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Abstract
The human brain is the most complex object of study we encounter today. Mapping the neuronal-level connections

between the more than 80 billion neurons in the brain is a hopeless task for science. By the recent advancement of magnetic

resonance imaging (MRI), we are able to map the macroscopic connections between about 1000 brain areas. The MRI data

acquisition and the subsequent algorithmic workflow contain several complex steps, where errors can occur. In the present

contribution we describe and publish 1064 human connectomes, computed from the public release of the Human Con-

nectome Project. Each connectome is available in 5 resolutions, with 83, 129, 234, 463 and 1015 anatomically labeled

nodes. For error correction we follow an averaging and extreme value deleting strategy for each edge and for each

connectome. The resulting 5320 braingraphs can be downloaded from the https://braingraph.org site. This dataset makes

possible the access to this graphs for scientists unfamiliar with neuroimaging- and connectome-related tools: mathe-

maticians, physicists and engineers can use their expertize and ideas in the analysis of the connections of the human brain.

Brain scientists and computational neuroscientists also have a robust and large, multi-resolution set for connectomical

studies.

Keywords Connectome � Braingraph

Introduction

Connectomes or braingraphs are compact and focused

derivatives of the diffusion magnetic resonance images

(MRIs) of the brain: their vertices are labeled by the

anatomical areas, and two such vertices are connected by a

weighted graph-edge, if a tractography workflow Besson

et al. (2014) finds neural tracks between the areas, corre-

sponded to the vertices. By focusing on the connections

between cerebral areas instead of analyzing the whole MR

image, we can make use of the rich and refined resources of

graph theory, born with the famous article of Leonhard

Euler on the problem of the Königsberg Bridges Euler

(1741) in 1741.

Our research group earlier has prepared several undi-

rected and directed braingraph sets (Kerepesi et al.

2016, 2017; Szalkai et al. 2015a, 2017a, 2019a) from the

500 Subjects Data Release McNab et al. (2013) of the

Human Connectome Project (HCP). The resulting graphs

were made available at the site https://braingraph.org, and

were applied in several structural studies of the human

brain (Szalkai et al. 2015b; Kerepesi et al. 2018a; Szalkai

et al. 2019a; Kerepesi et al. March 2018b; Szalkai et al.

Feb 2019b, 2018; Szalkai et al. 2017b; Szalkai et al. 2016;

Fellner et al. 2019, 2020a, 2020b).

In the present contribution we describe a new braingraph

set, computed from the 1200 Subjects Data Release of the

Human Connectome Project McNab et al. (2013). The set

contains 1064 connectomes, each in five resolutions, and

each edge is weighted by three different weight functions.

Our dataset may serve as a robust resource for the com-

putational neuroscience community in the coming years.
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Methods

The data source of the workflow is the 1200 Subjects Data

Release of the Human Connectome Project (HCP) McNab

et al. (2013), documented at the site https://www.human

connectome.org/study/hcp-young-adult/document/1200-

subjects-data-release. For the present study the ‘‘re-pre-

processed’’ 3T diffusion data was applied, as was detailed

at the HCP site.

The Connectome Mapper Tool Kit (CMTK) workflow

Daducci et al. (2012) was utilized in the graph computation

on the HCP data. For each subject, we have applied the

segmentation and the parcellation steps only once, but the

probabilistic tractography part of the workflow 10 times.

The parcellation scheme was the Lausanne2008 atlas, the

labels applied are listed in https://github.com/LTS5/cmp_

nipype/blob/master/cmtklib/data/parcellation/lau

sanne2008/ParcellationLausanne2008.xls.

The graph construction was performed in the following

steps:

1. For each subject the MRtrix 0.3 tractography algorithm

Tournier et al. (2012) was run, with probabilistic

seeding and probabilistic tractography. The number

of streamlines was set to 1 million. For defining the

graph edges, let us consider two distinct, anatomically

labeled areas of the cortical- or sub-cortical gray areas

of the brain, denoted by A and B. If the tractography

algorithm found at least one streamline between the

area A and B, then vertex a, representing area A was

connected to vertex b, representing area B, by a graph

edge. The three weights of fa; bg give the number of

streamlines or fibers found between areas A and B, the

average length of the streamlines, and the mean

fractional anisotropy of the streamlines.

2. Step 1 was repeated 10 times for each subject. We

accepted fa; bg to be an edge of the connectome of the

subject, if it was present in all ten graphs computed in

the repetitions. Next, for each edge we computed the

maximum and the minimum number of the fibers,

defining that edge, and deleted those two extremal

values. Consequently, there remained 8 fiber numbers

for each edge. We computed the mean value of those

fiber numbers, the mean value of the lengths of the

streamlines and the fractional anisotropies for the three

weights of the edge.

In other words, the probabilistic tractography was per-

formed 10 times, the graphs were constructed after each

run, (i.e., 10 graphs were constructed for each subject),

next the extremal fiber number values were deleted, the

remaining 8 values were averaged, and the edges, which

were present in all 10 graphs were allowed to be included

in the resulting graph.

Steps 1 and 2 were performed only in the highest (i.e.,

the finest) resolution with 1015 vertices. For lower reso-

lutions, the graphs were computed from the 1015-vertex

graph by contracting vertices, summing the fiber numbers

of the multiple edges between the two contracted vertices

and contracting the multiple edges.

On the choice of 10 as the repetition number of the

probabilistic tractography we refer to the detailed analysis

in the ‘‘Discussion and results’’ section below.

From the dataset of the HCP website we were able to

finish the graph computations for 1064 subjects.

