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Abstract

Safety pharmacology screening against a wide range of unintended vital targets using in

vitro assays is crucial to understand off-target interactions with drug candidates. With the

increasing demand for in vitro assays, ligand- and structure-based virtual screening

approaches have been evaluated for potential utilization in safety profiling. Although ligand

based approaches have been actively applied in retrospective analysis or prospectively

within well-defined chemical space during the early discovery stage (i.e., HTS screening

and lead optimization), virtual screening is rarely implemented in later stage of drug discov-

ery (i.e., safety). Here we present a case study to evaluate ligand-based 3D QSAR models

built based on in vitro antagonistic activity data against adenosine receptor 2A (A2A). The

resulting models, obtained from 268 chemically diverse compounds, were used to test a set

of 1,897 chemically distinct drugs, simulating the real-world challenge of safety screening

when presented with novel chemistry and a limited training set. Due to the unique require-

ments of safety screening versus discovery screening, the limitations of 3D QSAR methods

(i.e., chemotypes, dependence on large training set, and prone to false positives) are less

critical than early discovery screen. We demonstrated that 3D QSAR modeling can be effec-

tively applied in safety assessment prior to in vitro assays, even with chemotypes that are

drastically different from training compounds. It is also worth noting that our model is able to

adequately make the mechanistic distinction between agonists and antagonists, which is

important to inform subsequent in vivo studies. Overall, we present an in-depth analysis of

the appropriate utilization and interpretation of pharmacophore-based 3D QSAR models for

safety screening.
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Introduction

Safety profiling against a wide range of molecular off-targets, prior to in vivo toxicity testing

with animal models, has been widely implemented across the pharmaceutical industry [1–5].

Such a “bottom-up-approach” [6,7] reflects a continuous effort for a paradigm shift in early

safety evaluations [8]. Besides preventing hazardous chemicals from entering animals, system-

atic screening is a necessary step to realize the vision of predicting human adverse events from

mechanisms of action and the molecular targets involved. Safety profiling utilizes in vitro high

throughput screens (HTS) against a broad array of unintended and vital targets. However as a

safety screening panel typically includes a large number of targets, i.e., up to ~200 [1,9], devel-

oping each liability target into a reliable HTS assay is resource demanding. As complementary

approaches to help improve the utilization of in vitro HTS assays, tools such as ligand- and

structure-based virtual screening have been evaluated. One advantage for in silico approaches

is that it can be used to examine new compounds before they are synthesized, providing an

attractive possibility for early hazard identification. If molecules with undesirable properties

can be ruled out using in silico approaches, such as virtual screening, significant resources can

be saved where only “prescreened” molecules are advanced to more costly in vitro screens.

For liability targets with little or no structural information, a ligand-based approach using

quantitative structure activity relationship (QSAR) models may provide value [10–13]. QSAR

is a machine learning process to develop meaningful correlations (model) between indepen-

dent variables (e.g., structural features of compounds, molecular descriptors) and a dependent

variable which is typically the value one wishes to predict [14]. The conceptual basis of such

modeling is based on the hypotheses that compounds of similar structural features may exhibit

similar biological activities [15]. A QSAR model is determined by factors such as activity data

[16–18], molecule descriptors[16,19], and statistical algorithms [19,20]. Due to the advantages

in throughput, cost saving(labor and reagents), turn-around-time, and the possibility to test

compounds even before they are made, QSAR has been frequently used in various aspects of

drug discovery such as lead optimization [14]. However, it has not been widely used in safety

profiling, especially the 3D (i.e., pharmacophore) QSAR models, as most of commonly used

QSAR models used in safety were built based on 2D features or molecular descriptors[21],

such as the OECD QSAR toolbox [22], SEA [23], Toxmatch [24], ToxTree [25], and DSSTox

[26]. It is important to bear in mind the unique aspects for a safety profiling. In an efficacy

screening (one target against many compounds), only the small amount of positives was con-

sidered. Quantitative determination of potency is crucial for lead optimization and ranking

compounds. The negatives were of less value. Whereas in a safety profiling (often one com-

pound against many targets), every data point counts including all negatives. In fact a negative

result against a liability target for a drug candidate would be regarded as “good news”. As such,

a false negative (contributing to sensitivity) result would be of greater concern in the safety

space in comparison to a false positive (contributing to specificity), because it would mean

advancing a potentially hazardous compound into further development. Quantitative value of

potency is of less importance than efficacy screening. Due to these unique features and mind-

set, questions regarding QSAR applications remain in data interpretation as well as how to

best incorporate these tools [27].

