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Abstract

Background: Acute bacterial meningitis is a disease with a high mortality and a
high incidence of neurological sequelae in survivors. There is an acute need to
develop new adjuvant therapies. To ensure that new therapies evaluated in animal
models are translatable to humans, studies must evaluate clinically relevant and
patient-important outcomes, including neurological symptoms and sequelae.

Methods: We developed and tested a functional observational battery to quantify the
severity of a variety of relevant neurological and clinical symptoms in a rat model of
bacterial meningitis. The functional observational battery included symptoms relating
to general clinical signs, gait and posture abnormalities, involuntary motor movements,
focal neurological signs, and neuromotor abnormalities which were scored according
to severity and summed to obtain a combined clinical and neurological score. To test
the functional observational battery, adult Sprague-Dawley rats were infected by
intracisternal injection of a clinical isolate of Streptococcus pneumoniae. Rats were
evaluated for 6 days following the infection.

Results: Pneumococcal meningitis was not lethal in this model; however, it induced
severe neurological symptoms. Most common symptoms were hearing loss (75% of
infected vs 0% of control rats; p = 0.0003), involuntary motor movements (75% of
infected vs 0% of control rats; p = 0.0003), and gait and posture abnormality (67% of
infected vs 0% of control rats; p = 0.0013). Infected rats had a higher combined score
when determined by the functional observational battery than control rats at all time
points (24 h 12.7 ± 4.0 vs 4.0 ± 2.0; 48 h 17.3 ± 7.1 vs 3.4 ± 1.8; 6 days 17.8 ± 7.4 vs 1.7
± 2.4; p < 0.0001 for all).

Conclusions: The functional observational battery described here detects clinically
relevant neurological sequelae of bacterial meningitis and could be a useful tool when
testing new therapeutics in rat models of meningitis.

Keywords: Acute bacterial meningitis, Rat model, Neurological symptoms, Functional
observational battery, Streptococcus pneumoniae, Pneumococcal meningitis

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Intensive Care Medicine
Experimental

Fisher et al. Intensive Care Medicine Experimental            (2020) 8:40 
https://doi.org/10.1186/s40635-020-00331-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s40635-020-00331-1&domain=pdf
http://orcid.org/0000-0002-3780-901X
mailto:jane.fisher@med.lu.se
mailto:jane.fisher@med.lu.se
http://creativecommons.org/licenses/by/4.0/


Introduction
Acute bacterial meningitis has a high mortality and high risk of neurological sequelae

in survivors [1, 2]. Streptococcus pneumoniae (pneumococci) is the most common and

deadly bacterial meningitis pathogen [3] and causes the most neurological sequelae in

survivors [2]. The main empirical and directed treatment for bacterial meningitis is

beta-lactam antibiotics [4], such as cefotaxime, ceftriaxone, and penicillin G, which

cause lysis of bacteria [5]. These lysis products induce a strong immune response, lead-

ing to significant damage of the host tissues [6]. The only adjunctive therapy currently

recommended for treatment of bacterial meningitis is corticosteroids, which can

dampen this immune response [4, 7]. However, even in countries with widespread cor-

ticosteroid use, the rate of unfavorable outcome remains high at 38% [2] suggesting

that new adjuvant therapies need to be explored.

Animal models are an important step in testing the efficacy of new therapeutics.

Due to the broad range of possible symptoms and sequelae in bacterial meningitis

[8], we suggest that a battery test that covers a broad range of symptoms should

be considered for measurement of corresponding neurological outcomes in animal

models. However, few studies using rat models attempt to quantify the wide range

of possible neurological symptoms. The functional observational battery is typically

used in neurotoxicology studies for identifying the neurological effects of new

therapeutic compounds [9–11]. The International Conference on Harmonisation

(ICH) S7A guideline requires the use of a battery test for testing the neurological

effects of all new compounds before they can be administered in humans [12]. The

adult rat is the recommended animal for evaluation of neurological symptoms in

this guideline. The functional observational battery is therefore a well-accepted

method for identifying neurological symptoms in rat models. To the best of our

knowledge, the functional observational battery has not been used in animal

models of bacterial meningitis.

Here, we developed a functional observational battery to include relevant symptoms

of meningitis and assess its use in an adult rat model of pneumococcal meningitis.

Methods
The local Ethical Committee for Animal Research has approved the experimental

protocol (applications #143-16 and #13798/2018). We used 10-week-old male rats

(Taconic). Animals were treated in accordance with the National Institutes of Health

for the Care and Use for Laboratory animals, and Swedish legislation. We used 23 rats

in total, eleven rats in the control group and twelve rats in the infected group.

