinogenic health 
impacts. Therefore, it is recommended to use available 
alternative technologies for the production of biomedical 
equipment and treatment of COVID-19-related waste.65,66 

Moreover, disposable PPE becomes one of the major fac-
tors in environmental pollution and source of biohazards 
creating critical environmental issues globally. If this 
remains unsolved, it may be a long-term threat to human 
and aquatic organisms.67–69 This can be potential long- 
term physical, physiological, and pathophysiological 
effects.70 Nanostructures can improve PPE efficacy and 

safety by providing reusable, self-cleaning, high effi-
ciency, and effective products with antimicrobial and anti-
viral properties. Intrinsic antiviral NPs, nanofibers and NP- 
coatings that can provide super-hydrophobicity, water- 
repelling, synergistic, and self-cleaning effects are some 
of the applicable nanostructures.71,72 Nanotechnology can 
generally convey advanced therapeutic, diagnostic, and 
prevention options than conventional as summarized in 
Table 1.

Nanostructure-based Approaches in 
COVID-19 Management
Nanotechnology has huge potential for fighting the 
COVID-19 pandemic, since it enables targeted drug or 
vaccine delivery to physiologically inaccessible targets; 
increases drug loading and transport, and provides intrin-
sic/synergistic virucidal activity.73,74 It can also possess 
simple, fast, and cost-effective alternative disinfection 
methods; provide targeted pulmonary drug delivery, and 
offer ways for designing better immunomodulating mate-
rials. It can generally contribute to antimicrobial, anti- 
inflammatory, diagnostic, theranostic, therapeutic, biosen-
sing, preventive/protective equipments, immunomodula-
tion, and vaccination approaches against the 
pandemic.61,75 The different application of nanotechnol-
ogy during the fight against the COVID-19 pandemic is 
summarized in Figure 3.76 NPs possess a comparable size 
and structure with the virus as they both act at the same 
nanoscale, that makes their use paramount and suitable for 
the development of vaccine and immune engineering. This 
also allows the NPs to bind, encapsulate and passivate the 
virus, permitting easily detection, treatment, and 
prevention.77,78 Generally, nanomaterials can induce an 
external stimulus that is responsible for killing the virus 
or directly interact with the virus with their surface proper-
ties to act as antiviral agents.25 Nanodiagnostics, surveil-
lance and monitoring, nanotherapeutics, and 
nanovaccination can provide the next generation of fight-
ing approaches against the outbreak.53,79

Nanodiagnostic Applications
Nanotechnology, in SARS-CoV-2 detection, can be 
applied in the form of nucleic acid testing (amplification 
of nucleic acid with NPs under isothermal conditions); 
point-of-care testing (POCT) (diagnose infected indivi-
duals, without the need of sending patient samples to 
laboratories via simple color changes after applying nanos-
tructures); electrochemical sensors (high sensitivity and 
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possibility of miniaturization with metallic NPs); chiral 
biosensors (NPs conjugated with coronavirus specific anti-
bodies), etc.80,81

Point-of-care Diagnostics (POCD)
Since the infection is easily transmissible from human to 
human, the diagnostics should better be at POC without the 
need for experienced labor, complex time-taking proce-
dures, and sophisticated laboratories.82 POCD provides a 
diagnostic outcome with improved laboratory quality in 
real-time, within minutes and not hours. Nanotechnology 
can further advance the POCD approach by adding nanoen-
sor technology, microfluidic channel devices, bio-analytical 
platforms, assay formats, lab-on-a-chip technologies, and 
complementary advances.83 NPs can assist the immuno-
chromatographic test (ICT), also known as lateral flow 
immunoassays (LFIA), for detecting the antigens or anti-
bodies rapidly with a POC. The advantages of this system 

includes; detection of both symptomatic and asymptomatic 
patients, not requiring trained staff, triage of patients avoid-
ing further spreading, diagnosis when laboratory facilities 
are unavailable, easy of use, small sample amount, and 
timely detection in less than 20 min.84,85

Rapid Diagnostic Kits
The principle of rapid diagnostic kits works by direct 
isolation of RNA from a patient sample. Metallic and 
magnetic NPs, such as gold and iron oxide NPs, have 
been widely investigated so far and demonstrated 
improved testing accuracy, specificity, time, and 
reliability.86,87 Gold NPs coupled to complementary 
DNA sequences demonstrated a color change from red to 
blue indicating the formation of a tertiary complex with 
the viral antigen after the immobilization and agglomera-
tion of the NPs.88 Metal oxide NPs in complement with a 
silicon-on-insulator nanowire sensor showed a rapid and 

Table 1 Comparison Between the Conventional and Nanobased COVID-19 Management Approaches

Conventional Approach Nanotechnology-based Approach

Diagnosis ● Lengthy time of detection
● Limitations in antibody tests like technical produc-

tion and identification problems
● Lack of suitability
● False positive or negative findings

● Early stage detection
● No or minimized contamination
● Protected error risk
● Sensitivity
● Possibility of miniaturization with metallic NPs
● NPs conjugated with corona virus specific antibodies

Treatment ● Absence of effective therapeutics
● Low surface area to mass ratio
● Chemical reactivity/instability
● Side effects from high serum and non target 

concentrations
● Inaccessibility of the target by the drug

● Stabilized in the systemic circulation
● Targeted, controlled and sustained delivery
● Controllable size and size-dependent transport, 

biocompatibility
● Reduced toxicity
● Theranostic approach
● Noninvasive administration like inhalations

Vaccines ● Low blood stability, slow absorption and short half- 

life
● Insufficient immune response
● Higher doses – risk for side effects
● Poor immunogenicity, non targeting, slow 

absorption
● High storage and delivery requirements

● Multiple targeting
● Strong immuno stimulatory effects
● Manageable size and surface properties
● Reduced adverse effects
● Controllable drug release
● Strong stimulation of humoral and cellular responses

Personal protective 
Equipment (PPE)

● Shortage of supplies
● Low filtration efficiency
● Single-use (use-and-throw) – economic, eco-safety 

and waste management problems
● Breathing pressure and heat dissipation
● Ineffective disinfection and sanitizing

● Reusable and improved bio-safety
● Self-cleaning, high efficiency and effective disinfectants with 

antimicrobial and antiviral properties
● Designing contamination-free equipment
● Adding inherent virucidity to surfaces
● Antimicrobial releasing self-sanitizing and surface topolo-

gies with viral self-deactivation
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very sensitive SARS-CoV-2 antibody detection in 5–15 
min. Magnetic NPs (MNPs), especially iron oxide NPs, 
can easily separate the viral RNA from sample solution 
with their high magnetic efficiency to prepare analyte 
preconcentration, signal amplification, and biosensing.8,89 

Silica-coated super-paramagnetic NPs improved the selec-
tivity of the detection during PCR-based assays by form-
ing magnetic-conjugated DNA complexes, which then can 
be magnetically separated and amplified through PCR.90 

Field-effect transistors based on graphene demonstrated 
the most rapid SARS-CoV-2 detection in less than a 
minute.91,92 The precision of PCR can also be enhanced 
by using graphene NPs.93

Nanostructured Biosensors
NP-based biosensors can minimize the conventional time- 
consuming steps, like in the case of quantitative real-time 
PCR, and provide pronounced advances in rapid diagnosis.51 

The SARS-CoV-2 biosensor using thiol-modified antisense 
oligonucleotide-capped glyconanoparticles can diagnose 
positive COVID-19 cases visible with the naked eye through 
color change within 10 min.84 The glyconanoparticle plat-
form with a lateral flow diagnostic device demonstrated a 
low-cost and rapid detection in less than 30 min.94 

Nanobiosensors integrated with bio-informatics can provide 

individualized approaches by correlating infection progres-
sion with sociodemographic parameters like race, gender, 
age, and region that can further optimize targeted testing, 
tracing of asymptomatic patients (carries), and detection of 
discharged patients for re-infection.95 Different nanostruc-
tured biosensor applications are presented in Figure 4.96

Nanomaterial-based Detection Using 
Smartphone
Nanopapers and nanochannels are nanomaterial-based sen-
sors that advance the lateral-flow devices to detect at obser-
vation level with smartphones or the naked eye. They offer 
cost-efficient options for viral detection. Battery-operated 
and smartphone camera-based amplifications with inor-
ganic quantum dots are coming to be the next generations 
for SARS-CoV-2 detection.97 Smartphone-based sensing 
systems are semi-automated, personally accessible, user- 
friendly, and applicable with less training. The sensing 
system is connected to the smartphones; NPs are employed 
peripherally; analysis is conducted by the sensing system, 
and finally, the smartphone itself will interpret the results. It 
is individualized and takes less time than PCR.98 Some 
examples of nanomaterials investigated for diagnosis of 
COVID-19 are listed in Table 2.