We present here a case study to evaluate the utilization of 3D QSAR modeling as a part of

integrated approach to support safety profiling. Adenosine receptor 2a (A2A) is one of the four

class A GPCRs that regulate the activity of adenosine’s biological actions as a signaling molecule

[28,29]. Due to its presence in both central nervous system and peripheral tissues [28,29], A2A

plays important roles in a wide range of biological processes such as locomotion, anxiety, mem-

ory, cognition, sleep regulation, angiogenesis, coronary blood flow, inflammation, and the anti-
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tumoral immunity [30–38]. Disruption of A2A activities, consequentially, may result in unde-

sired side effects in behavioral, vascular, respiratory, inflammatory, and central nervous systems.

Indeed A2A is a well-established liability target, as demonstrated in an industrial survey across

four pharmaceutical companies [1]. Here, we developed QSAR models to predict compounds’

antagonistic activity against A2A. It is important to note that the crystallographic structure of

A2A is known, in contrast to a large number of safety targets (e.g., ion channels and transport-

ers). To make this study generalizable to those targets, however, we chose not to incorporate the

structural data for A2A in model building, but rather used it to provide additional insights to

evaluate the performance of the ligand QSAR model. In our study, we collected 268 in house

and external compounds with IC50 values against A2A available, which were used to build the

QSAR models. The majority of these compounds were obtained from early chemistry scaffolds

and SAR. Hence, these compounds represented a diverse chemical space but not necessarily

with ideal “drug-like features”. Bearing in mind that the goal is prospective utilization of QSAR

in secondary pharmacology profiling, we tailored our study specifically within the setting of

drug discovery. First, overtraining the model(s) was avoided. During drug development, it may

not be practically possible to obtain many training compounds and assay results, hence the

need to implement QSAR model. Therefore, we did not adhere the 4:1 or 10:1 ratio [39,40] for

training and test sets. Second, as new chemotypes are constantly made in pharmaceutical devel-

opment to drive SAR, a different external set of compounds were used to further challenge the

QSAR models, as illustrated in Fig 1. This additional level of challenge came from 1,897 known

drugs. Among these drugs, a subset of 75 known A2A ligands was used as an external set. The

75 ligands in the subset are different in structure compared to the initial 268 training and test

compounds. These 75 compounds were thoroughly tested to evaluate prospective utilization of

the generated QSAR model(s) before applying them to screen the rest of ~1,800 drugs from the

DrugBank [41]. These ~1,800 drugs further differ from the 268 compounds in chemical struc-

ture, which created a more realistic challenge. It is important to note that the focus of our study

is the repurpose of existing QSAR tools in the realm of drug safety, rather than developing

novel QSAR methodology. We demonstrate that, due to the unique requirements of safety

screening, the well-known limitations of QSAR methods (i.e., chemotypes, dependence on large

training set, and prone to false positives) are less critical than in early discovery screening. Over-

all, what we present is an in-depth case study for the utilization of in silico methods in early

safety profiling.

Materials and methods

Materials

All compounds for in vitro assay validation were purchased from Sigma or Fisher Scientific

where available. Data set. A total of 268 compounds were used as training (and test) set for

pharmacophore-based 3D QSAR modeling. Among them, 87 compounds were downloaded

from ChEMBL (https://www.ebi.ac.uk/chembl/) [42], and were then tested either by func-

tional Ca2+ or cAMP assays. An additional 13 compounds were obtained from literature search

and Guide to Pharmacology (http://www.guidetopharmacology.org/) [43]. Another 168 inter-

nal compounds were selected based on our historical in-house Ca2+ flux assays. Chemical clus-

tering analysis for these 268 compounds was performed using Schrödinger Canvas [44]. The

pIC50 values, i.e., the negative logarithm values of IC50 were also calculated. Activity threshold

of pIC50 = 5.0 was applied to set active from inactive compounds.