Preparation

We anaesthetized rats by intraperitoneal administration of pentobarbital (60 mg/kg;

APL). Pentobarbital was chosen as the anaesthetic as it is metabolized slowly, ensuring

that rats did not awaken during the preparation and infection procedure. The jugular

vein was cannulated and the catheter tunneled to emerge from the back of the neck.

The catheter was filled with 30 μL of heparin lock solution (5 Units/mL) to prevent

coagulation and tied tightly.
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Bacterial culture

To ensure the clinical relevance of the model, we used a clinical isolate of pneumococci

(serotype 6b) with intermediate sensitivity to penicillin previously isolated from a

patient with bacteremia. We used a strain with intermediate sensitivity to antibiotics to

increase the length of the infection, because we found that, when using a sensitive

strain, 100% of bacteria were killed after only one dose of the appropriate antibiotic

(data not shown). Bacteria were cultured as detailed in Supplementary file 1. We

cultured the bacteria in 30 g/L Todd-Hewitt broth (Beckton-Dickinson), with 0.5%

yeast extract (Oxoid), and 2% choline chloride (Sigma) as described in Supplementary

method 1 to an optical density 620 nm (OD620) of 0.8. This solution was drop plated at

several dilutions to check for bacterial viability in each batch. We found that the

solution contained, on average, 3 × 108 colony-forming units (CFU)/mL. The bacterial

solution was kept on ice and used to infect rats within 4 h.

Infection

We immobilized the rats on a stereotactic device and positioned them so that the nose

was pointing downward to stretch the back of the neck. We exposed the cisterna magna

and inserted a small needle (30G, SOPIRA), attached to flexible tubing, which we fixed

temporarily to the skull with a drop of histoacryl (Braun) to prevent leakage and needle

displacement. Then, we infused 20 μL of bacterial solution at a rate of 2 μL per minute.

This corresponds to, on average, 6 × 105 bacteria per injection. Control rats received an

equal volume of 0.9% sodium chloride solution (Fresenius). After the infusion, the needle

was left in the cisterna magna for 5 min to limit the backflow of the solution. We then

removed the needle and sealed the hole with a drop of histoacryl and closed the incision.

We have observed that infected rats frequently develop secondary bacteremia and

lung infections [13]. When housed in the same cage as infected rats, we observed that

control rats often have developed bacteria in the lungs and display signs of lung infec-

tions after several days (data not shown). Therefore, infected and control rats had to be

kept in separate cages.

Drug dosing and administration

We applied a standard meningitis treatment of antibiotics (penicillin G; 43 mg/kg;

Meda) and corticosteroids (betamethasone; 0.12 mg/kg; AlfaSigma) to both infected

and uninfected rats. We administered this standard treatment to all rats in order to

mimic the clinical standard treatment recommended for human bacterial meningitis [4,

7]. Several rat models described in the literature administer interventions as an adju-

vant to antibiotics [14–18]. We suggest that meningitis models should include cortico-

steroids in addition to antibiotics because of their widespread use in human meningitis,

and therefore, we chose to treat the rats in this study with both corticosteroids and an-

tibiotics. The drugs were given every 12 h starting at 24 h after the infection (Table 1).

Intraperitoneal injection of drugs was chosen because of the ease of administration and

rapid transfer to the blood. If the model is to be used to test an intravenous adjuvant

treatment that is incompatible with intraperitoneal injection, then the jugular catheter

can be used to administer this treatment. In this case, the jugular catheter was used to

administer two doses of 0.9% sodium chloride at 24 h and 36 h after the infection.
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Evaluation

The intervention and assessment schedule is summarized in Table 1. All assessments

and sample collections described in Table 1 were carried out in all rats. CSF sample

collection was always done after all other assessments. As an ethical endpoint, three

termination criteria were evaluated at least four times per day after the infection.

Termination criteria included severe cramps, severe breathing difficulty, and lack of

movement on provocation. Rats exhibiting decreased grooming were evaluated more

frequently for these criteria as this indicates a high level of illness.

Weight was measured at baseline and every 12 h after the start of treatment.

Temperature, neurological and clinical score, and activity score were measured as de-

scribed above. Temperature was assessed before infection using a rectal thermometer.

All measurements were always assessed prior to administration of drugs or collection

of samples. Because infected and control rats had to be kept in separate cages, the

assessor was not blinded to the infection status in this study.

Functional observational battery

We adapted the functional observational battery from Moser et al. [19] and altered to

include symptoms and terminology relevant to meningitis. Our functional observational

battery (Table 2) measured clinical symptoms to yield a clinical score and neurological

symptoms to yield a neurological score. The two scores were summed to yield a com-

bined score. Neurological symptoms were subdivided into four categories: gait and pos-

ture abnormalities, involuntary motor movements, focal neurological signs, and

neuromotor abnormalities. Negative geotaxis has previously been used in rat meningitis

models [20, 21] and therefore has been added to the battery as a test of neuromotor ab-

normality. The details of each parameter, and their corresponding symptoms in human

meningitis, are described below.

