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The underlying principle governing the natural phenomena of life is one of the 
critical issues receiving due importance in recent years. A key feature of the 
scale-free architecture is the vitality of the most connected nodes (hubs). The 
major objective of this article was to analyze the protein-protein and metabolic 
interaction networks of Drosophila melanogaster by considering the architectural 
patterns and the consequence of removal of hubs on the topological parameter 
of the two interaction systems. Analysis showed that both interaction networks 
follow a scale-free model, establishing the fact that most real world networks, 
from varied situations, conform to the small world pattern. The average path 
length showed a two-fold and a threefold increase (changing from 9.42 to 20.93 and 
from 5.29 to 17.75, respectively) for the protein-protein and metabolic interaction 
networks, respectively, due to the deletion of hubs. On the contrary, the arbitrary 
elimination of nodes did not show any remarkable disparity in the topological 
parameter of the protein-protein and metabolic interaction networks (average path 
length: 9.42f0.02 and 5.27f0.01, respectively). This aberrant behavior for the two 
cases underscores the significance of the most linked nodes to the natural topology 
of the networks. 
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Introduction 
The concept of networking and its omnipresent na- 
ture has been an issue of considerable curiosity, cap- 
tivating scientists worldwide over the past few years. 
Simple networking can be witnessed in the physical 
connectivity of computer terminals or routers. On 
broader perspective, many networks, such as social 
ties-familial and professional, World Wide Web, net- 
work of scientific papers connected by citations, elec- 
trical power grids, transportation systems, and biolog- 
ical networks, are all illustrations of real-world com- 
plex systems ( I ) .  The exploration of this intrinsic 
blueprint would provide an in-depth examination of 
the major factors that cause the system to act in their 
distinguishing modes, and identify the nodes that play 
a pivotal role in the topology of the system. 

The random network theory was the base for all 
computations about systemic pathways and distribu- 
tion modeling, until the scalefree network model was 
proposed in 1998 (2-4). The scale-free network model 
falls between the classes of regular (p=O) and random 
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(p=l)  networks, where p is the probability of finding a 
random distribution ( 5 , 6 ) .  This modification results 
in a transitional ground with a probability p between 
0 and 1. In this type of network, a few nodes that 
have a large number of links, known as hubs, tend to 
dominate the rest of the nodes having smaller number 
of links. A notable feature of a scale-free network is 
that a node would require only a few steps to reach 
another node. The distribution of nodes in such a net- 
work declines with an increase in the number of links 
and is found to decay as a power law as given by the 
relation, p ( k )  N k-7,  where p ( k )  signifies probability, 
k represents a specific number of links, and y is the 
exponent of the power law (7). The plot of the proba- 
bility distribution p ( k )  on a log-log scale gives a linear 
correlation, establishing the fact that the distribution 
follows a power law. 

Although scale-free property is a ubiquitous phe- 
nomenon, it can not be truly called a universal one. 
The random network theory of Erdos and Rknyi (2- 
4 )  still holds true for some structures like the power 
grid system of Western United States (8-10) and the 
graph of company directors (11) that appear to have 
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degree distributions with a wholly exponential tail. 
Jeong et a1 (12) investigated the metabolic net- 

work structure of 43 organisms and reported that the 
average path length of the network for all studied 
species had a similar value. Removing the current 
metabolites, Ma and Zeng (13)  analyzed 80 sequenced 
genomes including parasites, prokaryotes, and eukary- 
otes, which revealed that the average path length, of 
these species could be statistically grouped into three 
values. They ascertained that the more complex the 
organism, the longer the average path length. From a 
biological standpoint, cell biology with the affiliation 
between its different components has become a fo- 
cus to the scientific community as it seeks to un- 
ravel the organizing principles governing the pattern 
and growth of the network mechanism in cellular and 
molecular networks. 

Although all organisms have a similar fundamental 
structure, the quantitative diversity in their metabolic 
network architecture can be differentiated by the 
topological parameter of the metabolic network. This 
diversity echoes the various evolutionary cycles that 
each organism has undergone over time. The differing 
topological parameter for the three domains indi- 
cates the mixed compactness and centrality of, the 
metabolic pathways (14). A better depiction can be 
derived by exploring the reactions and pathways of an 
individual organism to gain a concrete understanding 
of the biological significance of the basic structural 
variations that subsist in each organism. 