Figure 3 Potential nanotechnology applications for combating SARS-COV-2. Copied from Rai M, Bonde S, Yadav A, et al. Nanotechnology as a shield against COVID-19: 
Current advancement and limitations. Viruses. 2021;13:1224. doi: 10.3390/v13071224.76
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Nanotheranostic Applications
In recent times, nanostructured systems have brought a 
groundbreaking advance in medicine, in which accurate 
detection and specific therapeutics of disease conditions 
can be conducted at once (theranostic approach). 
Theranostics can provide detection and neutralize the 
viruses using NP-based approaches which will possess a 
great prospective in controlling the COVID-19 pandemic 
as NPs can amplify the detection, inhibit viral replication, 
and disrupt all possible virus–host interactions. Thus, 
nanotheranostics can fill the existing gap between diag-
nostics and therapy.53,54 Nanotheranostics is a new field in 
medicine that combines NP-based targeted therapy based 
on diagnostic tools to efficiently and selectively deliver 
drugs, vaccines, and biologicals to the target sites of infec-
tion. It has the ability to monitor infectious sides, deliver 
treatments, and assess therapeutic responses with noninva-
sive imaging approaches.105,106

Several approaches are being investigated for smart 
nanotheranostic application by combining bioactive target-
ing and nanodiagnostics to deliver therapeutics with con-
comitant real-time response monitoring; minimized 

probability of over- or under-dosing, and noninvasive 
imaging techniques. Nuclear imaging with radiolabeled 
nanomaterials, inorganic NPs, organic NPs like polymers, 
carbon-based nanomaterials, and vesicular nanostructures 
like nanosomes, are some of the multifunctional 
nanotheranostics.107 The application of quantum dots in 
fluorescence imaging technology enables in vivo visuali-
zation of individual cellular behaviors, and simultaneous 
treatment according to the observed behavior at the same 
time.108 Nanorobots can outline a roadmap for nanother-
anostics against a variety of diseases including the recent 
pandemic. Artificial intelligence can help this advance 
with multivariate data analysis regarding the disease 
pathophysiology and design of its more efficient therapeu-
tics. Patient-specific models and nucleic acid-based nanor-
obots with more advanced nanoplatforms and multivalent 
nanostructures are being considered as promising thera-
nostics against the pandemic.50

Nanotherapeutic Applications
Therapeutic nanostructures can block viral entry, inhibit its 
replication, deliver drugs as nanocarriers into the target organ, 

Figure 4 Application of biorecognition elements of a biosensor to develop a sensing platform against SARS-CoV-2. Copied from Gupta R, Sagar P, Priyadarshi N, et al. 
Nanotechnlogy-based approaches for the detection of SARS-CoV-2. Front. Nanotechnol. 2020;2:589832. doi: 10.3389/fnano.2020.589832.96 

Abbreviations: FRET, Förster resonance energy transfer; GO, graphene oxide; SERS, surface-enhanced Raman spectroscopy; QD, quantum dot.
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and assist vaccine formulation and delivery as summarized in 
Figure 5. In general, they target the SARS-CoV-2 entry and 
life-cycle with a special emphasis on the S protein as it is the 
most important factor for viral entry and host cell 

interactions.45,80 Nanomodification of repurposed drugs like 
dexamethasone and CQ demonstrated promising anti-edema, 
antifibrotic, and anti-inflammatory mechanism predicting NP- 
uptake in cells.109,110 Nanostructure-based drug delivery can 

Table 2 Some Nanobased Novel Diagnostic Tools for COVID-19 Detection

S 
No.

Nano-Formulation Features of the Nanoformulation Reported Benefits of Nanoforms Reference

1. Dual-functional plasmonic 

photothermal biosensor

The two-dimensional gold nanoislands (AuNIs) 

functionalized with complementary DNA receptors

● Sensitive detection of the selected 

sequences
● Precise detection of the specific tar-

get in a multi-gene mixture

88

2. Graphene-based field- 
effect transistor 

biosensing devices

Graphene NP-based sensors coated with specific 
antibodies against SARS-CoV-2 S protein

● Specific targeting of S protein
● Low concentration detection
● Highly sensitive, rapid and on-site 

detection

92

3. COVID-19 rapid test 

cassette (SureScreen 

Diagnostics Ltd)

Au NPs embedded in the nitrocellulose test strip 

integrated with lateral flow devices

● High sensitivity and reliability of visual 
detection

● Used in point-of-care (on-site) 

detection
● Significant time and cost saving
● Detection even in mild or asympto-

matic cases
● Easy to use and read

99

4. Smart Detect SARS-CoV- 
2 rRT-PCR kit

Nanobiomaterial of oligonucleotide primers and 
probes labeled with fluorescent reporter dyes and 

quenchers

● Single-well detection of 3 different 

targets
● Endogeneous control informs effec-

tiveness of procedures/overall speci-

men quality

100

5. Chiral zirconium 

Quantum dots

Nanocrystals for optical detection synthesized using 

L(þ)-ascorbic acid

● Greater sensitivity than conventional 

ELISA methods
101

6. CRISPR-based DETECTR 

lateral flow assay

Using synthetic, in vitro transcribed SARS-CoV-2 

RNA gene targets in nuclease-free water

● Rapid (~30 min), low-cost, and 

accurate
● 90% sensitive and 100% specific for 

detection
● No cross-reactivity for related coro-

navirus strains

102

7. Lanthanide-doped NP- 

based lateral flow 
immunoassay

Self-assembled lanthanide-doped polysterene NPs 

dispensed by recombinant nucleocapsid 
phosphoprotein

● Rapid and sensitive lateral flow 

immunoassay
● Useful for progression monitoring 

and evaluating
● patients’ response to treatment

103

8. Magnetic NPs for RNA 

extraction and isolation

Synthesis of polymer coated amino-magnetic NPs 

(Poly-NH2-MNP)

● Rapid detection
● Allows processing of ~10,000 tests 

per day
● Guaranteeing to reach a wide range 

of population

104

Abbreviations: ELISA, enzyme-linked immunosorbent assay; MNP, magnetic nanoparticle; NP, nanoparticle; rRT-PCR, real-time reverse transcription polymerase chain 
reaction.
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be either passive (drugs loaded and transported with nanocar-
riers) or active self-delivery (drug molecules themselves are 
nanosized).111 Since SARS-CoV-2 initiates its infection on the 
nasal cavity, nasal cavity-based nanodelivery is very important 
and promising for targeted COVID-19 management with sim-
ple, inexpensive, noninvasive, and rapidly absorbable 
approach.57 These systems are believed to improve therapeutic 
efficacy without compromising safety. Several nanodeliveries 
with enhanced antiviral activities against SARS-CoV-2 have 
been investigated, reported, and it is claimed that they can 
synergize the global fight against the pandemic.112 Some 
examples from these investigations are described in Table 3.