To limit the effect of environmental variation on the behaviour of the rats, the same

assessor always carried out the observation in the same location with the same light

and sound level, at the same time of day (morning). Most characteristics were assessed

Table 1 Schedule of interventions and assessments

Time point

Day 0 Day 1 Day 2 Day 6

0 h 24 h 36 h 48 h 60 h * 144 h

Infect Treat and assess Close-out

Preparatory surgery and infection X

Interventions

Penicillin G + betamethasone X X X X *

Assessments

Weight X X X X X * X

Temperature X X X X

Functional observational battery X X X

Sample collection

CSF X X X

Brain X

*Every 12 h thereafter until close-out
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Table 2 Functional observational battery of neurological and clinical signs

Score assigned

0 1 (slight) 2 (moderate) 3 (severe)

Clinical signs

Breathing
difficulty

Normal Slightly shallow, heavy,
or fast

Moderate difficulty Severe difficulty (terminate
the rat)

Movement
upon
provocation

Normal Slightly lower than
normal

Lower than normal Extremely low or no
movement; comatose
(terminate the rat)

Grooming Normal Some dirt in fur Dirt and staining of fur Extremely dirty, matted fur

Vocalizing None Occasional vocalizing
when handled

Some vocalizing
(when handled or not)

Much vocalizing, even
when not handled

Porphyrin
accumulation

Absent Small amount around
eyes or nose

Clearly present around
eyes or nose

Severe accumulation
around eyes or nose

Piloerection Absent Slight Moderate Severe

Clouded eyes Absent Slight (one or both
eyes)

Moderate (one or
both eyes)

Clouding completely
obscures pupil in one or
both eyes

Exophthalmia Absent Slight (one or both
eyes)

Moderate (one or
both eyes)

Severe (one or both eyes)

Neurological signs

Gait and posture

Ataxia Absent Slight Moderate Severe

Hindlimbs Normal
movement
and
positioning
when walking

Slightly abnormal
movements or
positioning

Abnormal movement
or positioning;
weakness apparent;
may be walking on
toes

Severe abnormality, severe
weakness, paresis

Forelimbs Normal
movement
and
positioning

Slightly abnormal
movements or
positioning

Abnormal movement
or positioning;
weakness apparent;
may be walking on
toes

Severe abnormality, severe
weakness, paresis

Body
positioning

Normal, pelvis
kept off the
floor

Slightly flattened pelvis
when sitting or
walking

Moderately flattened
pelvis

Severely flattened, difficulty
lifting body from floor

Spine
curvature

Normal Slightly hunched Moderately hunched Severely hunched

Involuntary motor movements

Tremors Absent Slight tremors, may be
present only during
certain tasks such as
reaching

Moderate intensity
and persistence of
tremors

Severe, constant tremors
both when moving and at
rest, large muscle groups
affected (e.g. head)

Muscle
jerks and
spasms

Absent Occasional small jerks
or spasms

Jerks or spasms with
moderate frequency
or intensity

Severe jerks or spasms
with high frequency or
intensity

Tonic
movements

Absent Slight, occasional Moderate, frequent Severe, very frequent

Stereotypy Absent 1 point for each
stereotyped behaviour
observed

Bizarre
behaviours

Absent 1 point for each
bizarre behaviour
observed

Focal neurological signs

Observational tests

Normal Slight Moderate Severe
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while the rat was in an open field consisting of a box with dimensions 49.5 × 27 cm

covered with a plastic paper at the bottom. A fresh paper cover was used for each rat

to limit olfactory cues that could influence their behaviour.

Clinical signs

The clinical signs assessed are described in Table 2. Many of these signs are specific to

rats or rodents. Signs such as ungroomed fur, low movement upon provocation, vocaliz-

ing, porphyrin accumulation, and piloerection are generally accepted as signs of malaise

or distress in rats [19, 22] and are not specific to meningitis. Breathing difficulty, clouded

eyes, and exophthalmia (bulging eyes) are also signs of general malaise [19, 22], but might

indicate secondary infections in the lungs or the eyes. Breathing difficulty and movement

upon provocation were also evaluated as termination criteria, and if either of them were

judged to be severe (a score of 3), the rat would be terminated. The presence of dirty,

ungroomed fur was an indication to evaluate the rats more frequently.

