
RESEARCH ARTICLE

FUT11 as a potential biomarker of clear cell renal cell
carcinoma progression based on meta-analysis of gene
expression data

Elżbieta Zodro & Marcin Jaroszewski & Agnieszka Ida &

Tomasz Wrzesiński & Zbigniew Kwias & Hans Bluyssen &

Joanna Wesoly

Received: 16 August 2013 /Accepted: 17 October 2013 /Published online: 8 December 2013
# The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract In this paper, we provide a comprehensive summary
of available clear cell renal cell carcinoma (ccRCC) microarray
data in the form of meta-analysis of genes differentially
regulated in tumors as compared to healthy tissue, using effect
size to measure the strength of a relationship between the
disease and gene expression. We identified 725 differentially
regulated genes, with a number of interesting targets, such as
TMEM213 , SMIM5 , or ATPases: ATP6V0A4 and
ATP6V1G3 , of which limited or no information is available
in terms of their function in ccRCC pathology. Downregulated
genes tended to represent pathways related to tissue
remodeling, blood clotting, vasodilation, and energy
metabolism, while upregulated genes were classified into
pathways generally deregulated in cancers: immune system
response, inflammatory response, angiogenesis, and apoptosis.
One hundred fifteen deregulated genes were included in
network analysis, with EGLN3 , AP-2 , NR3C1 , HIF1A , and
EPAS1 (gene encoding HIF2-α) as points of functional
convergence, but, interestingly, 610 genes failed to join

previously identified molecular networks. Furthermore, we
validated the expression of 14 top deregulated genes in
independent sample set of 32 ccRCC tumors by qPCR and
tested if it could serve as a marker of disease progression. We
found a correlation of high fucosyltransferase 11 (FUT11 )
expression with non-symptomatic course of the disease, which
suggests that FUT11 's expression might be potentially used as
a biomarker of disease progression.
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Introduction

Renal cell carcinoma (RCC) is the most common type of
kidney cancer that accounts for 2 % of the world total of all
adult malignancies. Its most frequent histological subtype—
clear cell renal cell carcinoma (ccRCC)—constitutes 75 % of
all kidney tumors with 209,000 new cases per year worldwide
[1]. ccRCC arises from the renal cortex, and its lipid- and
glycogen-rich cells are “clear” on hematoxylin and eosin
staining. ccRCC may have sporadic (>96 %) or familial
(<4 %) origin (VHL syndrome) [2]. The majority of ccRCC
cases are detected incidentally by ultrasound, CTscan, or MRI,
and are diagnosed at the late stage due to asymptomatic course
of the disease. The classic symptoms such as hematuria, flank
pain, fatigue, and abdominal mass occur rarely and are
generally indicative of a more advanced disease [3]. ccRCC
is difficult to treat and rarely cured once spread beyond the
kidney [4]. If limited to kidneys (40 % of diagnosed cases), the
most common curative treatment remains a radical or partial
nephrectomy [5]. In advanced stages, targeted (immuno- and
antiangiogenic) therapy is introduced. Kinase and mammalian
target of rapamycin inhibitors were used in a number of clinical
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trials and evaluated in the aspect of prognosis improvement
[6]. However, their long-term clinical effect remains to be
determined and requires larger, homogenous, and well-
designed retrospective studies.

In the last decade, a large number of markers has been
studied for their prognostic value in ccRCC such as carbonic
anhydrase IX, p53, XIAP, HIF1-α, VEGF, and Survivin, but
their clinical use remains debatable [7]. The vast majority of
research is focused on mechanisms which are deregulated and
well described in various cancers such as cell differentiation,
angiogenesis, and immunosuppression, but there is a need for
identification of targets or pathways unique to ccRCC. A
better understanding of molecular pathogenesis of ccRCC is
required to direct novel therapeutic intervention of the
individual patient and to predict patient's prognosis. Several
genomic alterations were suggested to be associated with
ccRCC tumorgenesis; however, currently there are no
accepted molecular biomarkers to monitor ccRCC
development [8].

Molecular markers could be incorporated into future
staging systems and hold great promise for more accurate
prognoses of ccRCC. Advances in technology, such as gene
arrays and high-throughput tissue arrays, make the detection
of such markers more visible [3].