To validate the generated QSAR models, the SMILES codes and molecular descriptors of

1,806 approved and 179 withdrawn drugs were downloaded from the DrugBank (https://www.

drugbank.ca/) [41]. After removing duplicates and applying the cutoff of 1,000 Da for molecular
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weight, 1,832 marketed drugs were obtained. An additional 65 known A2A ligands, containing

both agonists and antagonists, were downloaded from The Guide to Pharmacology as enrich-

ment. These 65 compounds, along with 10 additional A2A antagonists among the 1,832 Drug-

bank compounds, composed of a subset of 75 A2A ligands, which were used to evaluate the

performance of QSAR models. Collectively, 1,897 compounds were used as an external set.

Methods

Similarity comparison of chemical features between two sets of compounds. The radial

binary fingerprints of chemicals were generated in Schrödinger Canvas (version 2.4), using the

default settings according to the user manual. The subsequent comparison between sets were

also carried out in Canvas using the Tanimoto similarity metrics, the resulting heat map of

visualization was also generated.

Fig 1. Workflow illustration for pharmacophore-based 3D QSAR modeling and virtual screening to identify compounds with antagonistic activities against A2A.

https://doi.org/10.1371/journal.pone.0204378.g001
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Chemical structure preparation. The 2D structures of all compounds in training, test,

and external sets were converted to 3D using LigPrep (version 10.2, Schrödinger, LLC), using

the default settings according to the user manual, where hydrogens were added, salts were

removed, stereoisomers were generated, and the most probable ionization states were calcu-

lated at pH value of 7.0 ± 2.0 using the Epik module [45,46]. During ligand preparation, speci-

fied chirality was retained. As the conformations of the given compounds were unknown

when bound to target, a series of 3D conformers (�10 per rotatable bond, and�100 per

ligand) were generated. The redundant conformers were eliminated using RMSD cut off value

of 1.0 Å. The subsequent energy minimization of each structure was carried out using OPLS3

force field [47], and was filtered through a relative energy window of 10.0 kcal/mol to exclude

high energy structures.

Creating pharmacophore based models. The molecules were classified as actives and

inactives by setting an activity threshold in Phase (actives: pIC50� 5.0) and inactives: pIC50 <

5.0). Each energy minimized ligand structure is described by a set of points (i.e., pharmaco-

phore sites) in 3D space, representing various chemical features contributing to non-covalent

binding between the ligand and the target of interest. These pharmacophore sites were charac-

terized by type, position as well as directionality. Phase has 6 built-in pharmacophore types:

hydrogen bond acceptor (A), hydrogen bond donor (D), hydrophobe (H), negative ionizable

(N), positive ionizable (P), and aromatic ring (R). Pharmacophore features that are common

to most actives (e.g.,� 50%) were identified to perceive pharmacophore hypotheses.

Such generated pharmacophore hypotheses were then scored based on the superimposition

of the site points, vector alignment and volume overlap [48]. Scoring was obtained first with all

active compounds, and then inactive compounds. The hypotheses that matched the inactive

ligands were penalized as described in details by Dixon et al [48]. Default values were used for

weights (w) of actives and inactives.

Pharmacophore-based 3D QSAR modeling. 3D QSAR models were generated using

atom-based PLS (partial least square) regression method. The default value of PLS of 3 was

applied. For each of the top scored pharmacophore hypothesis, a QSAR model was built using

training compounds that matched the pharmacophore on at least 3 sites and yielded best align-

ments [48]. Specifically, to generate a QSAR model, a rectangular grid was defined to include

the space occupied by the aligned training set actives. The grid was divided into uniformly

sized cubes of 1 Å3. The cube was deemed as occupied if the center of a pharmacophore site

was within the radius of the corresponding sphere. Based on the differences in the occupancy

of cubes and the different types of sites that reside in these cubes, a compound may therefore

be represented by a string of zeros and ones. This resulted in binary values as 3D descriptors.