Gait and postural characteristics

To assess gait and posture, rats were observed in the open field as described above. If

needed, the rat was encouraged to walk by gentle prodding by the assessor, and the rats

Table 2 Functional observational battery of neurological and clinical signs (Continued)

Score assigned

0 1 (slight) 2 (moderate) 3 (severe)

Increased
lacrimation

Increased
salivation

Normal Slight Moderate Severe

Eyelid
drooping
or closure

Absent Slight in one or both
eyes

Moderate in one or
both eyes

Severe, one or both eyes
completely closed

Vibrissae
whisking

Normal Slightly reduced on
either side

Low movement on
either side

No movement on either
side

Manipulative tests

Pupil
reaction

Normal Normal sized pupils
with slightly slowed or
low response

Normal sized pupils
but no or very low
response

Pupil has abnormal size
(fully dilated or constricted)
and no response

Blink
reflex

Normal Attempted response
but incomplete closure
of either eyelid

Attempted response
but no closure of
eyelid

No attempt at closure

Pinna
reflex

Normal x No response x

Hearing
loss

Normal x Delayed or very weak
response (e.g. ears
give only a small
twitch)

No auditory startle
response

Neuromotor tests

Negative
geotaxis
response

Normal
positioning in
< 6 s

Normal positioning in
6–30 s

Normal positioning in
> 30 s

No attempt to reposition
or slides down

Righting
reaction

Normal
positioning in
< 3 s

Normal positioning in
4–30 s or abnormal
placement of limbs
during repositioning

Normal positioning in
> 30 s

No attempt to reposition
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were scored according to Table 2. Gait and posture abnormalities in rodents are sensi-

tive indicators of overall neurological dysfunction [19]. Gait and posture are controlled

by several neurological pathways, and abnormalities can be caused by damage to the

cerebral cortex, cerebellum, basal ganglia, and the vestibular system [23]. Abnormalities

in gait and posture can also be due to paresis of the limbs resulting from focal neuro-

logical deficits. Gait was defined as the movements of the limbs as the rat moved

around the field. The normal rat moves opposing front and back legs at the same time

to remain upright [19]. Posture was defined as body placement and spine curvature.

The normal rat should walk with its body held off the floor and its spine straight [19].

Involuntary motor movements

To assess involuntary motor movements, rats were observed in the open field described

above and scored according to Table 2. Involuntary motor movements include tremors,

muscle jerks and spasms, tonic movements, stereotypy, and bizarre behaviours. Invol-

untary motor movements can be caused by damage in several brain areas, most often

the basal ganglia [24]. Stereotypies are normal behaviours that are performed repeti-

tively and purposelessly, for example, pacing, head weaving, and persistent grooming.

Although stereotypies are not typically reported in humans following meningitis, they

are a common sign of distress in laboratory animals [25, 26] and can be indicative of

inappropriate responses in the basal ganglia [26]. Other bizarre behaviours such as self-

mutilation, odd tail positioning, and teeth grinding, which do not fit into the above

categories, were also recorded as they could indicate other neurological or clinical

problems.

Focal neurological signs

To assess focal neurological signs, rats were observed in the open field described above.

Focal neurological signs were scored according to Table 2. Focal neurological signs are

common during and after bacterial meningitis and are defined as a deficit localized to a

specific site in the central nervous system, leading to loss of function localized to a specific

area of the body [27]. In meningitis, lesions leading to focal neurological deficits can be

caused by cerebral infarctions and damage due to increased intracranial pressure [8].

We chose to assess focal neurological signs that were easy to observe in rats while

also being relevant to human bacterial meningitis. Hearing loss is the most common

neurological sequela in bacterial meningitis [8]. Palsies of the cranial nerves, especially

nerves III, IV, VI, and VII, are seen in 10–20% of meningitis patients [28]. We assessed

palsies of cranial nerve III (oculomotor nerve) [29] by assessing eyelid drooping and

pupillary reaction. We assessed palsies of cranial nerve VII (facial nerve) [30] by asses-

sing lacrimation, salivation, blink reflex, and pinna (ear) reflex. Vibrissae (whisker)

whisking movements are not relevant to humans, but are often used in rats as a meas-

ure of cranial nerve VII function [31, 32], and therefore, this was also included in the

assessment.

Lacrimation (tear production) and salivation (saliva production) abnormality were

noted if obvious wetness was observed around the eyes and around the mouth, respect-

ively. The basal level of lacrimation and salivation in rats is low [19]; therefore, it was

only possible to assess increases in these characteristics.
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The pupil reaction was tested by first observing the size of the pupils, and then gently

covering the rat’s head with a dark cloth. Upon removal of the cloth, a normal rat should

exhibit dilated pupils that constrict rapidly (within seconds) to their original size [19].

The palpebral (blink) reflex was tested by slowly bringing the edge of a fine wire from

the nose toward the nasal point of each eye. In a normal rat, the eyelids should close

quickly upon approaching the eye [19].

The pinna (ear) reflex was tested by gently touching a fine wire to the skin or hair

inside the ear. In a normal rat, the ear should shake or flatten upon light contact [19].