Organic and Inorganic Nanoparticles
Organic NPs such as liposomes, dendrimers, micelles, and 
polymers can have nanovirucidal effects and inactivate viral 
cells including SARS-CoV-2. They can be formed in combi-
nation with each other or with inorganic NPs to form hybrid 
nanosystems based on specific use at the targeted site.74 

Inhalable organic and inorganic NPs (Figure 6)121 can be 
used for targeting the lung to overcome side effects from high 
serum concentrations of conventional administrations.122 

Nano-drug co-deliveries can reduce particle size-dependent 
safety issues in lung and respiratory systems.123 

Corticosteroid-loaded PLGA NPs, solid lipid NPs, N,N- 
dimethylaminoethyl methacrylate, and butyl methacrylate 
monomers can be used for effective and safe pulmonary 
delivery to prevent systemic immunosuppression effects of 
the drugs.124 Inorganic NPs like transition metal NPs (Ag, 
Cu, Zn), metal oxides (Fe2O3, TiO2, ZnO2,), and carbon- 
based NPs have intrinsic antipathogenic effects by interfering 
one or more viral life-cycle stages.125 Mesoporous silica NPs 
provide drug co-delivery which can further be functionalized 
with ligands for active targeting of the viral cell.8 AgNPs are 
better drug carriers for nucleic acid-based delivery with 
increased stability, protection from degradation, and con-
trolled intracellular delivery.126 AuNPs, carbon-based NPs, 
polymeric NPs, and vesicular nanocarriers have the potential 

Figure 5 Summary of cellular parts of SARS-CoV-2, their functions and interactions with nanodelivery management mechanisms.

International Journal of Nanomedicine 2021:16                                                                                   https://doi.org/10.2147/IJN.S327334                                                                                                                                                                                                                       

DovePress                                                                                                                       
5723

Dovepress                                                                                                                                                        Yayehrad et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


to induce cytokine and antibody responses which are depen-
dent on their size, shape, and surface chemistry. By modify-
ing these properties with respect to different targeting 
moieties, they can be promising strategies for targeted anti-
gen delivery.127,128

Nanobiomaterials
Biomaterials are substances that are either formed by living 
organisms or extremely compatible by their nature. Novel 
biomaterials at their nanoscale level possess precise and 
effective drug delivery functions.129,130 Biomaterials are 

Table 3 Potential Nanobased Formulations for COVID-19 Treatment

S. 
No

Nanoformulation Features of the Nanoformulation Reported Benefits of Nanoforms Reference

1. Dexamethasone 

with 

biomimetic NPs

Encapsulating dexamethasone with leukocyte- 

derived nanovesicles (leukosomes)

● A significant survival advantage
● An improved immune response resolution
● Enhanced therapeutic activity of 

dexamethasone

113

2. Inhalable liposomal 
HCQ

HCQ encapsulated in liposomes for inhalational 
administration preparation

● Improved pharmacokinetics
● Efficient aerosolized delivery
● Targeted antiviral levels with lower effective 

dose and less dosing frequency
● A sustained release
● Reduced systemic exposure

114

3. CQ/HCQ-coated 
metallic NPs

Adsorption of HCQ/CQ on 
Ag, Au, AgAu and Pt NPs.

■ Decreased side effects 
■ Low toxicity 

■ Improved antiviral activity

115

4. Liposomal 

lactoferrin

Lactoferrin (Lf), a multifunctional glycoprotein, 

loaded in liposomes

❖ Noninvasive oral and intra-nasal use 

❖ Enhanced antiviral activity 

❖ Under Phase 2 clinical trial

116

5. Nanosponges Cellular nanosponges produced from human cell 

membranes, attached with macrophages

➢ Mimicked ACE-2, inhibit viral entry and 

attachment 
➢ SARS-CoV-2 is neutralized and unable to 

infect 

➢ Dose-dependent inhibition of the viral 
infectivity

117

6. Peptide 
functionalized 

AuNPs

The AuNP functionalized by new peptide o Forms the most stable complex with RBD. 
o A great potential to inhibit the RBD of 

SARS-CoV-2 

o Good antiviral agents against COVID-19

118

7.. Membrane-based 

ACE2-Rich NPs

Nanoparticles made from the 

membranes of ACE2-rich cells

✓ Prevented viral binding to host cells via 

competitive inhibition 
✓ Effective anti-SARS-CoV-2 

✓ Easy to produce

119

8. Liposomal 

remdesivir

Aerosolized nanoliposomal carrier of remdesivir ● Direct administration into the lungs.
● Drastically minimized side effects and
● enhanced efficacy
● Easy self-administration at home.
● An effective alternative for COVID-19 

treatment.

120

Abbreviations: ACE2, angiotensin converting enzyme-2; CQ, chloroquine; HCQ, hydrochloroquine; NP, nanoparticle; RBD, receptor-binding domain.
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reported for reducing mortality in COVID-19 patients. 
Investigations are being made with remarkable efforts to 
apply them in controlled delivery, for minimizing systemic 
administration complications, and alleviating disease 
severity.131 Bioengineered platforms of airway models are 
used to elucidate the pathophysiological processes of 
COVID-19 which is a rate-limiting step for management 
procedures and recommendations.132 Their biologic and 
physicochemical properties can be operated as to the differ-
ent needs for therapeutic applications including the current 
pandemic.133 Tissue engineering and regenerative medicine 
are now providing promising solutions to viral outbreaks in 
diagnostics, treatment, vaccination, and surface disinfection 
which can be implied for their application toward COVID- 
19.134 Organoids (clusters of organ-specific cells) were 
formed as effective models for COVID-19 viral examina-
tion. In addition, microfluidic organ-on-chip (OoC) systems 

have recapitulated host physiology, viral pathology, and 
therapeutic responses with high accuracy.135,136

Biomaterials have the potential to modulate the 
immune response, advance drug repurposing, and prevent 
or treat complications of COVID-19.137,138 Moreover, the 
nano-forms of biomaterials can improve quality of life by 
reducing the adverse effects of conventional therapeutics. 
Therefore, highly efficient, reliable, compatible, and 
recyclable biomaterial-based applications can support the 
fight against the current pandemic.46 Nanobiomaterial 
therapeutics can be used to deliver cargo directly to the 
respiratory targets (lungs) to avoid nontarget effects as 
they can be synthesized according to the ideal size range 
and controllable release for cellular targeting.139 

Furthermore, many nanobiomaterials have intrinsic low 
cytotoxicity and high biocompatibility which are the cur-
rently needed essential attributes for COVID-19 

Figure 6 Intranasal nanodelivery for treating SARS-CoV2 infection. Copied from Nair SC, Joseph SK, Arya MK, Thomas S. State-of-the art nanotechnology-based drug 
delivery strategies to combat COVID-19. Int J App Pharm. 2021;13(3):18-29. doi: 10.22159/ijap.2021.v13i3.40865.121
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management. Nanobiomaterials in conjugation with Ag 
and mesoporous silica NPs could be used for the delivery 
of anti-inflammatory cytokines to counter the inflamma-
tion associated with COVID-19.138

Nanobiomaterial forms, such as gum-based hydrogels, 
nanogels, multilayered polyelectrolyte films, DNA apta-
mers, and nanocarriers like nanocapsules, nanospheres, 
and polymers demonstrated a potential effect that can 
add to the fight against COVID-19.22,126 Biomaterials in 
the form of nanoemulsions, nanodecoys, virus-like NPs 
(VLNPs) and self-assembly systems are being investigated 
and suggested for use against COVID-19. Nanoemulsions 
can easily transcytose lipophilic antigens across the intest-
inal cells. In addition, they can be synthesized with low 
cost and easy procedures; require easy storage conditions; 
demonstrate increased absorption rate and bioavailability; 
possess thermodynamic stability; provide solubility of lyo-
philic drugs, and improve the antiviral activity of the 
drug.140 Nanodecoys are cell membrane nanovesicles for-
mulated to display high levels of ACE2 and cytokine 
receptors with the aim of competing for viral and cytokine 
binding. They can significantly inhibit SARS-CoV-2 repli-
cation and neutralize inflammatory cytokines.141 VLNPs 
are sphere-shaped NPs formed from several nanosized 
molecules and the self-assembly of viral proteins. They 
do not have genetic material content but structurally mimic 
the real virus enabling them to highly attract antigen-pre-
senting cells and stimulate the immune response.105 Self- 
assembling NPs are excellent in carrying the drug, easily 
crossing the cell membranes, releasing drugs in a control-
lable manner at the target site, and synergistically activat-
ing the immune system.121

Nanobodies are other types of nanobiomaterials that 
can identify the pathogens, envelop the virus, and neutra-
lize its functions. Hence, they can be diagnostic or ther-
apeutic tools against the SARS-CoV-2 virus.79 