QSAR models were created by using partial least square regression (PLS) to the pool of binary

valued variables [48].

The generated QSAR models were examined using the test set compounds. By comparison

of the predicted and experimentally determined pIC50 values, the statistical parameters R2

(correlation coefficient), SD (standard deviation of regression) and Root Mean Square Devia-

tion (RMSD) were calculated to evaluate the overall significance of the model. The best per-

formed model was selected for the subsequent virtual screen.

Pharmacophore-based 3D QSAR virtual screening. The 1,897 known drugs were energy

minimized and conformations were generated to form the 3D database (library) in Phase. The

pharmacophore hypotheses of the best 3D QSAR models were used to screen against this

library for compounds that match such pharmacophore features. The pIC50 values of the hit

compounds were then predicted using the 3D QSAR model.

In vitro assays. Competition binding assay using radioactive ligands and functional assay

monitoring cAMP were carried out as a paid service provided by CEREP (Poitiers, France).
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The functional assays monitoring Ca2+ flux were carried out as a paid service provided by Dis-

coveRx (Carlsbad, CA). The competition binding assays were carried out at a fixed compound

concentration of 10 μM. The cAMP and Ca2+ assays were carried out in concentration-

response mode, at 10, 3.165, 1.001, 0.317, 0.100, 0.003, 0.001, and 0 μM.

Results

Data preparation and chemical clustering

The 268 compounds, from public sources and in-house, were divided into training and test

sets via 3 approaches as illustrated in Fig 1, as QSAR outcome might be affected by how train-

ing and test sets were separated [40,49]. In the first approach, a randomized separation was

used, resulting in 141 training compounds, and 127 test compounds. Cheminformatics analy-

sis revealed that the training and test sets contained 26 and 37 chemical clusters, respectively,

among which only 8 clusters were shared between the 2 sets. A second method to create a

training set covering more chemical clusters was also applied. As the 268 compounds con-

tained 55 chemical clusters, the centroids of the 55 chemical clusters (among which only 8 are

actives), and randomly selected 27 actives, were grouped into the training set. The remaining

185 compounds were used as the test set. In the third approach, all 268 compounds were used

as one training set to create common pharmacophore hypotheses. To make a distinction, the

training and test sets obtained from random separation were referred to as training 1 and test

1. The training and test sets from the clustering method were referred to as training 2 and test

2. The training set from the third approach was referred to as training 3. The obtained hypoth-

eses from these training sets were subsequently used to build pharmacophore-based 3D QSAR

models.

The similarity analysis between training and test sets was carried out using Canvas [44].

Training 1 and test 1 exhibited some difference in their chemical features, as revealed by the

similarity index, ranging from 0.01 to 0.65 (Fig 2A). As shown in the heat map in Fig 2B, the

similarity index between the training 2 and test set 2 compounds ranged from 0.01 to 0.67.

The 1,897 compounds bore less similarity with the 268 compounds, which were represented

by the 55 centroids. The similarities with the 55 representatives ranged from 0.01 to 0.37, and

0.01 to 0.13, with the subset of 75 A2A ligands (Fig 2C) and the 1,832 compounds (Fig 2D),

respectively. This is perhaps not entirely surprising, as the 268 compounds represented chemi-

cal space at the discovery stage, whereas the 1,897 molecules represented the true drug space.

Due to low structural similarities, the screening of 1,897 drugs using pharmacophore-based

3D models generated from early stage chemicals presented a “real world” case scenario in

Drug Discovery.