Because a severity of response is difficult to assess for this measure, the pinna reflex

was scored only as “present” or “absent”. An absent reflex was scored as 2 points.

Hearing loss was assessed using a click test to induce an auditory startle response.

The auditory startle response is a motor reflex that occurs in response to a sudden

sound stimulus above 80 dB [33]. Severe hearing loss in humans is defined as a hearing

threshold of 80 dB [34], corresponding to a complete loss of serviceable hearing [35].

Complete loss of the startle response would therefore indicate severe hearing loss,

although it might also be caused by focal neurological damage of the response pathway

itself [33]. A reduced or delayed startle response (e.g. only small ear movement in

response) could indicate mild to moderate hearing loss or neurological damage to the

response pathway.

To elicit an auditory startle response, a clicker was placed outside of the open field,

and outside of the rat’s field of vision, approximately 15 cm away from the rat. The as-

sessor used the clicker to make a single loud click. The healthy rat immediately moves

its ears, flinches, or startles in response to the sound [19, 33]. A complete absence of

response was given a score of 3, corresponding to a “severe” grade in the other tests. If

the rat gave a delayed or very small response, indicating acknowledgement of the sound

but no startle, this was given a score of 2, corresponding to a “moderate” grade in the

other tests. A score of 1 was not used for this test.

Neuromuscular and neuromotor tests

Neuromuscular and neuromotor tests were scored according to Table 2. These tests

were used to evaluate overall muscle coordination, strength, and vestibular and sensory

function [19]. These tests included a negative geotaxis response and a righting reaction.

Negative geotaxis response is a postural reflex that tests motor function and vestibular

function [36]. Rats were placed head-downward on a plane inclined at an angle of 30°.

The plane was covered in a rough wood surface to allow rats to grip the surface. Nor-

mal adult rats exhibit a negative geotaxis response in which they turn their body 180°

and face their head up the slope [36]. The response normally occurs within seconds.

The amount of time it took for the rats to complete this movement was noted and

scored according to Table 2.

A righting reaction was used to test vestibular function, coordination, and

strength [19]. The rat was placed on its back on the bottom surface of the open

field box. The rat was quickly released, and the time, limb position, and body posi-

tioning during its return to a standing position were noted. The healthy rat should

flip immediately to a standing position, first turning its head, then forelimbs, and

finally its hindlimbs [19].
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Collection of samples

CSF collection

Cerebrospinal fluid (CSF) was collected 24 h, 48 h, and 6 days after infection. Isofluorane

was chosen as the anaesthetic at this step because it is metabolized quickly and the rats

could awaken soon after the procedure was complete. Rats were anaesthetized with isofluor-

ane gas (5% induction and 2.5% maintenance, AbbVie), and the cisterna magna was exposed

as described above. The wound was always cleaned with chlorhexidine which was allowed

to evaporate. Then, the cisterna magna was punctured with a 33-G needle, and at least

20 μL of CSF was aspirated. Samples were kept on ice until further processing.

Brain collection

When rats were sacrificed, they were decapitated and the brain removed and cut in

half. The hemispheres were immersion fixed in phosphate-buffered saline (PBS; Sigma

Aldrich) with 4% paraformaldehyde (PFA; Sigma Aldrich) overnight.

Laboratory analysis

CSF bacterial load

CSF samples were diluted by factors of 10, 100, 1000, and 10,000 using sterile PBS.

Four replicates of 20 μL of each dilution were plated on blood agar plates using the

drop plate method, whereby the liquid was dispensed as a drop onto one side of a

blood agar plate. The plate was then tilted to allow the drop to roll down to the other

end of the plate, leaving a streak of each solution. Plates were incubated at 37 °C over-

night (at least 14 h). Identity of pneumococcal colonies was confirmed by observing an

alpha-hemolytic zone surrounding the colonies. The number of colony-forming units

(CFU) of pneumococci in each 20 μL streak was counted, and the amount of CFU per

millilitre of CSF was calculated. For each sample, the lowest dilution factor in which

individual colonies were not overlapping and were easily separated by eye, but which

had at least 10 colonies per streak, was used for the calculation.