However, single microarray studies suffer from several
problems: they may report findings not reproducible or not
robust to data perturbations, [9–11]. Several meta-analysis
techniques have been proposed in the context of microarrays
so far; however, a comprehensive framework on how to carry
out a meta-analysis of microarray data set emerged only
recently [12].

In this paper, we provide the results of a meta-analysis
of nine selected ccRCC studies using effect size as a
measure of the strength of a relationship between two
variables (here: the disease and expression of a gene).
The goal of this study was to identify genes that are
differentially expressed between ccRCC and normal tissue,
to group them according to their function (pathway
analysis) and to validate a number of potential biomarkers
in a homogenous patient group, well defined with respect
to VHL , HIF1A , EPAS1 expression and clinical
parameters. In order to test prognostic value of the most
deregulated genes, we performed logistic regression
analyses of clinical and molecular parameters, and showed
an association of high expression of the fucosyltransferase
gene (FUT11 ) with non-symptomatic disease course up to
31 months post-surgery.

Material and methods

Study selection and data set preparation Twelve Affymetrix
studies of biopsy confirmed, primary ccRCC samples with

TNM, F grades, or WHO classifications were included. The
data, in the FLEO format, were obtained from ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/) [13] and Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/)
[14]. There were no technical replicates, no information
regarding batch effects or image files. For each study, array
density plots,MA plots, Spearman correlation plots, and RNA
degradation plots were created to reject low quality arrays.
Arrays were normalized using the Robust Multichip Average
method [15]. Eight studies fulfilled inclusion criteria and 222
tumor and 85 control samples were subjected to the analysis.
For each array type, the probes were mapped to version 14
Unigene gene identifiers (Microarray Lab of the University of
Michigan, http://brainarray.mbni.med.umich.edu/brainarray/
Database/CustomCDF/) [16].

Estimation of a study-specific differential expression of each
gene Effect size was used to measure differential expression
of each gene using the following formula:

Θg ¼ μ1−μ2

σg
J

with μ1 is the average signal intensity in tumor samples, μ2

the average signal intensity in controls, σg pooled standard
deviation, and J a constant. Variance ωg of θg was used as a
weight while combining study-specific estimates of
differential expression of each gene into a single effect size
value.

Combination of study-specific estimates into a single
statistic All genes that were found in less than four studies
were removed. An inverse variance technique was used to
combine study-specific effect size values into a weighted
average, and, for each gene, the following formula was used
(k is the number of studies):

��
Θg ¼

θg1
ωg1

þ θg2
ωg2

þ…þ θgk
ωgk

ωg1 þ ωg2 þ…þ ωgk

p value of the summary effect size was calculated and
adjusted for multiple testing using the FDR method.

Data analysis Computations were performed using the R
software (www.r-project.org) and the BioConductor package
(http://www.bioconductor.org/). Output genes were converted
to Ensemble and Entrez gene ID formats with SOURCE
(http://source.stanford.edu) and Biomart (http://central.
biomart.org/) ID converters. With the aid of SOURCE or
GeneCards Human Gene Database (http://genecards.org),
they were also annotated with location, function, and Gene
Ontology terms (http://www.geneontology.org/) (Gene
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Ontology Consortium). The genes were subject to the Gene
Functional Classification tool of the Database for Annotation,
Visualization and Integrated Discovery (http://david.abcc.
ncifcrf.gov/home.jsp) [17]. Correlation and logistic
regression analyses were performed using IBM SPSS
Statistics 21.

Patient material Tumors were collected from patients from
Western Poland who were diagnosed with urological
carcinomas. In one case, two tumors were detected (patient
01–068) and both tumors were tested for expression of
selected genes. The tissues were histopatologically verified
as ccRCC and screened for VHL mutations, promoter
methylation, expression of VHL , HIF1A and EPAS1 , and
LOH (data not shown). The study was approved by the local
ethical committee (876/09); only patients who signed written
consent were included in the study. Disease progression was
defined as local disease recurrence or distant metastasis
detected by X-ray and abdominal ultrasound, and/or
abdominal and pectoral CT. Follow-up time of the patients
differs per case. In general, first follow-up visits were carried
out approximately 6 or 12 months post-nephrectomy. For
detailed patient characteristics, see Online Resource 1,
Table S1. The control samples comprised of nine
histopathologically unchanged tissues matched to 9 of 32
tumors tested.