The assignment of gene function to newly s e  
quenced genes as part of genome projects would not 
be feasible without the trappings to recognize the sim- 
ilarity in amino acid sequences. The ability to ap- 
preciate the nature of protein evolution allows the 
biotechnologist to develop novel and technologically 
useful proteins in vitro. The presence of some proteins 
with a large number of interactions may be due to a 
specific structural composition that is different from 
other less connected proteins (15) .  This perception 
is central to the design of long-lasting immunizations 
and associated drug treatments for human diseases. 

Proteins may have either direct or indirect inter- 
actions with one another. In a direct or physical in- 
teraction, two protein chains bind to each other. Indi- 
rect association refers to proteins being a member of 
the same functional module (for example, transcrip- 
tion initiation complex and ribosome). A protein of 
this nature may not directly bind to another protein. 
Several of these interactions echo the dynamic state 
of the cell, and their existence depends on the partic- 
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ular environment or developmental status of the cell. 
However, the coupling of existing and potential inter- 
actions together defines the protein-protein interac- 
tion network within the genome of a given organism. 

Several groups reported systems for analyzing in- 
teractions in the protein-protein network. Ito et a1 
(16) provided a two-hybrid screening method that fa- 
cilitated the publication of a comprehensive protein- 
protein interaction map for yeast. Flores et al (17) 
published a protein-protein interaction map of yeast 
RNA polymerase I11 using the twehybrid technique. 
The topological analysis of the protein-protein inter- 
action network of Saccharomyces cerevisiae showed its 
heterogeneous scalefree architecture (18). Jeong et a1 
( 1  9 )  considered proteins in the protein-protein inter- 
action network as nodes and the interactions between 
them to represent the links. The computational elimi- 
nation of the well-connected yeast proteins caused the 
diameter of the network to increase steadily. On the 
contrary, the exclusion of arbitrarily chosen yeast pro- 
teins did not affect the topological parameter of the 
network, which has been shown to be in agreement 
with the result from mutagenesis experiments (19). 

The lethality of a protein was found to depend on 
the number of connections it shared in the protein- 
protein interaction network. The proteins with a large 
number of connections were found to be highly essen- 
tial, and their exclusion disturbed the network topol- 
ogy, proving lethal to the network. Although there 
were several proteins with smaller number of links, 
their elimination did not produce such adverse con- 
sequences. Jeong et a1 (19) further concluded that 
the highly connected proteins that play a central role 
in the network design were three times more essential 
than the proteins that interact with only a few other 
neighbors. 

Mering et al (20) evaluated large-scale protein- 
protein interaction datasets to determine their pre- 
cision and to recognize their biases, strengths, and 
weaknesses. They compared the significant approach 
methods to one another and to a reference group of 
formerly identified interactions. Bu et a1 (21) exam- 
ined the topological formation of yeast, that is, quasi- 
cliques and quasi-bipartites, using a spectral analysis 
method. They concluded that the unknown topolog- 
ical configuration consists of biologically significant 
functional groups. 

However, all endeavors to study the network de- 
sign of biological organisms have been restricted to 
simple species (18,22). A valid reasoning behind this 
predisposition is that the smaller the number of genes 
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involved, the fewer are the complications to be en- 
countered during the study. Research communities 
around the world furnish an abundance of datasets 
on a regular basis, but the specific analyses of these 
datasets are underdeveloped due to the compound en- 
vironment of the biological interaction networks. The 
nature of research is multifaceted due to the fact that 
even the simplest unicellular organisms have more 
than a few hundreds of genes transforming them into 
a compound life form from the perspective of a data 
analyst. Nevertheless, the shift of focus to more com- 
plex beings would provide a better understanding of 
the structural properties prevailing in the higher ech- 
elons of nature’s offspring. 