Pharmacophore modeling

The training set compounds were divided into actives (pIC50� 5.0), and inactives (pIC50 <

5.0), consistent with our in house in vitro profiling practice. Training sets 1, 2, 3 contained 54,

35 and 97 actives, respectively. Various combinations of common pharmacophores were iden-

tified. From training set 1, 6 four-pharmacophore-site variants were generated to match� 40

out of 53 actives. From training 2, a total of 7 five-pharmacophore-site variants were generated

to match� 21 of the 35 actives. Only 3 five-pharmacophore-site variants were generated to

match� 55 out of 97 actives in training 3. The possibility of four-pharmacophore-site variants

was also explored, from which 8 variants were produced to match� 63 out of 97 actives. The

variants and the possible resulting hypotheses were summarized in Table 1.

Upon completion of scoring for all the hypotheses listed in Table 1, 46 four-site hypotheses

survived from training 1, 9 five-site survived from training 2. In training set 3, 4 five-site

The integration of pharmacophore-based 3D QSAR modeling and virtual screening in safety profiling

PLOS ONE | https://doi.org/10.1371/journal.pone.0204378 January 3, 2019 6 / 23

https://doi.org/10.1371/journal.pone.0204378


hypotheses survived and 19 four-site hypotheses survived. The top survived hypotheses (~

10%—~20%) were used to build 3D QSAR models.

Generation and test of the pharmacophore-based 3D QSAR model

Four and three pharmacophore models were generated from the survived hypotheses, for

training 1 and 2, respectively. Evaluation of these models was performed by predicting activi-

ties for test 1 and 2 sets of compounds. As the number of PLS factors increased, the statistical

significance and predictive ability of the model was also incrementally increased. Therefore,

PLS factor of 3 were used for the models. The statistical results were summarized in Table 2. It

was found that AADR.139 and AAADR.20 yielded the best statistics for test 1 and test 2,

Fig 2. The heat map demonstration for binary fingerprint similarities between training 1 and test 1 (A), training 2 and test 2 (B), the 55 representations of the 268

compounds and the subset of 75 A2A ligands (C), as well as the 55 representations and the 1,832 DrugBank drugs (D). The heat map of 1,832 drugs was truncated due to

space limitation. The heat maps were generated using Schrodinger Canvas, as described in details in Materials and Methods. The lowest similarity (0.0) was shown in

black, whereas the highest similarity (1.0) was shown in red. See supplementary data for a zoomed in version for each panel.

https://doi.org/10.1371/journal.pone.0204378.g002
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respectively. The large F value and the small p value indicated a statistically significant regres-

sion model and high degree of confidence. The small value of SD and RMSE suggested satisfac-

tory results from the test set. The q2 value was indicative of the capability to predict activities

in the test set. The performance of predicting activities of the test set could also be seen from

the correlation between predicted and experimentally determined pIC50 values as shown in

Fig 3. Both AADR.139 and AAADR.20 were moved forward to generate 3D QSAR models.

For model AADR.139, sensitivity and specificity were observed to be 82% and 94% against test

set 1; for model AAADR.20, the sensitivity and specificity against test set 2 reached 96% and

94%, respectively.

From training set 3, three 3D pharmacophore models were generated for five-site and four-

site hypotheses. Unlike the previous 2 training sets, there is no test set for training 3. Nonethe-

less, AAADR.1 and AAAR.2 were the best five-site, and four-site models, respectively, as shown

by the statistical parameters that are unrelated to the test set. It is worth noting that AAAR.2

and AADR.5 shared the same reference compound (N-isopropyl-2-((pyridin-3-ylmethyl)

amino)thieno[3,2-d]pyrimidine-4-carboxamide), which is the compound that matches the

hypothesis with the highest score. N-Isopropyl-2-((pyridin-3-ylmethyl)amino)thieno[3,2-d]

pyrimidine-4-carboxamide contained all five pharmacophore sites, 3 hydrogen bond acceptors,

1 hydrogen bond donor and 1 aromatic residue. It is therefore interesting to perform the

Table 1. Pharmacophore hypothesis identified by Phasea.