Researchers have isolated high stability nanobodies that 
can bind to spike protein of SARS-CoV-2, detect at an 
atomic level, and block the virus very specifically.142 The 
world’s first humanized antibody against the SARS-CoV-2 
inflammatory storm was discovered which can specifically 
damage the viral critical stage in the lungs. With little 
modification by using drug-loaded NPs, it can provide 
easy access for air sacs and blood vessels for free delivery 
of oxygen and blood.143 Cellular nanosponges made of the 
human plasma membrane epithelial type II cells or macro-
phages are reported as an effective countermeasure to 
SARS-CoV-2 since they display the same protein receptors 

required by SARS-CoV-2 for cellular entry. Therefore, 
they will neutralize and mutate SARS-CoV-2 making it 
unable to infect.117,136

Nanofibrous hybrids are active antiviral and antibacterial 
membranes that are formed embedded with AgNPs by an 
electrospinning process. They have subsequent screening 
with potential antiviral activities against different viruses, 
including SARS-Cov-2. They can also be applied in PPE 
and surface disinfection developments.144 Eco-friendly non-
spherical nanocellulose nanofiber is synthesized which is a 
sustainable, nontoxic, low-cost, and biocompatible carrier 
with antimicrobial effects.145 Antibodies conjugated to bio-
material-based NP surfaces allow efficient and effective 
inflammatory marker removal caused by the cytokine 
storm. Chitosan, hyaluronic acid, PLGA, and mesoporous 
silica NPs can be used for surface conjugation to reduce the 
burden of SARS-CoV-2 cytokine storms. Ligand-based 
nanoparticulate biomaterials possess sequestration of cyto-
kines and active-targeting for viral inactivation. The immune 
modulation effect of these systems can be assisted by co- 
delivery of anti-inflammatory drugs.138

Nanophytomedicines
Nano-sized herbal medicines have been developed as 
nanophytomedicines based on their unique nature. 
Various nanotechnology-based systems such as polymeric 
NPs, solid lipid NPs, magnetic NPs, metal and inorganic 
NPs, nanospheres, nanocapsules, quantum dots, nanoemul-
sions, polymeric micelles, liposomes, and dendrimers have 
been tried for the successful delivery of natural products 
from traditional medicine. This brings potential herbal 
drug-loaded pharmaceutical carriers for alternative and 
complementary medicine to the modern system which 
can push the fight against many chronic and pandemic 
global issues like COVID-19 one step forward.146,147 

Since the occurrence of COVID-19, diverse traditional 
medicines have been used alone or in combination with 
the conventional management systems. These herbal 
extracts may possess anti-SARS-CoV-2 actions by disrupt-
ing the viral life-cycle that can be a promising preventive 
and therapeutic alternative to the pandemic.148 In addition, 
their favorable oral stability and ease of scaling up make 
them ideal contenders for prophylactic and prevention 
strategies including vaccine development.149 Reports indi-
cated that Chinese, Indonesian, and Nepalese people 
increased the use of medicinal plants during the COVID- 
19 pandemic claiming that they can prevent or cure the 
disease and it is believed to have shown good results in 
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fighting SARS-CoV-2 empirically.45,150–152 Adeleye et al, 
identified 15 potential ethnomedicinal herbs from different 
African countries for the discovery and development of 
therapeutic agents for COVID-19 applications.153 

Phytotherapeutics has been recognized for its better ther-
apeutics with fewer adverse effects than modern medi-
cines. However, it needs a novel scientific approach for 
modified, sustained, and controlled delivery to enhance 
patient compliance and avoid repeated administrations. 
This can be achieved by designing nanostructured delivery 
systems and integrating them with nanocarrier approaches 
that can enhance its therapeutic activity while overcoming 
associated problems, such as bulk dosing and lower 
bioavailability.144

The sole combination between traditional medicine and 
nanomedicine will accompany a new era of affordable, 
safe, and effective medicinal systems that can be very 
supportive for a pandemic crisis like COVID-19.154 Plant 
metabolites and body parts of microorganisms can be 
delivered by spherical NPs as a potential strategy for 
antiviral therapies.145 Glycyrrhizic acid, a common ingre-
dient in the Chinese herb licorice, has a known anti-SARS- 
CoV effect, but its application is limited due to cytotoxi-
city, poor water and bio-fluid solubility, and low bioavail-
ability. Synthesizing highly biocompatible glycyrrhizic 
acid NPs demonstrated a significantly enhanced antiviral 
and anti-inflammatory effects in vitro and in vivo.152 A 
typical Indonesian natural product administration culture, 
called jamu, is commonly practiced to relieve pain and 
inflammation from acute and chronic disorders. The effi-
cacy and the value of jamu have been improved using 
various nanotechnology approaches such as nanosuspen-
sion, nanoemulsion, nanoencapsulation, and nanofiber 
fabrication.151 Researchers at Alfaisal University com-
bined AgNPs with a black tea extract (theaflavin) and 
attained a potent viral replication inhibition effect that 
can assist in the fight against COVID-19 by slowing the 
viral reproduction rate in a host and reducing the severity 
of symptoms.155

Nanostructures for Postinfection 
Complications
Nanostructures can also be used in the prevention of major 
organ complications, co-infections and postrecovery syn-
dromes of COVID-19 infected patients. Antiviral nanobioma-
terials, in the form of external vesicles, exosomes and artificial 
nerve conduits can cross the BBB; promote synaptic plasticity; 

modulate immunity for poststroke pain and inflammation; 
facilitate neural regeneration, and treat neuropathies associated 
with COVID-19.56 Nanotargeting of cytokine receptors using 
lipid nanoemulsions demonstrated a promising application for 
minimizing dementia and brain inflammatory neurodegenera-
tion which is a risk factor for Alzheimer’s disease.156,157 The 
alarming rate of antimicrobial resistance with the upsetting 
emergence of new pathogens like SARS-CoV-2 will challenge 
the therapeutic approaches to many infectious diseases, which 
as a result, demand an accurate, fast, sensitive, specific, simple, 
and inexpensive diagnostics and therapeutics strategy.158 Ag, 
Au, iron oxide, and titanium dioxide can be valuable NPs to 
combat secondary microbial infections and multidrug resis-
tance in critically ill patients during COVID-19 infection 
which is known as “a silent risk”.42,159 Furthermore, nano-
technology can help to address COVID-19-associated pneu-
monia by delivering anti-inflammatory nanodrugs and nano- 
antioxidants; providing inhalation methods; and utilizing oxy-
gen-generation nanomaterials.160 Niclosamide-loaded albu-
min NPs, chitosan nanocarriers, biopolymer-derived 
nanocarriers, and lipid NPs demonstrated a highly viral entry 
inhibitory effect against SARS-CoV-2 in vitro and showed an 
extended circulating drug exposure in vivo, with a new, cheap, 
and scalable preparation process.161 In sum, all these nanother-
apeutic strategies can provide timely solutions for combating 
the pandemic and open the door for future explorations.

Nanovaccination
Vaccines appear to be the preeminent solution in combat-
ing the pandemic even though their development, clinical 
trial processing, approval, and scale-up are time-consum-
ing. But, investigations are being undertaken as quickly as 
possible. SARS-CoV-2 vaccine development is an the 
most astonishing one in history by getting into clinical 
trial phases within only three-to-six months which makes 
it the fastest of all the epidemics and pandemics.162 The 
application of nanomaterials in vaccine development and 
delivery has led to the birth of the concept of “nanovacci-
nology”. NP-based vaccines with organic, inorganic, hol-
low polymeric, and biologic NPs possess potential benefits 
such as high payloads, tailorable size and surface proper-
ties, controllable and targeted release kinetics, improved 
stability, easy antigen uptake, and strong response 
induction.60,163 Nanobiomaterials can be vaccine adjuvants 
to enhance vaccine efficacy due to their lower systemic 
toxicity, stronger targeting, higher specific surface area, 
and lower immune titer.58,59
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Subunit vaccines with NPs, such as virus-like proteins 
(VLPs) and protein NPs, are under active consideration in 
development processing. The receptor-binding domain 
(RBD)-based SARS-CoV vaccines are also considered as 
effective strategies.164 VLNPs are desirable NPs that stand 
out to cells that produce antigens; easily detect them, and 
stimulate an immune response.121 They can better be 
delivered through the lymph and capillaries, easily enter-
ing into the cell; reducing the systemic inflammatory 
response; increasing vaccine immunogenicity and efficacy; 
improving patient safety; and boosting the immune 
system.165,166 Nucleic acid-based vaccines demonstrated 
an enhanced delivery efficacy and stability when they are 
applied with cationic liposomes, dendrimers, and solid 
lipid NPs.167 Vaccines formulated with exosomal S protein 
of SARS-CoV resulted in induced and accelerated anti-
body neutralizing effect.168