This study seeks to extend this widespread 
trend to the multi-cellular organism Drosophila 
melanogaster, which has been lending itself well to 
behavioral studies for almost a century due to its 
similarity with the human proteins (23) .  Scientists 
have discovered an identifiable match between the ge- 
netic code of fruit flies and over 60% of known human 
disease genes. Moreover, about 50% of fly protein se- 
quences are believed to have mammalian analogues. 
D. melanogaster is being used as a genetic model 
for several human diseases including Parkinson’s and 
Huntington’s diseases, and the study of these proteins 
presents knowledge about the possible development of 
remedial measures for human diseases such as heart 
disease, cancer, or diabetes mellitus. 

1 

0.1 

Results 

Analysis of the protein-protein interac- 
tion network 

A scale-free network is distinguished from the random 
network design by a power law distribution of connec- 
tivity, instead of an exponential curve. The graphical 
plot involving the probability of allocation of nodes 
and their definite number of links should produce a 
decreasing function for a network that is scale-free. 

The probability distribution plot of the number of 
proteins with a distinct number (k) of interactions is 
an excellent indicator of the type of network design in- 
herent in the protein-protein interaction network. As 
shown in Figure 1, using the high confidence interac- 
tion dataset (see Materials and Methods), a plot of 
probability distribution p(k) versus the interactions k 
on a log-log scale produced a linear correlation, in- 
dicating that the probability distribution follows a 
power law. 

This result is closely in accordance with the plot 
shown by Giot et a1 (24)  for the protein interaction 
map. As the degree of the network increased, the 
probability of finding a protein with that specified 
number of interactions began to fall to a low value. 
This confirmed the salient feature of scale-free net- 
works that there are several nodes with a low degree 
and a few dominant nodes (hubs) with a high degree. 
This result verified that the protein-protein interac- 
tion network of D. melanogaster follows a scale-free 
architecture. 

1 E-3 

1 E-4 
1 10 100 

Number of interactions, k 
Fig. 1 The probability distribution plot for the protein-protein interaction network. 
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There were 2,549 proteins having a single interac- 
tion, constituting more than half (-55%) of the to- 
tal proteins (4,591) in the high confidence dataset. 
Only 1% of the total proteins had 10 or more inter- 
actions, and these proteins became the hubs of this 
protein-protein interaction network. The exponent in 
the power law relation was found to be 2.78. This 
value was in concurrence with those obtained from 
other networks (2.0-3.0) like the World Wide Web, 
citations of scientific articles, and the Internet that 
follow a scale-free architecture ( 7). 

The Boost Graph Library was utilized to deter- 
mine the shortest path length between every pair of 
accessible proteins in the interaction network (25).  
The average path length, that is, the number of path- 
ways it would require on average for one protein to 
reach another accessible protein in the interaction net- 
work, was calculated as 9.42 for the high confidence 
interaction dataset (24). 

The relatively short path length typifys a small 
world network. As the network architecture is of a 
scale-free nature, it has to be tested for its resistance 
against random failures and vulnerability to coordi- 
nated attacks. The proteins were ranked based on 
their degrees in decreasing order for this study. The 
exclusion of a particular node by chance or by deliber- 
ate measure can give rise to contrasting consequences. 
The severity of these consequences depends entirely 
on the node that is removed. With the rationale of 
examining the network for its weakness against se- 
quential attacks and tolerance to random failures, a 

milieu simulating a targeted assault where the well- 
connected proteins (top 3%) were removed in sequen- 
tial order of their degrees was replicated. The second 
part of the simulation created a random node failure 
by removing proteins in an arbitrary fashion. The 
upshot of those simulations is summarized below. 

The consequences of the removal of the highly con- 
nected and random proteins are illustrated as a plot of 
the average path length versus the number of removed 
proteins (Figure 2). The plot accentuates the criti- 
cal nature of the highly connected proteins, when 3% 
(-138) of the well-connected proteins were removed 
sequentially in decreasing order of their degrees. For 
the 138 proteins eradicated, the average path length 
of the network was determined to be 20.93. In com- 
parison with the original topological parameter (av- 
erage path length = 9.42) of the arrangement, it can 
be seen that the topological parameter of the network 
has doubled. This offers evidence of the vital quality 
of the highly connected proteins. 