qPCR Primers were designed using Primer-BLAST (www.
ncbi.nlm.nih.gov/tools/primer-blast) and Oligo Analyzer 3.1
(http://eu.idtdna.com/analyzer/applications/oligoanalyzer/
default.aspx). One microgram of RNA was reversely
transcribed using RevertAid™ First Strand cDNA Synthesis
Kit with Random Hexamers (Thermo Scientific Fermentas,
Waltham, MA, USA), following supplied protocol. All
analyses were performed on Eco Real-Time PCR System
(Illumina, San Diego, CA, USA) using Maxima™ SYBR
Green/ROX qPCR Master Mix (2×) (Thermo Scientific
Fermentas), following supplied protocol. Using cDNA from

non-histopathologically changed tissues, standard curves were
prepared. All analyzed samples were compared to ACTB as a
reference gene and non-histopathologically changed tissue as a
control, and corrected by reaction efficiency obtained from
standard curves. Eachmeasurement was performed in duplicate,
in two independent runs. The qPCR results of controls were
averaged and used for analysis of all tumor tissues.

Results

We gathered expression data from eight published microarray
studies (Table 1) and performed meta-analysis on a data set
derived from 222 tumor and 85 control samples. Seven
hundred twenty-five differentially expressed genes were
identified for which the summary effect size was lower than
−2.5 or greater than 2.5, with FDR less than 0.01 (both cutoffs
arbitrarily selected). The top 25 up- and downregulated genes
identified in our analysis are listed in Table 2.

First, using GeneCards, we investigated expression
patterns of the downregulated genes (Fig. 1). Interestingly,
24 of the top 25 downregulated genes were highly expressed
mainly in the kidney, with only one gene, SERPINA5 , being
highly expressed additionally in other organs. Limited
information was available on the expression pattern of
FAM3B in any of the listed organs. However, FAM3B , also
known as PANcreatic DERived factor (PANDER ), has been
recently reported to be decreased in gastric cancers with high
invasiveness and metastasis [18]. A few of the downregulated
genes were described previously (UMOD , KCNJ1 , or
SERPINA5 ), but there is a limited information available on
the involvement of, for example, TMEM213 , SMIM5 , or
TMEM52B in ccRCC. In general, we observed that
downregulated genes tend to represent biological pathways
related to tissue remodeling and wound repair, blood clotting,
vasodilatation, and energy metabolism (Fig. 2). Genes
involved in tissue remodeling and wound repair (e.g., CGN ,

Table 1 Microarray data sets used in the meta-analysis

Authors Journal Year ID Array Criteria Groups

Cifola et al. Molecular Cancer 2008 E-TABM-282 133 Plus 2.0 TNM, F grades ccRCC, normal cortical tissue

Gumz et al. Clinical Cancer
Research

2007 GDS2880 133A TNM stage 1, 2 ccRCC, normal tissue, the same patient

GDS2881 133B TNM stage 1, 2 ccRCC, normal tissue, the same patient

Wang et al. Nature Medicine 2009 GSE14762 133 Plus 2.0 WHO classification ccRCC, normal tissue, the same patient

Beroukhim
et al.

Cancer Research 2009 GSE14994 133A Not available ccRCC, normal tissue, cell lines

Jones et al. Clinical Cancer
Research

2005 GSE15641 133A TNM, F grades Clear cell, papillary, chromophobe RCC,
OC, TCC, normal tissue

Dalgliesh et al. Nature 2010 GSE17816 133 Plus 2.0 F grades ccRCC, normal tissue

GSE17818 133 Plus 2.0 F grades ccRCC, normal tissue
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TUBAL3 , EGF, PLG ) represent primarily cell adhesion
processes such as GAP junction, intercellular channels,
extracellular matrix (ECM) remodeling, urokinase-
plasminogen activator (PLAU) signaling, and plasmin
signaling. The blood clotting pathway is exemplified by genes
involved in blood coagulation such as F11 , SERPINA5 ,
PROC , and KNG1 . The genes taking part in vasodilatation
(e.g., XPNPEP2 , KNG1 , PLG ) are involved mainly in
peptide hormone signal transduction—bradykinin/kallidin
pathway. SREBF2 , SCAP, CASR , and NXPH2 represent
lipid-associated energy metabolism.