NP-based inhalational vaccines provide high mucosal 
immunity in the lungs which are the main targets in respira-
tory infections like SARS-CoV-2.138 Intranasal vaccine 
delivery offers admirable safety, better convenience, both 
systemic and local immune response for controlling respira-
tory infections like SARS-CoV-2.169 PLGA NPs functiona-
lized with ACE2 receptor proteins from alveolar epithelial 
cells and macrophages can neutralize viral infectivity.117 

Extracellular vesicles containing ACE2 as decoys and 
ACE2 mRNA packaged with lipid NPs achieved a critical 
host mimicry to distract the host-binding ability of SARS- 
CoV-2.170,171 Silica NPs coupled with polyethyleneimine 
showed easy trapping, protection, and delivery of DNA/ 
RNA antigens into cells with potential adjuvant effect, 
great loading capacity, robust bonding, and enhanced cellular 
uptake.136 Quantum dots (QDs), with much smaller sizes 
than the known NPs, have also shown a promising utilization 
for COVID-19 vaccine designing.172 Lipid-based NPs 
(LNPs) opened the way forward to COVID-19 and they are 
now considered as the frontrunner in nanoscale vaccine 
development and delivery. They promised for the potential 
success of mRNA-LNP vaccines and, therefore, a long jour-
ney of optimizing LNPs for nucleic acid-based delivery has 
been passed.173,174

NP-based vaccine development is now on the way in 
various pharmaceutical companies and research 
institutes.175–177 Table 4 demonstrates some of the 
WHO-listed nanovaccines which are in clinical and pre-
clinical phases.177

Most NPs for use in nanovaccines are known to be 
biodegradable, biocompatible, and less toxic and, therefore, 

they can be safe and effective alternatives to the conventional 
vaccines. However, nanovaccine-related side effects and 
safety concerns still remain to be investigated.178 Severe 
allergy-like reactions were reported from Pfizer and 
BioNTech novel vaccine products which is proposed to be 
due to nanopackaging compounds of the messenger RNA 
(mRNA). Polyethylene glycol (PEG) in vaccines may occa-
sionally trigger anaphylaxis that causes a potentially life- 
threatening reaction with complicated respiratory and cardi-
ovascular disorders.179 LNPs in the Pfizer/BioNTech and 
Moderna vaccines’ human trials demonstrated inflamma-
tion-like side effects such as pain, fever, swelling, and 
sleepiness.180,181 Oxidative stress, genotoxicity, hypercyto-
kinemia, injection site inflammation, distribution, and persis-
tence are also linked with nanovaccine toxicology. These 
side effects are probably associated with the antigen-NP, 
NP-antigen presenting cell, NP-biosystem, and adjuvant-NP 
interactions. In the case of a pandemic crisis like the current 
one, risk is weighed against potential benefit for any new 
advance.182,183

Nanopreventative Applications
Nanomaterials can ultimately improve the COVID-19 pre-
vention approaches by enhancing the surface disinfection, 
sanitization, and protective equipment efficiency and 
effectiveness as demonstrated by some investigation 
reports in Table 5. The use of nanomaterials in the produc-
tion of PPE brings them new and improved properties in 
terms of resistance, efficacy, comfort and safety as sum-
marized in Figure 7.129 The principles for the application 
of nanotechnology in COVID-19 prevention strategies are 
presented in the sections below.

Nanotechnology-based Surface 
Disinfection
Various chemical disinfectants are being applied widely in 
personal, household, and medical facilities for exhaustive 
sterilization during the pandemic. These include alcohols, 
phenol-based disinfectants, quaternary ammonium com-
pounds, chlorine-releasing agents, iodophores, and high- 
level disinfectants like formaldehyde.190 However, it is 
practically impossible to sanitize surfaces all the time, 
and there is no guarantee for the surface not to be re- 
contaminated.9,191 Investigation is underway for smart sur-
face coatings with inherent virucidal materials and self- 
disinfecting abilities by the application of nanostructured 
techniques to surface disinfectants.68,69 These techniques 
include addition of intrinsic antiviral NPs, polymerization 
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with intrinsically pathogen-resistant nanomaterials, metal-
lic surface coatings, and nanotexturing.192

Various metal and metal oxide NPs such as AuNPs, 
AgNPs, ZnONPs, CuONPs, SiONPs, nanosized copper (I) 
iodide NPs (CuINPs), and quaternary ammonium cations 
commonly (QUATs) are capable of inactivating virus from 
surfaces.9 Metallic NP-based disinfectants have interesting 
features in terms of fabrication process and cost, safety and 
toxicity, life-span, antiviral activity, eco-friendliness, non-
irritating, and nonfoaming properties to protect the 

pandemic viral transmission.19 They can be synthesized 
using the green synthesis approach from natural resources 
such as plant parts, insects, and animals. They provide an 
adsorbent property by their larger effective surface area, 
and a controlled release of the disinfectant molecules.193,194 

They can be used for coating surfaces to oxidize and release 
ions with antimicrobial properties for disinfection. 
Controlled and sustained ion diffusion from metals like 
Cu modulates antiviral characteristics of surfaces.195 In 
addition; they are dermatologically safe and excellent in 

Table 4 Novel Nanostructured Vaccines for COVID-19 in Clinical and Preclinical Phases

S. 
No

Novel 
Vaccine 
Platform

Features of the Nanoformulation Developer/Organization Status

1. Protein 

subunit

SARS-CoV-2 rS/Matrix M1-adjuvant (Full length recombinant SARS- 

CoV-2 glycoprotein nanoparticle vaccine adjuvanted with Matrix M)

Novavax Clinical – 

Phase 3

2. DNA-based 

vaccine

Covigenix VAX-001 – DNA vaccines + proteo-lipid vehicle (PLV) 

formulation

Entos Pharmaceuticals Inc. Clinical – 

Phase 1

3. Protein 
subunit

Recombinant Sars-CoV-2 spike protein, Aluminum adjuvanted 
(Nanocovax)

Nanogen Pharmaceutical 
Biotechnology

Clinical – 
Phase 1/2

4. Virus-like 
particle

An enveloped virus-like particle (eVLP) of SARS-CoV-2 spike (S) 
glycoprotein and aluminum phosphate adjuvant.

VBI Vaccines Inc. Clinical – 
Phase 1/2

5. RNA-based 
vaccine

Self-replicating mRNA vaccine formulated as a lipid nanoparticle (LNP). SENAI CIMATEC Clinical 
-Phase 1

6. DNA-based 
vaccine

Plasmid DNA, nanostructured RBD National Institute of Chemistry, 
Slovenia

Preclinical

7. Viral vector 
(non- 

replicating)

Lentiviral vector retro-VLP particles Sorbonne University Preclinical

8. Protein 

subunit

RBD protein delivered in mannose-conjugated chitosan NP Ohio State University/Kazakh 

National Agrarian University

Preclinical

9. Protein 

subunit

S subunit intranasal liposomal formulation. University of Virginia Preclinical

10. Protein 

subunit

Recombinant protein, nanoparticles (based on S-protein and other 

epitopes)

Saint-Petersburg Scientific 

Research Institute of Vaccines and 

Serums

Preclinical

11. RNA-based 

vaccine

LNP-encapsulated mRNA cocktail encoding VLP Fudan University/ Shanghai 

JiaoTong University/RNACure 
Biopharma

Preclinical

12. RNA-based 
vaccine

Liposome-encapsulated mRNA BIOCAD Preclinical

13. RNA-based 
vaccine

A self-amplifying RNA vaccine encapsulated in an LNP, which encodes 
for multiple antigens, including the spike (S) protein