The elimination of hubs altered the topology of 
the network, corroborating their direct relation to the 
topological parameter that proves lethal to the sys- 
tem. The boost in the average path length signifies 
that the shortest path length required by a partic- 
ular protein to get to another protein has increased. 
This implies that it takes more number of steps to get 
from a specific protein to its target protein, thereby 
disturbing the efficient, innate path that was utilized 
before the assault on the hubs of the network. This 
loss resulted in the formation of small and secluded 
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Fig. 2 Effect of sequential and random removal of proteins on the average path length of the protein-protein network. 
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clusters of proteins, very different from the original 
compact system design. 

On the contrary, the random elimination of pro- 
teins did not show any significant variation in the 
topological parameter value. The simulation of a ran- 
dom node failure only showed a minor variation in 
the topological parameter of the network, when 3% 
of the proteins were removed. As the plot (Figure 2) 
indicates, it did not affect the innate topology of the 
system. 

The top 3% (-138) of the highly connected pro- 
teins were examined to study their functions and their 
respective roles in biological pathways. Information 
retrieved from FlyBase provided the molecular func- 
tion of these proteins ( 2 6 ) .  It was found that 62 
of these proteins have not been annotated yet. The 
study of the remaining 76 proteins with an annotation 
using KEGG Orthology (27,28)  revealed that eight 
proteins could not be classified to a specific path- 
way. Analysis showed that 21 proteins play a part in 
metabolism, 10 proteins are involved in cellular pro- 
cesses, 20 proteins are responsible for genetic infor- 
mation processing, and 17 proteins serve in environ- 
mental information processing. Among the proteins 
involved in metabolism, 13 proteins are components 
of the central metabolism pathways. Hence, it can 
be seen that the molecular functions of the annotated 
hubs are distributed over a wide array of processes 
essential for the functioning and sustenance of the or- 
ganism. 

Analysis of the metabolic network 

The frequency distribution of the compounds involved 
in the reaction mechanism, classified based on their 
links (Figure 3), proves that the metabolic interac- 
tion network of D. mehogas ter  follows a scale-free 

The plot shows that there were a high number 
(-70) of metabolites (substrates and products) that 
took part in five or fewer reactions. As the number of 
links increased, the compounds involved in the reac- 
tions began to decrease steadily. To make the graphs 
clear, the number of links greater than 30 was in- 
cluded in one bar. When the plot was stretched out 
for all values of links, the number of metabolites in- 
volved declined progressively to reach a value of one 
and remained constant. This emphasized the fact that 
at higher degrees, there was only a solitary metabo- 
lite contributing to such many numbers of reactions. 
From the computations, it was established that there 
were 597 compounds that acted as substrates and 
611 compounds that occurred as products. Of this 
mix, 282 compounds took part as both substrates and 
products. 

The shortest pathway was computed for all pairs 
of metabolites that could be reached. The removal 
of current metabolites yielded 926 compounds with 
3,326 connections between them. From the probabil- 
ity distribution plot for the reformed dataset shown 
in Figure 4, it can be deduced that the distribution 

topology. 
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Fig. 3 Frequency of interaction of compounds involved in the metabolic pathways. 
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Fig. 4 The probability distribution plot for the metabolic interaction network. 

still decays as a power law, indicating that the net- 
work follows a scale-free pattern. 

The results indicated that over 56% of the metabo- 
lites were involved in just one or two interactions, 
while only about 2% of the metabolites participated 
in 30 or more interactions-a classic trait of scale- 
freeness. The exponent of the power law relation 
was found to be 1.55. This value was smaller than 
those obtained from other networks like the World 
Wide Web and the Internet that follow a scale-free 
architecture ( I  ). Nevertheless, the intrinsic topol-, 
ogy of the complex network remained unaltered. The 
average path length for this network was calculated 
as 5.29. Hence, on average, each metabolite could 
be converted to any other metabolite (that can be 
reached or converted) in five steps (13) .  This showed 
that the metabolic network is highly compact as in- 
dicated by the small number of steps required to get 
from any one metabolite to another. This small world 
nature reinforces the fact that the metabolic interac- 
tion network of D. melanogaster pursues a scale-free 
architecture. 