Supporting previously reported data, gene ontology
analysis shows a significant clustering of downregulated
genes in processes related to ion transport and homeostasis
(e.g., cation/anion transport: sodium, potassium, iron), and
proper development and function of the kidney nephron, and
development of kidney epithelium, renal and urogenital
systems (Table 3).

Interestingly, protein products of the downregulated genes
were assigned to the three specialized cell compartments: (1)
ECM, playing a significant role in the regulation of numerous
cellular functions, like cell shape determination, adhesion,

migration, proliferation, polarity, differentiation, apoptosis,
and wound healing [19, 20]; (2) integral membrane proteins,
serving as entry and exit routes for many ions, nutrients, waste
products, hormones, drugs, and large molecules (DNA and
proteins); (3) membrane vehicles (endosomes and lysosomes)
implemented in signal transduction, as well as morphogenetic
aspects of normal cell physiology adhesion and migration
(Online Resource 1, Table S2).

The 25 top upregulated genes are highly expressed in nearly
all examined tissues (Fig. 3), except mitoticCDCA2 and sperm-
associated antigen—SPAG4 . Majority of the most upregulated
genes have been previously described (e.g., HIG2 , EGLN3 ,
IKBIP, and VIM), but we also found a few genes with less
well-described function in ccRCC, like alpha-(1,3)-
fucosyltransferase 11 (FUT11 ), shown to be expressed in
HEK293 cell line, and E3 ubiquitin ligase RNF149 [21].

All upregulated genes were classified into pathways
generally deregulated in cancer: immune system response,
inflammatory response, DNA damage response, mitogenic
signaling, angiogenesis, and apoptosis (Fig. 2). The immune
response is represented by alternative and classical
complement pathway (e.g., C3, ITGB2, HLA-DRB), antigen

Table 2 Effect size and FDR
values for the 25 top down- and
upregulated genes based on
differential expression analysis of
the tumor and normal tissue

No. Gene name Down Gene name Up

Effect size FDR Effect size FDR

1 TMEM213 11,6732 1,27E−004 HIG2 5,7118 1,71E−016
2 HS6ST2 10,0694 4,55E−006 NDUFA4L2 5,4451 3,74E−015
3 DMRT2 9,5341 7,62E−006 EGLN3 5,3392 1,93E−005
4 UMOD 9,1267 1,30E−008 IKBIP 4,7648 1,61E−033
5 KCNJ1 8,9081 6,19E−006 NNMT 4,7213 2,60E−012
6 CLDN8 8,8482 3,43E−005 VIM 4,7063 1,13E−005
7 KNG1 8,8051 1,65E−006 SPAG4 4,6100 1,12E−004
8 TMEM52B 8,4664 5,69E−006 FUT11 4,5801 2,49E−016
9 ATP6V1G3 8,3852 2,23E−006 PRDX4 4,5110 1,91E−003
10 SERPINA5 7,3164 5,96E−006 PFKP 4,4934 1,62E−004
11 ATP6V0A4 7,0983 5,19E−004 RNF149 4,4640 4,48E−013
12 ATP6V0D2 6,9264 1,00E−006 CDCA2 4,4210 1,00E−016
13 SMIM5 6,9114 1,00E−009 SLC15A4 4,3280 2,09E−045
14 SLC12A1 6,8448 5,70E−004 RNF145 4,2949 7,17E−022
15 HEPACAM2 6,8337 3,88E−007 HK2 4,2734 4,40E−008
16 ATP6V1C2 6,8015 1,40E−005 ENO2 4,2563 1,24E−005
17 FGF9 6,3715 2,21E−005 Hs.201600 4,2467 1,08E−007
18 TFCP2L1 6,3479 1,02E−005 ANGPTL4 4,1907 1,98E−006
19 FAM3B 6,1357 7,68E−007 CXCR4 4,1828 3,04E−006
20 CALB1 6,1284 2,20E−005 Hs.710697 4,1547 6,97E−014
21 FXYD4 6,1276 8,86E−007 MS4A7 4,1397 8,38E−012
22 SLC26A7 5,7771 1,36E−009 TYROBP 4,1360 1,12E−007
23 AQP2 5,7667 1,05E−005 PAG1 4,1228 5,68E−014
24 ERP27 5,6749 2,52E−011 TMSB10 4,1227 6,91E−009
25 TMEM207 5,5021 6,91E−009 SEMA5B 4,1081 9,64E−007
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presentation by MHC class I and class II genes, HSP60,
HSP70, and TLR signaling pathway. Twenty-eight
upregulated genes were assigned to inflammatory response
pathways such as HSP60, HSP70, TLR, NF-κB, and TNFR1
signaling pathways, TCR and CD28 co-stimulation in
activation of NF-κB (e.g., UBC , LY96 , TRADD , BID ).
DNA damage response was represented by a group of
inhibitors of apoptosis, which display both anti-apoptotic
and pro-survival properties, and their expression can be
induced by different cellular stresses such as hypoxia,
endoplasmic reticular stress, and DNA damage [22].