Ziphius Vaccines and Ghent 
University

Preclinical

Abbreviations: LNP, lipid nanoparticle; RBD, receptor-binding domain; VLP, virus-like particle.
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keeping public places safer from COVID-19 risks.15 

Surfaces can be coated by nanopolymers in different 
ways. First, with a simple drop-casting method, a polymer 
solution will be dropped to coat the surfaces and then 
allowed to evaporate. In the second method, a dip coating 
technique can be done by immersing a substrate in the 

polymer solution, with consequent withdrawing, evapora-

tion and drying. In a cast-coating technique, the polymeric 

solution will be cast onto the surface followed by solvent 

evaporation.196

Surfactant-coated NPs provide special antistatic, stabiliz-
ing, antiviral coating properties for surface disinfection.108 

Apart from coatings, NPs like AgNPs demonstrated antiviral 
effects including SARS-CoV-2 when applied in their nano-
powder forms, which can also be applicable for face masks and 
air filters.197,198 Copper NPs had been proven for theirs anti-
viral effect against HCoVs by degrading and inactivating the 
viral genome which may be projected for use against the 
current pandemic, SARS-CoV-2.199 Recent studies also 
reported that CuNP-loaded surfaces can easily deactivate 
SARS-CoV-2 and be developed with less economy than 
AgNPs and with excellent stability.200,201 Furthermore, con-
jugation of CuNPs with quaternary ammonium structures 
exhibited enhanced antiviral activity.202 Replacing plastic and 
stainless steel materials with Cu alloy can limit COVID-19 

Table 5 Nanobased Protective Equipment for COVID-19 Prevention

S. 
No

NanoBased 
PPEs

Features of the Formulation Reported Benefits of Nanobased 
PPE

Reference

1 Ag nanocluster/ 

silica 

composite facial 
masks

● Silver nanocluster/silicacomposite coating deposited on 

impregnated in facial masks

● Promising virucidal property,
● Enhanced SARS-CoV-2 titer 

reduction,
● Great safety to be used in crowded 

areas
● Increased working life of filtering 

masks
● Reduced waste production

184

2 Metal oxide nano- 

compounded hand 

sanitizer

● Nonalcohol-based neosporin, muprocin, and tetracycline 
NPs blended with soap solution sanitizers

● Impart effective antiviral activity
● Skin-friendly hand sanitizers

185

3 Zinc oxide 

nanospray

● Zinc (II) oxide NP (ZnO-NPs) used as a disinfectant 

nanospray

● High anti-SARS-CoV-2 activity at 

cytotoxic
● Reduced host cellular toxicity
● Elevated antiviral activity against 

SARS-CoV-2

186

4 Silver NP (AgNPs)- 

based 

surgical masks

● Surgical masks by impregnating AgNPs ● Superior microbial reduction of 
99.999% against a wide number of 

microorganisms.
● Reusing surgical masks
● Effective decontamination

187

5 Graphene nano 
based 

PPEs

● Coating onto fabrics such as face masks and gloves ● Excellent antimicrobial efficacy,
● Providing both physical and chemi-

cal mechanisms of damage

188

6 Nanofiber 

membrane 

reusable masks

● Masks fabricated by melt blown fabrics and nanofiber mem-
brane from spider-web bionic nanofiber membrane (nano-

cobweb-biomimetic membrane)

● Achieved the disinfection and reuse 
of masks

● Can effectively alleviate the short-

age of masks
● Better repeatability and disinfection 

tolerance
● High aerosol rejection efficiency

189
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spreading on surfaces.203 In another way, photothermal inacti-
vation of SARS-CoV-2 from surfaces can be done by illumi-
nating Ag and Au NPs and nanorods at an optimal wavelength 
to induce heating for viral inactivation.204 Encapsulating 
objects with photoactive nanomaterials and using electromag-
netic radiation to disrupt SARS-CoV-2 cells are other methods 
for surface disinfection.205

A study done by Abo-zeid et al showed that iron oxide 
NPs, both Fe2O3 and Fe3O4, can interact with viral spike 
protein destroying its ability of host cell attachment. In 
addition, they produced reactive oxygen specious (ROS) 
that inactivates SARS-CoV-2 in surfaces.206 Titanium 
dioxide (TiO2) nanocoating is the other alternative for 
sanitizing public utilities and mass gathering areas. Due 
to its UV induced photocatalytic properties, it has an 
effective multidimensional application for decontaminat-
ing and minimizing the COVID-19 transmission. It is a 
convenient and cost-effect disinfecting approach, even for 
remote locations, through TiO2-doped paints, air filtration 
aerosolized filters, TiO2-impregnated ventilation systems, 
and Cu and Ag-loaded TiO2 nanowires. Surfaces coated 
with aluminum alloy NPs also demonstrated an effective 
SARS-CoV-2 disinfection within six hours.207,208

Physicochemical properties of graphene nanomaterials 
can be used to control the transmission of the COVID-19 
pandemic by deactivating the virus from surfaces. 

Graphene and its derivatives inactivate the virus by exert-
ing photothermal activities and binding to the viral S 
protein that results in inhibition of cellular interactions to 
the host cell receptors.25,209 Water treatment using nanos-
tructures of light-activated, layered graphitic carbon 
nitride disables the contaminating ability of viruses includ-
ing SARS-CoV-2.79 Nanostructured anionic polymers 
showed pH adjusted, rapid and continuous disinfecting 
ability which can be a good alternative to inactivate the 
virus in a self-disinfecting manner.210 In recent times, 
nanobased air ionizers and surface purifiers that can be 
applied for decontaminating buildings and public offices 
are being studied and developed.211 Polymers can be 
awarded an antimicrobial effectiveness by covalent con-
jugation of biocidal agents such as quaternary ammo-
niums, phosphonium groups, chlorine dioxide, alcohols, 
and sulfonates to produce permanently coated, nonleach-
ing sterile surfaces.125 Ventilator units can also be coated 
with the same principles to reduce the likelihood of 
COVID-19 infection and cross-infections.19

Nanotechnology for Improvement of 
Personal Protection Equipment (PPE)
PPE includes textile materials such as headgear, goggles, 
masks, gloves, facial protection, and dresses or gowns. 
They are critical elements for protection from COVID-19 

Figure 7 Nanotechnology applications for production of PPE against COVID-19. Copied from Campos EVR, Pereira EAS, de Oliveira JJ, et al. How can nanotechnology help 
to combat COVID-19? Opportunities and current need. J Nanobiotechnol. 2020;18:125. doi: 10.1186/s12951-020-00685-4.129
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transmission. Nanostructures used in PPE modification are 
responsible to adsorb viral particles for viral inactivation 
and filtration efficiency which is the main principle for 
their application of COVID-19 prevention.212 The main 
challenges encountered by conventional PPE are asso-
ciated with their poor antitoxicity, difficulty in breathabil-
ity, heat dissipation, and reusability.176 Uncertainties are 
also rising on which, how, and how much they permit 
COVID-19 transmitability, especially in workplace set-
tings and densely populated gathering areas which neces-
sitates more trustworthy, cost-effective, efficient, and 
reusable PPE development.213 Appropriate understanding 
of the role and the usage of PPE by the health staff and the 
public and ensuring an adequate supply system are con-
siderable factors for imminent prevention of the pandemic. 
That is why their application worldwide has not been 
enough to stop the transmission.63,64

Environmental safety and waste management is 
another complicated issue during the pandemic season. It 
puts a substantial burden and results in a health compro-
mising situation including carcinogenic health impacts 
questioning for other alternative technologies for the pro-
duction of biomedical equipments and treatment of 
COVID-19 related wastes.65,66 Moreover, single-use PPE 
types become factors in environmental pollution and 
sources of biohazards. Not only the discarded PPEs, but 
also their derived decomposition products are threatening 
the aquatic organisms and human life that may persist for 
many years in the future.67–69 Hasan et al revealed the 
potential long-term effects of these environmental impacts 
on aquatic ecosystems and human health as: physical 
effects (changes in microbiome, water quality deteriora-
tion, ecosystem alteration), physiological effects (repro-
duction hamper, oxidative stress, decreased survival, 
metabolic damages), long-term effects (immunosuppres-
sion, carcinogenicity, geno-toxicity, neurotoxicity).70 This 
indicates that advanced technologies for the development 
of eco-design approaches for PPE production are 
needed.71