The simulation of coordinated and random attacks 
proved that the eradication of well-connected metabo- 
lites increases the average path length, altering the 
inherent architecture of the network. After the exclu- 
sion of 5% of the hubs from the network, the average 
path length was enhanced to 17.75 (Figure 5).  It can 
be seen that the topological factor suffered a more 
than three-fold augmentation after the 5% removal of 
hub metabolites. The abnormal increase can be at- 

tributed to the fact that the organism lost its compe- 
tent shortest pathway, and a new set of pathways was 
organized. This created a drastic change in the net- 
work design, affecting the ability of the organism to 
produce a particular metabolite in a relatively small 
number of reactions. 

Conversely, when the metabolites were eradicated 
in a random fashion (Figure 5) ,  there was scarcely any 
change in the topological parameter. The elimina- 
tion of any compound resulted in the search for a new 
pathway as the original pathway can not be traversed. 
For a random compound, the organism was able to 
choose an alternate pathway without affecting the 
topology of the network. The novel pathway would 
lead to the target metabolite in more or less the same 
number of steps as the original pathway, proven by the 
steadfast nature of the topological parameter. There- 
fore, the critical nature of the hubs can be witnessed 
by the radical alterations that occur due to their sim- 
ulated elimination. 

Discussion 

The high confidence protein-protein interaction 
dataset was used to find the network architecture and 
to determine other topological considerations. The 
dataset revealed an inherent scale-free architecture, 
thereby underlining the fact that the majority of com- 
plex biological networks have a scale-free topology. 
The shortest path length of all the accessible proteins 
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Fig. 5 Effect of the sequential and random elimination of metabolites on the average path length of the metabolic 
network. 

and the average path length of the network were also 
determined. The far-reaching alteration in the net- 
work topology (two-fold increase in the average path 
length) due to the exclusion of hubs of the network 
confirmed their essence to the network. The anal- 
ysis of the molecular function of the well-connected 
metabolites proved that an extensive range of bio- 
chemical processes was managed by the hubs. 

A striking feature that deserves investigation is 
the ability of the organism to transfer to an alternate 
connection mechanism most times, when a non-hub 
protein is removed, to form new links and entail the 
smooth progress of the formation of biochemical prod- 
ucts. Despite the fact that the highly connected pro- 
teins were removed, the organism was able to sustain 
its routine tasks due to its ability to locate another 
protein with a function similar to the eradicated pro- 
tein. This resilient nature of the organism needs fur- 
ther consideration. A physical denotation involving 
the strength of each interaction would provide a more 
comprehensive understanding of the network. 

The study of the intrinsic doctrines that char- 
acterize the metabolic network of D. melanogaster 
provides a crucial understanding of the construc- 
tion blocks o{ the organism. The evaluation of the 
metabolic network of D. melanogaster identified that 
926 compounds were involved in the metabolic reac- 
tions as substrates, products, or both. The graphi- 
cal plots showed that the probability distribution of 
these metabolites followed a scalefree design. The 
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frequency distribution of these metabolites also indi- 
cated that only a few hubs exist in the network that 
participated in 30 or more reactions. 

The presence of current metabolites generated an 
artificially short pathway between any two metabo- 
lites and proved detrimental to the computation of the 
topological parameter. The elimination of these cofac- 
tor compounds helped to determine the realistic num- 
ber of steps required for the conversion of one com- 
pound to another, generating pragmatic topological 
parameter values. The exclusion of the hub metabo- 
lites demonstrated the harmful effects on the system, 
since it disturbed the existing topology of the network. 
Their removal was lethal to the overall topology of 
the system, leading to the failure of the efficient in- 
nate pathways. Although the organism was able to 
find alternate pathways to form products, it required 
greater number of intermediate steps. The average 
path length suffered a three-fold increase due to the 
top 5% exclusion of the hubs. This shows that a hub 
metabolite can not be chosen as a target compound 
for therapeutic research; any interruption to the orig- 
inal pathway involving hubs may cause the system 
to be secluded into diminutive groups resulting in a 
larger number of steps to be utilized for the produc- 
tion of the same compound. In some cases, the mech- 
anism may not be able to find any avenues for an 
alternate pathway due to the formation of small clus- 
ters of metabolites causing the loss of that specific 
product metabolite. A random metabolite with less 
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participation in reactions could have a better efficacy 
to serve as a target metabolite and resist intrinsic er- 
rors. 