The computation was done on our 24-member Intel i7

cluster (each with 6 physical and 12 virtual CPU cores and

16 GB of RAM) within 3 weeks running time.

Data records

The data source of this work was published at the Human

Connectome Project’s website at http://www.humancon

nectome.org/McNab et al. (2013) as the 1200 Subjects

Public Release. The parcellation data, containing the

anatomically labeled ROIs, is listed in the CMTK nypipe

GitHub repository https://github.com/LTS5/cmp_nipype/

blob/master/cmtklib/data/parcellation/lausanne2008/Parcel

lationLausanne2008.xls.

The braingraphs, computed by us, can be accessed at the

https://braingraph.org/cms/download-pit-group-con

nectomes/ site, by selecting one of the download options,

denoted by ‘‘X nodes set, 1064 brains, 1 000 000 stream-

lines, 10x repeated’’, where X ¼ 86; 129; 234; 463; 1015.

The graphs are given in GraphML format, described in

https://cmtk.org Daducci et al. (2012). Each file begins

with an attribute definition section, then the nodes are

described with their coordinates and anatomical labels,

corresponding to the parcellation at https://github.com/

LTS5/cmp_nipype/blob/master/cmtklib/data/parcellation/

lausanne2008/ParcellationLausanne2008.xls.

Next the (un-directed) edges are listed. The edges carry

three weights:

• The number of fibers;

• The mean value of the fiber lengths in the edge;

• And the mean fractional anisotropy of the fibers

Note that the edge weights are averages from the eight of

the ten tractography-runs, therefore, even the fiber number

is—typically —a non-integer.
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Discussion and results

Here we describe the workflow, which implied the choice

of the 10 repetitions of step 1 in the graph construction

above. We note that the present section describes only the

process, resulting the specific choice of the repetition

number 10, and not the actual graph construction (which

was already duly described in the ‘‘Methods’’ section).

The implementations of the deterministic tractography

algorithms also contain a probabilistic seeding step; i.e.,

two runs of these tractography computations almost always

yield different results. When we use probabilistic tractog-

raphy Girard et al. Sep (2014); Buchanan et al. Feb (2014),

it is evident that distinct runs yield different results.

For generating reproducible results in the graph con-

struction with a probabilistic tractography phase, it is a

natural idea to repeat the probabilistic tractography algo-

rithm for the very same input several times, and to average

the results of the tractography in a careful way.

Let us fix two vertices, and let the random variable X

denote the number of fibers discovered between then, then,

clearly, for any X: EðX � EðXÞÞ ¼ EðXÞ � EðXÞ ¼ 0, that

is, the expectation of the difference of X from its expected

value E(X) is 0. This fact implies that the repetitions and

the averaging will increase the reliability of the tractogra-

phy results.

For the determination of the number of repetitions k,

with the trade-off with practical computability and

robustness, we have followed the strategy, described as

follows. In short, we determined the number of necessary

repetitions by comparing deviations for 10 average values,

each for k repetitions, for k ¼ 1; 2; . . .; 50.

More exactly, we have chosen 9 subjects: for each non-

zero leading digits of the ID numbers, one was chosen

randomly (the choices were: 136631, 200008, 300618,

401422, 500222, 601127,700634, 800941, 901038). For a

given subject, and a given positive integer value k, we have

generated the following ten braingraphs:

Gk1;Gk2; . . .Gk10;

where Gki was calculated by k repetitions of the tractog-

raphy phase, and averaging the numbers of fibers for each

edge on the k runs.

For i ¼ 1; 2; . . .; 10, we have generated independent k

instances, and averaged these k fiber numbers for each

edge. Next, we have thrown out those edges, which were

not present in all the ten copies of the averaged graphs.

Now, for each remaining edge fu; vg of the graph G, we

computed the average fiber number values over k repeti-

tions: one average value w
ðkÞ
i ðu; vÞ for each i in Gki, for

i ¼ 1; 2; . . .; 10. For readability, we omit (u, v) from

w
ðkÞ
i ðu; vÞ in what follows.

For these ten w
ðkÞ
i values we computed the relative

standard deviation (also called coefficient of variation) of

the ten w
ðkÞ
i values:

cvðwðkÞÞ ¼ rðwðkÞÞ
lðwðkÞÞ ;

ð1Þ

where

lðwðkÞÞ ¼ 1

10

X10

i¼1

w
ðkÞ
i ; rðwðkÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9

X10

i¼1

ðwðkÞ
i � lðwðkÞÞÞ2

vuut

ð2Þ

Figure 1 displays the change of the relative standard

deviation of the fiber number of a given edge (the edge,

connecting vertex 19 and vertex 21 in the 463-vertex res-

olution in the case of subject No. 901038) for

k ¼ 1; 2; . . .; 50.
Figure 2 shows the change of the relative standard

deviations, averaged for all edges as a function of k, in the

case of a given braingraph, in 234-vertex resolution. Sup-

porting Figures 1, 2, 3 and 4 show the same in graphs of

different resolutions.

Based on the visual examination of Figure 2 (and the

related figures for other resolutions and subjects, cf. Sup-

porting Figs. 1, 2, 3 and 4), we have chosen the k ¼ 10

value for repetitions as a good trade-off between deviation

and practical computability: for repetitions k[ 10 the

decrease of the red horizontal lines, showing the median

relative standard deviations, is very small on Fig. 2 and

Supporting Figs. 1 and 2, and still small on Supporting

Figs. 3 and 4.

Fig. 1 The change of the relative standard deviations (on the y axis)

of the edge, connecting vertex 19 and vertex 21 in the 463-vertex

resolution in the case of subject No. 901038, for k ¼ 1; 2; . . .; 50, (on
the x axis)
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