Variant b Training set # of matching actives in training set # of max hypotheses

AAAD Training 1 (random) � 40 out of 53 282

DRRR Training 1 (random) � 40 out of 53 6

ADRR Training 1 (random) � 40 out of 53 65

AADR Training 1 (random) � 40 out of 53 453

AAAR Training 1 (random) � 40 out of 53 434

AARR Training 1 (random) � 40 out of 53 358

ADHRR Training 2 (clustering) � 21 out of 35 4

AAADH Training 2 (clustering) � 21 out of 35 8

AAADR Training 2 (clustering) � 21 out of 35 96

AAAHR Training 2 (clustering) � 21 out of 35 7

AADHR Training 2 (clustering) � 21 out of 35 35

AADRR Training 2 (clustering) � 21 out of 35 9

AAHRR Training 2 (clustering) � 21 out of 35 9

AAHRR Training 3 (all compounds) � 55 out of 97 4

AADRR Training 3 (all compounds) � 55 out of 97 10

AAADR Training 3 (all compounds) � 55 out of 97 22

AAAD Training 3 (all compounds) � 63 out of 97 42

DRRR Training 3 (all compounds) � 63 out of 97 5

AAAR Training 3 (all compounds) � 63 out of 97 42

ADRR Training 3 (all compounds) � 63 out of 97 19

AARR Training 3 (all compounds) � 63 out of 97 41

AAHR Training 3 (all compounds) � 63 out of 97 13

AADH Training 3 (all compounds) � 63 out of 97 1

AADR Training 3 (all compounds) � 63 out of 97 77

a List of variants from 3 different training set compounds
b Variants: various combinations of common pharmacophores

https://doi.org/10.1371/journal.pone.0204378.t001
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subsequent virtual screen with both five-site and four-site pharmacophore models generated

from the training set 3. The reference compound for each model was shown in Fig 4.

Virtual screening of 1,897 drugs

The 4 best models, built from 3 training sets containing 83 to 268 compounds, were used to

perform virtual screening against 1,897 drugs. The 1,833 known drugs from DrugBank con-

tained only 2 known A2A agonists and 8 antagonists. Therefore, an additional 67 A2A ligands

(either drugs or drug candidates) were downloaded from Guide to Pharmacology. After

removing the 2 duplicated molecules (A2A agonists: Regadenoson and Adenosine), a

1,897-compound set was obtained. The 1,897-compound set contained 29 A2A agonists and

46 antagonists. These 75 known A2A ligands were used to evaluate the performance of the 4

models. With 6 CPUs, the screening process against 1,897 compounds with various conform-

ers was completed within 3 minutes. The compounds which yielded predicted pIC50 values

equal or larger than 5.0 were labeled as hits. The number of hits and hit rates using each model

was summarized in Table 3.

As demonstrated from the subset containing 75 A2A ligands, model AAAR.2

yielded > 70% sensitivity and specificity, a significantly better performance in comparison to

the other 3 models, despite the assay statistics (sensitivity and specificity) may be underesti-

mated. All subsequent discussions will be focused on AAAR.2. Some active antagonists, such

as MRS1532, MRS1191, MRS1088, dyphylline, and pentoxifylline etc., were weak antagonists

with pIC50 values around 5.0. These compounds were predicted to be inactives (predicted

pIC50 < 5.0) by the model, causing them to be categorized as “false negatives” and in turn

Table 2. The statistical data of pharmacophore-based 3D QSAR using Phasea,b,c.