A weight-based interaction study can generate a 
better interpretation of the network. An understand- 
ing of the importance of each individual reaction can 
be offered because of such an analysis. The major 
hurdle in the assignment of weights to the interactions 
is the determination of the strength of each interac- 
tion. The influence of each interaction in the context 
of the web of interactions must also be considered. 
The binding forces that govern the interactive mech- 
anism must be evaluated before a physical denotation 
can be provided to them. These factors require an 
advanced understanding about the interactive forces. 

An alternate view to this problem would be to 
utilize the hubs of the network. The hubs play a 
critical role in linking several other nodes, thereby 
enabling them to have shorter path lengths. The ad- 
verse consequence observed due to the exclusion of 
well-linked nodes underscores their importance to the 
shorter path lengths. A higher weight could be prc- 
vided to the edges of nodes not interacting with a 
well-connected node. For such nodes, the absence of 
any links to a hub produces a longer path length to a 
target node. On the other hand, the edges of nodes 
that link to a highly connected node can be assigned a 
lower weight. This approach will provide path lengths 
based on weights to a target node. Nodes that have a 
link to a hub will produce shorter weight-based path 
lengths to its target than when computed in their ab- 
sence. 

The datasets for the two interaction networks that 
were investigated are incomplete and prone to update 
sooner than later, when experimental results become 
available. There has been no revision at the time of 
drafting this paper, but it would be interesting to an- 
alyze the topology including the new data after it be- 
comes accessible. Presently, we are devoted to remod- 
eling the networks using a weight-based approach. An 
enhanced review should be available in the not so dis- 
tant future. 

Materials and Methods 

Protein-protein interaction network 
dataset 

The protein-protein interaction dataset was retrieved 
from Curagen Corporation (www.curagen.com). This 
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dataset was experimentally obtained by Giot et a1 
(24)  using the yeast two-hybrid screening technique, 
resulting in 41,068 protein-protein interaction pairs. 
The obtained dataset was subjected to further clas- 
sification into high confidence and low confidence 
subsets by studying the Gene Ontology (29) and us- 
ing R statistical package. For this investigation, the 
high confidence (confidence scores higher than 0.5) 
protein-protein interaction pairs were selected, since 
they have a greater support for occurrence. A set 
of 4,591 proteins involving 9,334 high confidence in- 
teractions, exclusive of self-interactions, was used for 
the protein-protein interaction network. This dataset 
contained both unidirectional and bi-directional links. 
A careful study of this dataset revealed that two 
specific proteins stand apart. Among the proteins 
that had a one-directional interaction, two proteins, 
namely CG4039 and CG12918, only had incoming 
edges. There were several other proteins with uni- 
directional links, but all those proteins had outward- 
bound edges. The strength of each protein-protein in- 
teraction was unknown, and the usage of confidence 
scores for the weight of the interaction links did not 
supply any material denotation to them. Therefore, 
it was decided that the weight of the edges would be 
assumed as one when an interaction existed, and in 
the absence of an interaction, the influence was un- 
derstood to be zero to produce a binary network. 

To probe the network architecture and character- 
istics, proteins in the fruit fly protein interaction net- 
work were ranked based on their degrees in descend- 
ing order. Top 3% of the highly connected proteins 
were removed sequentially to feign a targeted attack, 
and the effect on the average path length of the in- 
teraction network was studied. On the other hand, 
3% of the proteins were removed at random, creating 
an unintended failure of nodes, and the effect on the 
topological parameter was calculated again. A graph- 
ical plot was used to demonstrate the effect of removal 
of proteins on the network topology. The molecular 
function of the hub proteins, retrieved from Flybase 
(26), was used to identify any possible association to 
the distinguishing behavior exhibited due to the tar- 
geted elimination of those proteins. 