The upregulated genes were assigned primarily to the
processes of immune response regulation (both positive and
negative), cytokine-mediated processes (IFN-γ, cytokine
stimulation), and antigen presentation (Table 3). The

localization of upregulated gene products was determined
mainly as cytoplasmic, but the proteins were also assigned
to two additional compartments: cellular membranes and
vehicles, supporting the general idea of deregulation of intra-
and extracellular signal transduction in ccRCC, similarly to
other cancers (Online Resource 1, Table S3).

Network analysis MetaCore GeneGo program was used to
analyze networks of direct interactions between all genes
identified in our meta-analysis. Sixty-two differentially
regulated genes created a network of interacting genes. The
significant interactions between genes (FDR<0.05) are shown
in Online Resource 1, Table S4. Our analysis revealed one
major network with three distinct central nodes: UBC, AP-2,
and GCR-β located centrally and with extensive connections

Fig. 1 Tissue specific expression
of the top 25 downregulated
genes identified by the meta-
analysis (darker shade denotes
stronger expression)

Fig. 2 Pathway analysis of
down- and upregulated genes
(p <0.05)
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to other genes (Fig. 4). Notably, there were several nodes
(plasmin, caspase 1, ENaC, protein C inhibitor, and tissue
kallikreins) interconnecting central networks. Inclusion of
VHL , HIF1A , EPAS1 , and HIF3A in the analysis resulted in
addition of the next 53 deregulated genes to the network (e.g.,
PFKP, HIG2 , DARS , HLA-E , JMJD1A). We observed that
HIF1A joined the subset of central nodes to create a
comprehensive network with others genes (e.g., PFKP,

HIG-2 , and KNG). EPAS1 was shown to interact with 23
genes (e.g., EGLN3 , HLA-E , and VEGFA) (Fig. 4).

Validation of the expression of the most deregulated genes in
independent sample set We set to validate the expression of
the seven most down- and the seven most upregulated genes
in 32 tumor samples derived from 31 ccRCC patients of
Greater Poland. We concentrated on candidate genes not

Table 3 ccRCCmeta-analysis: a list of top 25 down- and upregulated processes according toMetacore classification (M stands for meta-analysis, while
T stands for total)