Nanostructures can impart their role by reducing sin-
gle-use PPE by replacing them with novel reusable, self- 
cleaning, effective, and efficient antiviral products to mini-
mize environmental challenges. This can be brought about 
by the application of antiviral NPs, nanofibers, and NP- 
coatings to acquire super-hydrophobicity, synergistic 
effects, self-cleaning functionalities with photothermal 
and photocatalytic sterilization.72,214 For these purposes, 
nanomaterials with intrinsic antiviral activity, such as 

AgNPs, graphene oxide (GO), CuO NPs, two-dimensional 
carbides, and nitrides that can capture and inactivate 
viruses are being investigated.176,215 Furthermore, a fluor-
escent NP penetrant inspection can be used for the detec-
tion of inner defects in used masks, to provide necessary 
data for the development of reusable masks, structural 
optimization, and evaluation standards.216 Less material 
consumption and reduced supply problems, efficient filtra-
tion due to large surface areas, cost-effective transmission 
control, and virus neutralization due to functionalization 
with chemically active groups are the main features of 
PPE modifications by using nanomaterials and 
nanotechnology.217

Size- and time-dependent particle removal efficiency is 
reported from different protective respiratory masks which 
can be optimized by nanostructured systems.218 Ag nanoclus-
ter/silica composite nanocoating impregnated in facial masks 
possessed a promising virucidal property, reduced the SARS- 
CoV-2 titer, and provided great safety to be used in crowded 
areas.178 In addition, SiO2 and Al2O3 NPs coated with poly-
propylene or polyethylene demonstrated super water repellent 
effects; TiO2 and MgO NP coatings provided self-sterilizing 
activity; indium-tin oxide NPs produced an electromagnetic/ 
infrared protective clothing and ceramic NPs resulted in an 
increased abrasion resistance.219,220 Generally, the mechan-
isms in these NP coating effects are reported to be surface 
oxidation, releasing free radicals or toxic ions, ROS genera-
tion, photoreaction, inhibition of viral interaction, entry and 
binding.221 Nanotechnology can also increase the filtration 
efficiency through improving viral particle capturing and 
retention, enabling rapid viral inactivation after capturing 
them, minimizing exhaled humidity effects on particle redis-
tribution, and providing a very thin, high-efficiency reusable 
filtration media.61

The application of nanofiber technology for face masks can 
reduce breathing resistance, maximize comfort by minimizing 
pressure, and provide enhanced filtration efficiency against 
very small viral particles (<50 nm).22 The Egyptians discov-
ered a novel, reusable, recyclable, customizable, antimicrobial, 
and antiviral respirator facial mask feasible for mass produc-
tion. The novel design is based on the filtration system com-
posed of a nanofibrous matrix of polylactic acid and cellulose 
acetate containing CuO NPs and GO nanosheets produced by 
electrospinning technique.222 Nanofiber filter incorporated sur-
gical masks showed a decrease in air-flow resistance, improved 
filtration efficiency, enhanced contaminant deactivation, and 
reduced risk of inhaling pathogens.223 Similarly, other PPE like 
gowns, facial shields, gloves, boots, and goggles can be 
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advanced with the aid of efficient and multifunctional 
nanostructures.61,79

Pharmacoeconomic and Regulatory 
Aspects
In the clinical trial of the COVID-19 vaccine, the two lipid 
mRNA-based vaccines, BNT162b2 and mRNA-1273, exhib-
ited more than 95% efficacy, owing to their unique nanocarrier 
characteristics.224 Even though such effectiveness with 
reduced medicine intake and adverse effects can be achieved 
with nanomedicine, there is still a substantial concern on their 
toxicity. Moreover, the development of these nanostructured 
systems should be regulated as all marketing items must 
follow regulatory requirements.225,226 There is an international 
debate on the risk regulation of NPs. To resolve this contro-
versy, uniform definitions of NPs are required for the identifi-
cation and application of legal provisions to them and facilitate 
the marketing of nanotechnology-derived products. There 
should also be a validated method of analysis, detection, 
characterization, and complete information regarding the 
impact of nanomaterials as well as the assessment of nanoma-
terial exposure.227,228 The use of nanotechnology may result in 
significant problems, causing irreversible damage to the envir-
onment and humans, if adequate rules and legislation are not in 
place.229 The legal framework of nanotechnology was inves-
tigated to see if new regulatory action was necessary to address 
the hazards associated with nanomaterials. To take advantage 
from the benefits of nanoproducts, especially in severe pan-
demics like COVID-19, the public, customers, and employees 
need flexible and balanced regulatory actions based on scien-
tific data. In addition, development of standards and guidelines 
on their preparation and use should be outlined to ensure safety 
and reduce the risk of liability.230

Authorization of substances and ingredients, qualification 
of hazardous waste, reinforcing conformity assessment 
methods, and restrictions on the entry of chemical substances 
and preparations to the market as well as their usage are all 
part of the nanomaterials regulation.227,230 Current regula-
tory frameworks cover a wide range of products and pro-
cesses, including nanotechnologies, which implies that a 
separate regulator or regulatory framework may be unneces-
sary. However, some case studies suggest that the present 
framework should be modified because of the strange and 
uniqueness of NPs.230–232 Recent discoveries such as the NP- 
based COVID-19 vaccines, diagnostic, and therapeutic 
agents as well as PPE are now coming to support the globe’s 
fight against the pandemic. However, current regulations 

may not be sufficient to solve their risk management, produc-
tion challenges, and market issues which necessitate working 
more on the nanoregulatory issues parallel to nanoproduct 
discoveries.228 Lack of understanding and communication 
about the science, use, and regulation of nanotechnology 
among all stakeholders hurts society perceptions and regula-
tory decision-making.233 Even though the risks posed by 
nanomaterials to the environment and humans have become 
a global concern, it is recommended for all relevant regula-
tory bodies to consider the impact of NPs in protecting 
humans from current and future pandemics such as 
COVID-19.234

Regarding the pharmacoeconomic aspects, there is a 
debate on the economic influence of nanotechnology. 
Reports are indicating that its short-term effect is minor, 
but it will provide a substantial economic impact in the 
long-term. Its prospective economic effects will be fully 
beneficial across the society and the spectrum of devel-
oped and developing countries. There was no evidence 
that nanotechnologies generate economic challenges that 
were notably different from those raised by other techno-
logical advancements.230,235 However, certain studies pre-
dicted that nanotechnologies can offer economic benefits, 
including the ability to create jobs, wealth, and well- 
being.236 These technologies are also shown to be a cost- 
effective option for many challenging medicine 
approaches.229 A pharmacoeconomic study would allow 
for the most efficient use of monetary resources and the 
maximum health return at the lowest possible cost. The 
high failure rate for innovative therapeutic compounds in 
the drug development cycle is mostly attributable to eco-
nomic considerations to save resources.237 Such cost- 
based approaches have a significant impact on the devel-
opment of nanotechnology-derived products and manage-
ment strategies against the COVID-19 pandemic.224

Nanomedicines have the potential to make a significant 
contribution to inexpensive health care, but a rigorous evalua-
tion through updated cost-effectiveness evaluations is required 
first. In global pandemic challenges, like the current COVID- 
19 pandemic, the success of introducing highly-priced and 
efficacious, yet costly, nanotherapies to market with their 
affordability can be considerably improved by using specific 
decision-making frameworks. The implementation of compre-
hensive, standardized cost-effectiveness studies can shift the 
focus to reducing health-care costs while maintaining care 
quality. One major flaw in current cost-effectiveness research 
in the field of nanomedicine is that, practically all studies focus 
solely on direct treatment costs, completely ignoring indirect 
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costs.238–240 This concern may highly challenge the applicabil-
ity of nanomaterials and their support on combating COVID- 
19 by the time the conventional approaches and repurposing 
strategies are unable to retard and resist its drastic global 
transmission. Conversely, nanomedicine has the potential to 
save health-care expenses by reducing treatment costs through 
focused therapy, reducing hospital stays, promoting healthy 
aging, and focusing on chronic diseases.241 This confirmed that 
the importance of nanotechnology in the COVID-19 vaccina-
tion and treatment will be uncountable, as COVID-19 is asso-
ciated with various organ complications, needs targeted 
therapies, and results in chronic postinfection syndromes.242