The Boost Graph Library, which contains the 
breadth first search algorithm, was used to calculate 
the shortest path length between every pair of ac- 
cessible proteins (25). The shortest path length of 
the proteins was then employed to compute the av- 
erage path length of the protein-protein interaction 
network. 
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Construction of the metabolite- 
metabolite interaction network 

The metabolic pathways and the associated metabo- 
lites for D. melanogaster were retrieved from the 
KEGG database (28). The substrates and the prod- 
ucts involved in a reaction were then isolated. The 
outgoing links, represented by Covt, indicated the sub- 
strate metabolites. In contrast, the incoming links 
signifying the metabolites that occur as products in 
the reaction were designated by Ci,. A frequency dis- 
tribution histogram was used to verify the nature of 
the network architecture and to determine the impact 
of the compounds that play a part in the metabolism 
of the organism. 

To explore the metabolite-metabolite interac- 
tion that affects the topological properties of the 
metabolic network, metabolites involved in the 
same reaction were treated as follows. For ex- 
ample, in a reaction involving four metabolites, 
C05125+C00011< =>C00068+C00022, the connec- 
tions (interactions) were built as CO5125-COOO68, 
CO5125-COOO22, COOO11-COOO68, COOO11-COOO22, 
COOO68-CO5125, COOO68-C00011, COOO22-CO5125, 
and COOO22-COOO11. On a similar basis, a list of con- 
nections was organized for all the reactions. If any 
reaction contained more than a single mole of com- 
pound, for example, 2C00001, the reaction was then 
modified by a substitution of the compound index as 
C00001+COO001. The strength of each association 
was homogeneously maintained as one to generate a 
binary network. 

The dataset generated above could not be used 
per se, as the list of prepared connections contained 
a large number of current metabolites (13 ) .  Current 
metabolites are normally used as carriers for transport 
of electrons and other functional groups to facilitate 
the catalysis of a reaction (30) .  The current metabe 
lites may be explained as being analogous to an exter- 
nal metabolite that takes part in more than a few reac- 
tions but does not occur in the pseudo steady state in 
a subnetwork (31) .  The fast-paced nature and high 
yield of metabolites during reactions has resulted in a 
pseudo steady state assumption that, on longer time 
scales, the concentration of metabolites and the rate 
of reactions are stable. This condition guarantees that 
none of the metabolites are produced or consumed in 
the overall stoichiometry (32 ,33 ) .  The calculation 
of the shortest path length, or in other words, the 
least number of reactions required to get from one 
compound to another using this set of data, would 
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provide an inaccurate. interpretation of the topology 
of the network (13) .  

The current metabolites have to be removed be- 
fore the calculation of the topological parameter, since 
their inclusion would generate fallacious parameters. 
Nevertheless, the deletion of the current metabolites 
and their possible connections could not be done per 
se. Some of the current metabolites may be primary 
metabolites acting as either substrates or products. A 
primary metabolite is essential for regular growth and 
reproduction. Accordingly, those reactions in which 
the current metabolites acted as primary substrates 
or products were permitted to be part of the network. 
The remaining connections that did not involve the 
current metabolites as primary metabolites (either as 
substrates or products) were deleted and the links 
between substrates and products were reconstructed. 
This strategy and the exclusion of redundant connec- 
tions caused the number of links to be reduced to 
3,326. This restructured dataset was used for the cal- 
culation of the shortest path lengths of the network. 

The metabolite interaction network was examined 
for its tolerance against random failures and weak- 
ness to sequential errors. The metabolites were sorted 
based on their degrees (inclusive of incoming and out- 
going edges) in decreasing order. The well-connected 
metabolites were removed successively to simulate a 
premeditated attack, and metabolites were removed 
in an unsystematic fashion imitating an accidental 
failure of nodes. The outcome on the average path 
length was studied for both cases. A graphical plot 
was utilized to highlight the effects of exclusion of 
metabolites on the overall topology of the network. 
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