Variant SD R2 F P Stability RMSE Q2 Pearson R

4-site, training 1

ADRR.87 0.566 0.911 396 9.720 x 10−61 0.838 0.897 0.657 0.824

AADR.79 0.571 0.901 400 4.848 x 10−66 0.836 0.781 0.733 0.864

AADR.139 0.564 0.906 421 2.154 x 10−67 0.786 0.768 0.740 0.872

AADR.51 0.544 0.909 444 4.568 x 10−69 0.819 0.827 0.698 0.856

5-site, training 2

AAADR.17 0.363 0.967 734 1.779 x 10−55 0.624 1.020 0.531 0.820

AAADR.20 0.309 0.976 1,021 1.055 x 10−60 0.469 0.888 0.645 0.868

AAADR.18 0.366 0.967 721 3.426 x 10−55 0.645 1.053 0.500 0.825

5-site, training 3d

AAADR.1 0.498 0.909 652 5.215 x 10−102 0.809 — — —

AAADR.6 0.588 0.872 449 9.198 x 10−88 0.843 — — —

AAADR.4 0.591 0.871 444 2.270 x 10−87 0.881 — — —

4-site, training 3d

AADR.5 0.567 0.906 418 1.482 x 10−66 0.732 — — —

AAAR.2 0.521 0.921 508 1.410 x 10−71 0.786 — — —

ADRR.23 0.520 0.927 465 2.724 x 10−51 0.745 — — —

a Only the top 10% - 20% hypotheses scored was moved forward for evaluation.
b Statistics obtained when PLS = 3.
c SD, standard deviation of regression; r2, correlation coefficient; F, variance ratio; stability: Stability of the model predictions to changes in the training set composition,

max = 1; P, significance level of variance ratio; RMSE: root-mean-square error of the test set; q2, correlation coefficient for the predicted activities; Pearson R, value for

the correlation between predicted and observed activities for the test set; PLS, partial least square regression method.
d For training set 3, all 268 compounds were used to perceive hypotheses. There was no test set. Hence the statistics for test set were empty

https://doi.org/10.1371/journal.pone.0204378.t002
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underestimating the sensitivity. On the other hand, the agonists were viewed as negatives in

the antagonistic A2A QSAR model. In our screening, 7 agonists had predicted antagonistic

pIC50� 5.0. These 7 agonists were deemed as false positives in our analysis. However, it is not

unusual for agonists to demonstrate antagonistic activities [50], which was indeed observed in

the in vitro assays with adenosine and regadenoson (vida infra). Accordingly, the false positives

might be overestimated, which may in turn result in underestimated specificity. It is also

important to note that AAAR.2 was the only model that successfully identified 8 out of 9 drugs

in the theophylline family. The only family member failed to be identified was fenethylline, as

AAAR.2 predicted doxofylline and pentoxifylline to have activity below the pIC50 cutoff of 5.0

(pIC50 predicted to be 4.2 and 3.7 respectively).

Given the structural difference between the subset and the 268 training (and testing) com-

pounds, AAAR.2 was determined to be the most relevant pharmacophore-based 3D QSAR

model based on its performance. The 3-dimensional aspects of the QSAR model AAAR.2 were

Fig 3. The performance of the 4 models on predicting actives of the test set compounds. A, model AADR.139 generated from training set 1. B, model AAADR.20

generated from training set 2. C, model AAADR.1 generated from training set 3. D, model AAAR.2 generated from training set 3. In the cases of models AAADR.1 and

AAAR.2, there were no test set compounds as all 268 compounds were used as training, as described in details in Materials and Methods.

https://doi.org/10.1371/journal.pone.0204378.g003
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further examined to help gain an understanding on how the structures of the ligands contrib-

ute to the A2A antagonistic activities. The intersite distance between pharmacophores is

shown in Fig 5. The 4 pharmacophores, A2, A3, A4 and R8, formed a diamond shape, with the

longest distance (5.1 Å) occurring between A3 and A4. The positive and negative coefficients

that contribute to the increase or decrease in antagonistic activity against A2A could be visual-

ized by pictorial representations (Fig 6). The blue cubes indicated the favorable regions for a

given feature, whereas the red cubes indicated unfavorable regions. Fig 6A highlighted the

Fig 4. The reference ligands used for model AADR.139 (A), AAADR.20 (B), AAADR.1 (C), and AAAR.2 (D). The insert of Fig 4D shows that model

AADR.5 shared the same reference compound (N-isopropyl-2-((pyridin-3-ylmethyl)amino)thieno[3,2-d]pyrimidine-4-carboxamide) as model AAAR. 2.