No. Downregulated Upregulated

Processes p value No. of genes Processes p value No. of genes

M T M T

1 Transmembrane transport 1.3E−13 54 1,065 Interferon-gamma-mediated signaling
pathway

3.2E−33 30 95

2 Ion transport 3.3E−13 54 1,090 Antigen processing and presentation
of exogenous peptide antigen

3.2E−32 33 136

3 Excretion 2.5E−12 15 79 Antigen processing and presentation of
exogenous antigen

1.2E−31 33 141

4 Monovalent inorganic
cation transport

1.8E−11 28 368 Antigen processing and presentation 3.1E−30 38 231

5 Cation transport 2.1E−11 42 791 Cellular response to interferon-gamma 5.9E−30 31 131

6 Ion transmembrane transport 2.6E−11 35 573 Defense response 2.0E−29 79 1,368

7 Metal ion transport 4.3E−11 37 646 Immune system process 1.7E−28 95 2,040

8 Energy coupled proton
transport against
electrochemical gradient

4.2E−10 11 50 Positive regulation of immune response 3.4E−28 49 497

9 Transferrin transport 2.9E−09 10 46 Antigen processing and presentation
of peptide antigen

5.0E−28 33 179

10 Ferric iron transport 2.9E−09 10 46 Immune response 6.2E−28 71 1,155

11 Anion transport 3.6E−09 20 242 Regulation of immune response 6.8E−28 59 775

12 ATP hydrolysis coupled
proton transport

5.7E−09 10 49 Response to interferon-gamma 1.6E−27 31 155

13 Nephron development 2.5E−08 13 108 Innate immune response 2.8E−27 53 625

14 Transport 2.9E−08 106 3,898 Response to stress 2.1E−26 125 3,602

15 Establishment of localization 3.5E−08 107 3,963 Positive regulation of adaptive immune
response

2.4E−26 27 113

16 Localization 9.0E−08 121 4,756 Positive regulation of adaptive immune
response based on somatic recombination
of immune receptors built from
immunoglobulin superfamily domains

3.3E−26 26 102

17 Ion homeostasis 1.1E−07 38 902 Positive regulation of immune system process 6.7E−26 56 755

18 Chemical homeostasis 2.2E−07 44 1,164 Cytokine-mediated signaling pathway 7.5E−26 44 434

19 Proton transport 2.3E−07 12 109 Cellular response to cytokine stimulus 9.2E−25 49 592

20 Sodium ion transport 2.6E−07 14 154 Antigen processing and presentation of
endogenous peptide antigen

1.3E−24 16 25

21 Hydrogen transport 2.8E−07 12 111 Regulation of immune system process 2.2E−24 68 1,214

22 Organic anion transport 2.9E−07 11 91 Antigen processing and presentation of
endogenous antigen

8.1E−24 16 27

23 Cation homeostasis 3.1E−07 29 608 Antigen processing and presentation of
exogenous peptide antigen via MHC
class I, TAP-independent

8.8E−24 15 22

24 Metanephros development 3.1E−07 12 112 Antigen processing and presentation of
exogenous peptide antigen via MHC class I

2.3E−23 25 115

25 Iron ion transport 4.5E−07 10 76 Regulation of adaptive immune response 3.1E−22 28 174
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previously reported due to differences in methodology used or
not discussed by others: HIG2 , NDUFA4L2 , EGLN3 ,
FUT11 , PRDX4 , PFKP, RNF149 , TMEM213 , HS6ST2 ,
DMRT2 , CLDN8 , TMEM52B , ATP6V1G3 , and ATP6V0A4 .
First, tumor samples were examined for VHL , HIF1A , and

EPAS1 expression. Similarly to previously reported data, we
observed 20–50 % reduction of VHL mRNA levels as
compared to healthy tissue (data not shown [23]).

All seven genes found as most downregulated in our meta-
analysis had decreased expression in all tested tumors.

Fig. 3 Tissue-specific expression
of the top 25 upregulated genes
identified by the meta-analysis
(darker shade denotes stronger
expression)

Fig. 4 Network analysis of genes deregulated in ccRCC
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Heparan sulfate 6-O-sulfotransferase 2 (HS6ST2 ) was
downregulated 267-fold on average and detected in 31
(96.88 %) samples (Fig. 5). Average 772-fold downregulation
of Doublesex and Mab-3 Related Transcription Factor 2
(DMRT2 ) was found in 25 (78.12 %) tumors. We detected
on average 94-fold lower expression of TMEM52B in 23
(71.88 %) samples. Transmembrane protein 213 (TMEM213)
and Claudin 8 (CLDN8) were detected only in three (0.94 %)
and four (1.25 %) tumor specimens, with average folds of 1,
066 and 226, respectively. The expression of ATP6V0A4 was
found in 20 (62.5 %) tumors and was down 1,308 times on
average, while the expression ofATP6V1G3 was undetectable
in all samples.