Immunocytochemistry of brain samples

Drop fixed brains were kept in 4% PFA overnight at room temperature and then

placed in PBS solution and stored at 4 °C until processing. Brains were embedded

in 1.5% agarose (A5093, Sigma Aldrich) diluted in PBS and sectioned using a

vibratome (100 μm sections; Leica VT1200S). Free-floating sections were washed 3

times in PBS, blocked for 2 h at room temperature in blocking solution containing

0.3% Triton X-100 (Sigma Aldrich), and 5% normal goat serum (Gibco™; Thermo

Fisher Scientific) in PBS. The tissues were incubated at 4 °C overnight with primary

antibodies diluted in blocking solution. Primary antibodies used in this study were

mouse anti-myeloperoxidase (MPO; 1:100; NBP1-51148, Novusbio), rabbit anti-

ionized calcium-binding adapter molecule 1 (Iba1; 1:500; 019-19741, Wako), and

rabbit anti-active Caspase-3 (1:500; ab49822, Abcam). We chose Caspase-3 as an

apoptosis marker because it is the major effector in most apoptosis pathways, and

therefore, the presence of active Caspase-3 is a strong indicator of apoptosis,

although a lack of active Caspase-3 does not necessarily rule out the activation of

alternative apoptosis pathways [37]. The following day, tissues were incubated with
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appropriate secondary antibodies corresponding to the primary antibody species,

conjugated to Alexa Fluor (AF) fluorophores at 1:500 dilution in blocking solution

for 2 h at room temperature. Secondary antibodies used were goat anti-mouse AF-

488, and goat anti-rabbit AF-568 (Thermo Fisher Scientific). After three PBS

washes, tissues were counterstained with DAPI (4′,6-diamidino-2-phenylindole; 1:

1000; 1 μg/mL; 62248, Thermo Fisher Scientific) for 10 min at room temperature,

then mounted with ProLong® Gold Antifade Mountant (P36934, Thermo Fisher

Scientific).

Microscope imaging

Images of the immunolabelled slides were acquired using a confocal microscope (Nikon

Eclipse Ti) with Plan Fluor 20x 0.75 numerical aperture (NA), oil objective. Images

were acquired at constant exposure levels throughout the study.

Statistical analysis

The data were analysed per-protocol using the statistical software GraphPad Prism ver-

sion 8. Quintile-quintile (QQ) plots were visually examined to determine whether data

was normally distributed. The Shapiro-Wilk test for normality was used to confirm this

assessment. We found that most data were normally distributed except for bacterial

load. Therefore, parametric tests were used in all cases except those involving bacterial

load.

Outcomes that were measured at multiple time points in each rat, namely activity

score, neurological and clinical scores, weight loss, and temperature were compared be-

tween infected and control rats at each measured time point using a repeated measures

2-way analysis of variance (ANOVA) with Geisser-Greenhouse correction for sphericity

and Sidak’s post hoc test for multiple comparisons. Neurological and clinical scores

were also summed to yield a combined score that was treated the same way.

Incidence of neurological outcomes was calculated by determining the number of rats

exhibiting any symptoms with at least moderate severity in each category (gait and pos-

ture, involuntary motor movements, hearing loss, other focal neurological signs, and

neuromotor impairment) at 6 days after the infection. Hearing loss was analysed separ-

ately from other focal neurological signs because it is the most common neurological

sequela in meningitis patients. Incidence of neurological symptoms was compared in

infected and control rats using Fisher’s exact test. Because bacterial load was not nor-

mally distributed, the correlation between bacterial load on day 1 with neurological

score on day 6 in infected rats was determined using a Spearman correlation.

Results
Clinical characteristics

Rats were evaluated for clinical signs of illness. No rats died in either the infected or

the control group. Control rats had no detectable pneumococcal colonies in the CSF

(Fig. 1a); however, they did lose weight for the first 48 h and had a mean clinical score

of 2.5 ± 1.3 at 24 h after intracisternal infusion (Fig. 1b, c). This effect was likely due to

a reaction to the preparatory surgery and injection procedure. The mean clinical score
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in control rats decreased to 1.0 ± 1.6 by day 6, suggesting that repeated cisterna magna

puncture and CSF collection likely did not increase clinical symptoms over time.

Infected rats had a mean bacterial load in CSF of 5.0 ± 3.1 × 106 CFU/mL at 24 h

after the infection (Fig. 1a), confirming the presence of bacterial meningitis. Infected

rats lost more weight than control rats (Fig. 1b), losing a mean of 28.5 ± 3.3% of their

body weight by day 6 compared to a loss of 10.4 ± 1.8% in the control group (p <

0.0001). Temperature change from baseline (before infection) was calculated by sub-

tracting the baseline temperature for each rat. Infected rats had significantly elevated

temperature compared to controls (Fig. 1c) at 48 h (0.60 ± 0.74 vs 0.17 ± 0.42 °C above

baseline; p = 0.013) and 6 days (0.42 ± 0.47 vs − 0.22 ± 0.43 °C above baseline; p =

0.030). Infected rats also had a significantly increased clinical score (Fig. 1d) compared

to control rats at all time points (24 h 5.4 ± 2.0 vs 2.5 ± 1.3, p = 0.0016; 48 h 6.2 ± 3.4

vs 1.5 ± 1.4, p = 0.0020; 6 days 5.5 ± 1.8 vs 1.0 ± 1.6, p < 0.0001).