Current Outcomes, Challenges, and 
Future Perspectives: Summary
Valuable Outcomes
Advanced Products
Advanced vaccines, PPE, disinfectants, surface coatings, nano-
based sensors, and therapeutic agents that will improve treat-
ment success rates are now coming forward to the laboratories, 
clinical trials, and are even in the market.140,243 Simple, low- 
cost procedures for low-resourced medical infrastructures and 
less-developed nations will be the main benefiting outcomes 
from these nano-advanced products.88,92 Broad-spectrum anti-
viral nanodrug or functionalized biocompatible NPs have been 
synthesized which irreversibly and permanently inhibit the 
virion preventing the re-replication inside the host.244 

Antiviral drugs and nanovaccines with lung targeting, superior 
circulation and retention time, remote loading, decreased sys-
temic immunotoxicity, prodrug forms of controlled and loca-
lized release, reduced dosage, combination therapeutics, 
lowered dose and toxicity, and augmented cellular uptake are 
also reported positive outcomes.245

Bionanotechnology and Nanomedicine
Connecting the biomaterial science, nanotechnology, and med-
icine offered novel and smart nanodelivery systems with effec-
tive prevention, efficient diagnostics, and higher efficacy 
therapeutics. These systems can potentially counter challenges 
related to site-specific delivery, controlled release and main-
tenance of stability which will be extremely vital in fighting the 
COVID-19 pandemic outbreak.95 A nanobased vaccine 
(mRNA-LNP) for SARS-CoV-2 is being developed and 
found to be successful. The utilization of nanobiomaterials 
for COVID-19 vaccine and therapeutics development pro-
mised more potent and versatile applications.246

Research and Patents
Despite persisting for a very short time, there are many new 
investigations and patents related to COVID-19. From these 
patents, more than 10% are associated with “nano” topics 
including the use of different nanostructured systems for diag-
nostic, therapeutics, vaccination, and preventive approaches as 
nanocarriers, vectors, markers, filters, adjuvants, and intrinsic 
antimicrobials.125,247 Research and development is still under-
way on the effective application of nanomedicine with indus-
trial implications to enhance safety, high sterilization capability 
with a low dosage, reusability, and eco- and user-friendly 
properties.19,188 Efficiently targeting antiviral nanocarriers 
and personalized therapy with precision nanomedicine are 
the near future perspectives of such investigations.9

In summary, COVID-19 management can benefit from 
nanostructured delivery systems in that it can potentiate 
immune response modulations which may otherwise be 
difficult conventionally, possess precise targeting, reduce 
nontarget accumulation and associated toxicities, protect 
drugs and vaccines from degradation and inactivation in 
body environment, offer alternative vaccine delivery 
routes, and possess promising biodegradability and bio-
compatibility that can be controlled.248

Limitations and Challenges
Clinical Extrapolation
With those vast advantageous outcomes, clinical translation of 
the nanoproducts has not yet been achieved. Unpredictable 
side effects, safety, and toxicity concerns, long-term fate, cost 
and complexity of NP preparations, need for pure study 
designs with acceptable sample sizes and validated methods 
are the persisting challenges.138,139 In contrast there are also 
probable limitations of the promising advantages of nanofor-
mulations including difficulty to sterilize parenteral formula-
tions suitably, biomolecule denaturation risks, low entrapment 
efficiencies, biodistribution profile characterization, off-target 
accumulations, and uncontrollable burst release effects.22

Disease and Pathogen Characterization
The other vital issue is the lack of deepest understanding of 
the cellular, pathogenic and pathophysiologic aspects of 
SARS-CoV-2 and COVID-19 with the particular nanobioin-
terfaces involved in drug/vaccine development and delivery.8 

SARS-CoV-2 also revealed different behaviors in different 
hosts which entails the need for the design of highly efficient 
nanosystems such as biomimetic organoids and organ-on- 
chips that can specifically assess and evaluate these beha-
vioral variabilities.135 Even though the lungs are the best 
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targets in COVID-19 management, direct and targeted intra-
nasal and pulmonary nanodeliveries are associated with 
severe impairment in respiratory sites and lung function. 
Further proof is needed to assure nanomaterial safety related 
to intolerable inflammation, cellular damage, fibrosis, small 
granulomatous lesions, geno-immunotoxicity, and oxidative 
stress due to abnormal NP accumulation in the alveoli which 
results in alveolar cell damage, blood vessel penetration, and 
then translocation to other organs.249–251 The design of such 
nanocarriers in such a way that the nanoformulation can 
escape the recognition by scavenger cells is also challenging 
and needs considerable effort before clinical translation.61

Large-scale Production
Scaling up, complicated fabrication process and only lim-
ited information on how and how much the NPs exert their 
impact on organisms with peoples’ reluctance to accept 
new technologies are other reported challenges.111

Regulation
Patent and intellectual property right issues remained chal-
lenging through this global pandemic era. The Open COVID 
Pledge requests patent and intellectual proprietors to volun-
tarily sacrifice the rights in helping the free fight during the 
crisis, but it is still being debated as it is dependent on the 
willingness of the patent holders.219 Moreover, regulatory 
issues are still far-away for the confidential application of 
nanomedicine with its full potentials. Ethical, scientific, bio-
safety and acceptance issues by regulatory agencies hinder 
nanomedicine to produce safe and high-quality nanodrugs 
including antivirals of this pandemic.9,135

Future Perspectives
Concerned Effort from the Pharmaceutical World
Having the opportunities and the challenges from nano-
technology, nanomedicine, and biotechnology in mind, the 
pharmaceutical society must put endless effort on investi-
gating nanotherapies to manage COVID-19. Here, from 
the pharmaceutical point of view, searching for better 
antimicrobial/antiviral therapeutic agents with better effi-
cacy and minimized adverse effects, optimizing dosages, 
and delivery systems for carriers and targets, investigating 
biocompatible, bio-functionalized, nanodrug loading sys-
tems; designing stimuli-responsive, immunosupportive, 
and immunomodulating agents by using nanopharmacol-
ogy concepts, and developing personalized nanotherapeu-
tics are based on variations of the effects of SARS-CoV-2 
and patient-specific disease profiles.82

Multidisciplinary Research
The current pandemic crisis can be taken as a golden 
opportunity for the transformation of nanomedicine by 
intensifying the safety to risk ratio of nanostructures. For 
this to be true, in-depth investigational study, experience- 
sharing, and exchange of knowledge among different 
countries, different departments, and different companies 
including regulatory agencies are essential.9,176 Early stage 
regulatory guidelines with a mid and long-term research 
on positive opportunities and about factors that limit their 
applicability are needed. This can enable the global med-
ical practice against the current and future pandemics.46

Combination of Technologies
Nanomedicine is now trying to combine the advance from 
machine learning, artificial intelligence (AI), and internet of 
medical things (IoMT) for modeling, encoding and interpret-
ing cell-nanomaterial interactions which is crucial to forecast 
biosafety, predict efficacy, and formulate quantitative nanos-
tructure activity-relationship (nano-QSAR). These combined 
applications can support the global struggle against COVID- 
19 by providing simplified data collection, mobile-sensing, 
as well as self-sampling of COVID-19 tests. Other related 
technologies such as robotics, telemedicine and 3D-printing 
can further complement the effective application of nanome-
dicine in fighting the pandemic.108,252

Conclusion
Even though the COVID pandemic is accelerating globally, 
there are still no approved drugs and internationally accepted 
free-access vaccines to counter its worldwide spread. 
Accurate prevention, rapid and early detection, effective 
immunomodulation, and definitive treatment strategies are 
not yet outlined. Nanostructured drug development and 
delivery-based research and development is now promising 
the world to end the pandemic effectively and shortly with 
radically modified therapeutic, diagnostic and prevention 
options. Should all regulatory, scale-up, and safety issues 
be settled, nanotechnology can guarantee the world for the 
current and the next unpredictable pandemic crisis. Extensive 
scientific research and collaborative multidisciplinary efforts 
are needed for its practically extrapolatable outcome.
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