The relative expression of hypoxia inducible lipid 2
(HIG2 ), found upregulated in our meta-analysis, was
increased, on average 56-fold, in all tumors tested as
compared to the healthy tissue (Fig. 6). The upregulation (on
average 122-fold) of mitochondrial NADH dehydrogenase
[ubiquinone] 1 alpha subcomplex, 4-like 2 (NDUFA4L2 )
was found in all tumors, whereas EGL9 homolog 3 (EGLN3)
was overexpressed in 31 (96.88 %) samples and 32-fold on
average. The mean upregulation of phosphofructokinase
(PFKP) and fucosyltransferase 11 (FUT11 ) was equal to 7.6
and 2.9, respectively (overexpressed in 32 (100 %) and 28

(87.5 %) samples). The expression of Peroxiredoxin 4
(PRDX4 ) was up in 28 (87.5 %) tumors and increased 1.92-
fold on average, while RNF149 was overexpressed
approximately 2.26-fold in one tumor specimen. The
increased expression of majority of validated upregulated
genes (n =5, except HIG2 and RNF149), correlated with the
expression of VHL , HIF1A , and EPAS1, with highest
correlation coefficient for FUT11 (0.71), EGLN3 (0.60),
PFKP (0.58), and NDUFA4L2 (0.48), and lowest for PRDX4
(0.39), indirectly suggesting their dependence on VHL ,
HIF1A , and EPAS1 . Further, we investigated if the expression
of validated genes could be used as a predictor of disease
progression using the same group of 31 ccRCC patients.
Patient characteristics are shown in Table 4. Due to
incomplete clinical data, four patients were excluded from
the analysis. First, using forward logistic regression, we found
that, out of all genes tested, FUT11 's expression was
associated with disease progression (p =0.025, OR=0.392,
95 % CI=(0.173–0.891)) (ATP6V1G3 , TMEM213 , and
CLDN8 were excluded due to strong downregulation).
Combined analysis of clinical and molecular parameters
showed that FUT11 remained a significant parameter in the
model (p =0.042, OR=0.215, 95 % CI=(0.049–0.949)),
together with TNM (p = 0.024, OR= 2.379, 95 %
CI=(1.124–5.036)) and diabetes (p =0.047, OR=0.003,
95 % CI=(0.000–0.924)).

Secondly, we examined the correlation between FUT11
mRNA levels and disease course up to 31 months post-
nephrectomy. The patients were divided into two groups:
individuals with high FUT11 expression (values greater than
the average expression in tumors, n =14) and low FUT11
expression (n =14). We observed that majority (12 out of
17) of patients with non-symptomatic disease course
displayed high FUT11 expression. We found inverse
correlation between the two variables (linear correlation
coefficient ρ =−0.51), what, taking under consideration the
fact that ccRCC is a complex, multigenic disease, may suggest
the importance of FUT11 expression in the ccRCC pathology.

Fig. 5 Downregulation of validated genes in the cohort of 31 ccRCC
patients

Fig. 6 Upregulation of validated genes in the cohort of 32 ccRCC patients
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In Kaplan–Meier survival analysis, the association between
FUT11 expression and non-sympomatic disease course did
not reach statistically significant value, most likely to due to
relatively small sample set analyzed (see Fig. 7). The results of
univariate and multivariate survival analyses with Cox
regression model to assess FUT11 's input independently of
other predictor variables are shown in Table 5.

Discussion

In the present study, we performed a meta-analysis of ccRCC
gene expression data derived from public repositories and

executed extensive analyses of pathways, processes, and
cellular localization of the differentially expressed genes. In
our meta-analysis, we implemented the methodology
proposed by Ramasamy et al. [12], based on estimation of
effect size, in contrast to standard fold change analysis. Effect
size measures the overlap of the distributions of signal
intensity in cases and controls for each gene, but does not
impart how much a gene's expression has changed between
cases and controls in terms of fold change. And since effect
size does not depend on actual expression values, but on a
relationship between them, it is suitable for the analysis of data
derived from different experiments, carried out in different
conditions and on different platforms.

Using this approach, we found 725 genes deregulated in
the tumor tissue. The generated list included genes extensively
described in previous reports such as downregulated (UMOD ,
KNG1 , SERPINA5 , KCNJ1 ) and upregulated (EGLN3 , VIM ,
HIG2) [24–27], but it also contained genes of less recognized
function in ccRCC pathogenesis, represented by TMEM213
and ATPases: ATP6V1G3 , ATP6V0A4 , ATP6V0D2 .