To further confirm that rats had cellular changes in the brain consistent with bacter-

ial meningitis, rat brain slices from one rat with a median neurological score and from

one saline control rat were stained for MPO, a neutrophil marker, and Iba-1, a macro-

phage/microglia marker (Fig. 2a), and a section of the meninges was imaged. Neutro-

phil and macrophage/microglia cell infiltration was found in the meninges of the

infected rat, but not the saline control rat. Brains of these rats were also stained for

active caspase-3 (a marker of apoptosis), and the cortex and hippocampus were imaged

(Fig. 2b). A greater amount of caspase staining was found in both brain regions in the

infected rat than in the control rat, indicating the presence of apoptotic cells in the

infected rat. Caspase staining was stronger in the cortex than in the hippocampus, as

expected in adult rats with meningitis [38].

Fig. 1. Clinical characteristics of infected rats and saline control rats. Rats were infected with pneumococci
(infected; black triangles; n = 12) or with equal volume of saline (control; grey circles; n = 11). The following
outcomes are reported: a log-transformed CSF bacterial load, b weight as a percentage of the initial weight
on day 0, c change in temperature from baseline, and d clinical score as measured by the functional
observational battery. Lines and error bars indicate the mean and standard deviation
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Fig. 2 Brains of infected and control rats. Rats were infected with pneumococci (infected) or with equal
volume of saline (control). a Brain sections were stained for neutrophils (MPO, green), macrophages/
microglia (Iba1, red), and DNA (DAPI, blue). An area of the cortex featuring the meningeal space was
imaged. White arrows indicate MPO-positive cells (neutrophils). b Brain sections were stained for active
Caspase-3, a marker of apoptosis (Casp3, red). An area of the cortex (Ctx, top; dashed line indicates the pia
membrane) and the hippocampus (CA1, bottom) was imaged. Scale bars (white horizontal lines) are 50 μm.
White schematic insets depict the imaged brain region in each case
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Neurological symptoms

The majority of infected rats exhibited neurological symptoms with a severity of 2 or

more, when scored using the functional observational battery (Table 3). Hearing loss, in-

voluntary motor movements, and gait and posture abnormalities were the most frequently

observed symptoms. No control rats had any neurological symptoms with a severity of 2

or more. Infected rats had a significantly higher incidence of hearing loss (p = 0.0003),

other focal neurological signs (p = 0.0046), gait and posture abnormality (p = 0.0391), and

involuntary motor movements (p = 0.0001) than control rats. Involuntary motor move-

ments were primarily tremors and muscle jerks. No rats exhibited movements that would

be consistent with severe clonic-tonic seizures; however, some involuntary motor move-

ments observed (facial muscle movements, head bobbing) are included on the Racine

scale for seizures in rats [39], so the presence of seizures during observation, and seizures

occurring outside of the evaluation time, could not be ruled out.

Neurological score (Fig. 3a) was significantly higher in infected rats compared to con-

trols at all time points (24 h 7.3 ± 3.2 vs 1.4 ± 1.0, p < 0.0001; 48 h 11.1 ± 5.4 vs 1.8 ± 1.1,

p = 0.0002; 6 days 12.3 ± 6.7 vs 0.73 ± 1.1, p = 0.0003). A combined score (Fig. 3b),

obtained by summing the clinical and neurological scores, was also significantly higher in

infected rats compared to controls at all time points (24 h 12.7 ± 4.0 vs 4.0 ± 2.0; 48 h

17.3 ± 7.1 vs 3.4 ± 1.8; 6 days 17.8 ± 7.4 vs 1.7 ± 2.4; p < 0.0001 for all). A Spearman cor-

relation revealed that, in infected animals, bacterial load 24 h after the infection was sig-

nificantly correlated with neurological score on day 6 (Spearman R = 0.776, p = 0.0042).

Fig. 3 Neurological score of infected rats and saline control rats. Rats were infected with pneumococci
(infected; black triangles; n = 12) or with equal volume of saline (control; grey circles; n = 11). The following
outcomes are reported: a neurological score as measured by the functional observational battery and b
combined clinical and neurological score as measured by the functional observational battery. Lines and
error bars indicate the mean and standard deviation

Table 3 Incidence of any neurological symptoms with score ≥ 2 at day 6

Infected (n = 12) Control (n = 11) p value

Hearing loss; n (%) 9 (75%) 0 (0%) 0.0003

Focal neurological signs excluding hearing loss; n (%) 6 (50%) 0 (0%) 0.0137

Gait and posture abnormality; n (%) 8 (67%) 0 (0%) 0.0013

Involuntary motor movements; n (%) 9 (75%) 0 (0%) 0.0003

Neuromotor impairment; n (%) 2 (17%) 0 (0%) 0.4783
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Discussion
In this study, we have explored the use of an adapted functional observational battery

to quantify a wide range of neurological symptoms of bacterial meningitis in a rat

model. We found that the functional observational battery was able to detect clinically

relevant symptoms of bacterial meningitis.