In line with previous reports, the downregulated genes
were mapped to biological processes and pathways essential

Table 4 Characteristics
of patient validation
cohort

Variable Patients

No. of cases 31

Age at surgery:

Mean 65

Range 31–80

Sex:

Male 18

Female 13

Diabetes 5

Average tumor size (mm):

Mean 57

Range 25–128

Grade:

G1 1

G2 15

G3 8

G4 7

Stage:

I 12

II 2

III 8

IV 10

T:

2 8

3 12

4 5

6 3

7 2

9 1

N:

0 28

1 3

M:

0 22

1 9

Fig. 7 Kaplan–Meier plot for low and high FUT11 expressors

Table 5 Univariate and multivariate analyses of the effect of FUT11
expression, and of the sex, age, tumor size, (F)uhrman grade, symptoms,
and pT parameters, on disease progression

Variable Univariate analysis Multivariate analysis

p value p value HR 95 % CI

Sex 0.311 0.076 2.09 0.8–81.95

Age 0.613 0.634 −0.41 0.12–3.61

Tumor size 0.436 0.067 −5.25 0.00–1.45

F grade 0.72 0.478 1.39 0.08–182.95

Fut11 0.075 0.464 −1.29 0.00–8.62

Symptoms 0.001 0.078 4.17 0.62–6684

pT 0.039 0.039 3.11 1.17–434.64
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for proper kidney function (e.g., ion transport and
homeostasis) and development (e.g., nephron and kidney
epithelium development) [26], whereas the upregulated genes
were classified into pathways known to be deregulated in
cancer: immune system response, inflammatory response,
DNA damage response, angiogenesis, and apoptosis [28].

Network analysis highlighted a few important genes as
points of functional convergence, including those recently
described in ccRCC: EGLN3 [29], AP-2 , NR3C1 , kallikreins,
and well recognized HIF1A , EPAS1 , and genes encoding
ubiquitin. Interestingly, only 115 of the 725 deregulated genes
were included in the networks, not only supporting the
importance of VHL/HIF pathways in ccRCC pathology but
also highlighting the significance of additional processes in the
development of this disease, as suggested by others [23, 30].

Regression analysis of expression of the validated genes in
combination with clinical data showed potential applicability
of FUT11 expression as a marker of non-symptomatic
disease. Interestingly, we observed correlation of high
FUT11 expression with non-symptomatic disease course.

FUT11 belongs to a family of fucosyltransferases—globular
type II transmembraneGolgi-resident proteins. Their function is to
catalyze the transfer of α-l-fucose from GDP-Fuc onto N- and O-
linked glycans, free oligosaccharides, lipids, or directly onto
proteins; however, the fucosyltransferase activity has not been
confirmed for FUT11 [31]. Fucose, as a constituent of
oligosaccharides, is associated with cancer and inflammation [32].

Currently, there is no information available concerning the
role of FUT11 in ccRCC, but its upregulation has been
detected in additional microarray data sets [33, 34]. FUT11
has also been found upregulated in autosomal dominant
polycystic kidney disease expression data [35]. First
functional data were provided by Groux-Degroote et al.
[33], who showed that IL-6 and IL-8 have stimulatory effect
on expression of FUT11 , and FUT11 may be involved in the
biosynthesis of sialyl-Lewisx and 6-sulfo-sialyl-Lewisx

epitopes in the bronchial mucins in inflammatory mucosae
of cystic fibrosis patients. Lewis epitopes are crucial for
leukocyte homing and extravasation process, thus are essential
for lymphocyte maturation and the function of immune
system [36]. On the other hand, IL-6 plays an important role
in the immune defense mechanism and cell growth and
differentiation modulation in numerous malignancies [37]. It
has been observed that expression of fucosylated
oligosaccharides changes in cancer and inflammation (e.g.
[31]), also in ccRCC [38]; hence, detection of FUT11
upregulation in our meta-analysis and in ccRCC tumors may
link FUT11 to ccRCC development and progression.

Although our preliminary data suggests involvement of
FUT11 in ccRCC progression, our findings require independent
validation on additional large sample sets. Further functional
studies are needed to acquire more detailed knowledge on the
role of this fucosyltransferase in ccRCC development.
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