When testing new therapeutics in animal models, it is important to include patient-

important outcomes, such as neurological symptoms and sequelae. Few reported rat

models of bacterial meningitis examine functional measures of neurological symptoms.

Some measure only a few specific symptoms such as hearing loss [40–42], cognitive

deficits [43, 44], or depressive-like behaviours [45]. While these measurements are valu-

able for evaluating specific symptoms, they do not take into account the wide range of

possible symptoms of meningitis. This could easily lead to reporting bias where only

the tests with positive results are reported. Other reported models use scoring systems

featuring a 4- or 5-point scale to evaluate the righting reaction and activity level [46–

48]. The most comprehensive of the reported scoring systems evaluates seven categor-

ies of symptoms, but misses many of those included in the functional observational

battery [49]. We suggest that the functional observational battery is valuable because it

takes into account a wider range of potential symptoms than other methods.

In our meningitis-adapted version of the functional observational battery, we used a 3-

point scale to evaluate 8 clinical symptoms and 20 individual neurological symptoms in

five categories. Infected rats had a clear increase in both scores compared to controls.

However, by day 6, the range of neurological scores was quite broad. Sprague-Dawley rats

are out-bred, and the different genetic backgrounds could result in different abilities to

clear the infection. Indeed, we found a clear correlation of bacterial load on day 1 with

neurological symptoms on day 6. The wide range of severity and types of neurological

symptoms in our model is reminiscent of meningitis in humans. Patients with bacterial

meningitis typically present with heterogeneous symptoms, and evaluation of individual

symptoms has a poor diagnostic ability [50]. Our functional observational battery easily

captures the heterogeneity of neurological symptoms of bacterial meningitis.

The functional observational battery identified neurological symptoms that are relevant

to human bacterial meningitis. Hearing loss is the most common neurological sequela in

humans and develops within the first few days of the course of illness, affecting 22–69%

of adults with pneumococcal meningitis [8]. In our rat model, we detected hearing loss in

75% of rats by day 6. Focal neurological deficits occur in 11–36% of adults with pneumo-

coccal meningitis, typically developing during the course of illness [8]. Focal neurological

signs can cover a wide range of symptoms [27]. Although we only included 8 signs that

were easily evaluated in rats, mostly having to do with cranial nerve palsies, we found that

50% of rats developed these focal neurological signs by day 6. The functional observational

battery therefore appears to be well suited to quantify both the incidence and the severity

of relevant neurological symptoms of bacterial meningitis.

In this study, a single observer made all measurements, and therefore, we did not con-

duct any measures of inter-observer variability. If a study is carried out by more than one

observer, then it is important to provide some measure of inter-observer variability [51].

Measurements made by different observers can be affected by experience and training

[51], and rat behaviour can be affected by individual characteristics such as the sex of the

observer [52]. Therefore, it is generally recommended that all tests in a study involving a
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functional observational battery are conducted by the same observer throughout the study

to reduce the effects of this individual variation [19]. If the measurements cannot be con-

ducted by a single observer, then various statistics can be used to check that their observa-

tions are in agreement, such as Kappa statistics [53]. The same rats should be scored by

all observers in a random order to ensure independence of the observations. The handling

and testing procedure itself may induce stress [19] or the rats may become habituated to

some stimuli [33], so measurements should be separated in time or limited in frequency

to limit variation due to these effects.

A strength of this study is that we adapted a well-established method of neurological

evaluation, the functional observational battery, and carefully considered the relevance

of each symptom for bacterial meningitis. The functional observational battery can eas-

ily be adapted to include other symptoms such as memory deficits or depressive-like

behaviours. A limitation of the study is the fact that we did not randomize individuals

into infected and control groups because the risk of cross-infections required keeping

S. pneumoniae-infected rats in separate cages. This would make any attempted blinding

of the assessor easy to break, and so the assessor was not blinded in this study. This ef-

fect has potential repercussions for other animal models of meningitis and implies that

the unit of randomization should be by cages and not by individual animals as is often

the case. Another limitation is that we only tested the functional observational battery

in male rats. Although there are well-documented gender differences in the response to

infection in humans and in animal models [54], most animal models of meningitis use

only male rats and so we included only males in this proof of concept study.

Conclusions
We have found that a functional observational battery was a relatively rapid and sensitive

method for quantification of a wide range of relevant neurologic symptoms of bacterial

meningitis in a rat model. We suggest that a comprehensive scoring system, such as a

functional observational battery, should be added to animal models of bacterial meningitis

when testing new therapeutics in order to evaluate their overall neurological effects.
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