Hence, N-isopropyl-2-((pyridin-3-ylmethyl)amino)thieno[3,2-d]pyrimidine-4-carboxamide contained all five pharmacophore sites in model AAADR.1, as

described in details in Results. Hydrogen bond acceptor was shown in magenta vector, hydrogen donor was shown in light blue vector, and aromatic residues

were shown in brown ring.

https://doi.org/10.1371/journal.pone.0204378.g004
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favorable and unfavorable regions for the presence of hydrogen bond donor. Similarly, the

favorable and unfavorable regions for hydrophobic groups and electron withdrawing groups

were shown in Fig 6B and 6C, respectively. The combined, overall effects were shown in Fig

6D. The reference ligand, N-isopropyl-2-((pyridin-3-ylmethyl)amino)thieno[3,2-d]pyrimi-

dine-4-carboxamide, was primarily covered in favorable regions, especially the core area com-

posed of the 4 pharmacophores despite some unfavorable regions around the edges. The only

major exception was around the methylpyridine moiety, whose hydrophobicity was disfavored

for the antagonistic activity. The reference ligand had a moderate activity (pIC50 = 5.6), within

Table 3. Virtual screen hits and hit rates obtained from 4 different pharmacophore-based 3D QSAR models.

Model AADR.139 AAADR.20 AAADR.1 AAAR.2

Complete set, 1,897 compounds

# of Hits 115 77 83 168

Hit rate, % 6.1 4.1 4.4 8.9

Subset, 75 A2A ligands (29 agonists & 46 antagonists)a, b

Sensitivity, % 28 28 13 78

Specificity, % 89 78 45 74

False positive rate, % 11 22 55 26

False negative rate, % 72 72 87 22

a Performance statistics were calculated based on the assumption that agonists should behave as negatives, i.e., yielding pIC50 < 5.0 when being tested via functional

antagonist assay.
b Sensitivity = TP/(TP+FN), specificity = TN/(TN+FP), false positive rate = FP/(FP + TN), false negative rate = FN/(TP+FN), where TP is true positive, TN is true

negative, FP is false positive, FN is false negative.

https://doi.org/10.1371/journal.pone.0204378.t003

Fig 5. The inter-site distances between model AAAR.2. Distances are in the unit of Å.

https://doi.org/10.1371/journal.pone.0204378.g005
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a concentration range commonly observed in Safety profiling. Such visualization is also useful

to examine some more active and inactive ligands to identify structural features that may be

unfavorable, as detailed in the supplementary data.

Further validation of virtual screen results using in vitro assays. A total of 56 randomly

selected compounds from virtual screening were subjected to cross validation using in vitro

assays using three different assay formats. The 56 compounds includes compounds from 3 cat-

egories: 16 with predicted pIC50� 5.0 (virtual screen actives), 17 yielded predicted pIC50 rang-

ing from 4.0 to 5.0, and 23 compounds either yielded predicted pIC50 < 4.0 or were not even

picked up by the screening (virtual screen inactives). As shown in Table 4, only 5 out of the 16

virtual screen actives, i.e., amiloride, theophylline, doxorubicin, S-adenosylmethionine, and

pranlukast, were confirmed by at least 1 type of in vitro assay. Among the virtual screening

Fig 6. Pictorial representations of the positive (cobalt) and negative (red) coefficients that contribute to A2A antagonist activities, from hydrogen bond donor (A),

hydrophobicity (B), electron withdrawing groups (C), and the combined effects (D).

https://doi.org/10.1371/journal.pone.0204378.g006
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Table 4. In vitro assay results a.

Molecule IC50-predicted IC50,

cAMP, M

IC50,

Ca2+, M

%inhibition, binding b Primary target(s) and/or function(s)

Amiloride 4.0E-07 N.E. N.E. 53 Amiloride-sensitive Na+ channel subunit α

Theophylline 5.0E-07 N.E. N.E. 68 A2A antagonist

Triamterene 6.3E-07 N.E. N.E. N.E. Amiloride-sensitive Na+ channel

S-Adenosyl-methionine 7.9E-07 N.E. N.E. 74 common co-substrate for methyl transferase and so on

Pranlukast 1.0E-06 N.E. 8.3E-07 N.E. cysteinyl leukotriene receptor 1 antagonist

Valganciclovir 1.3E-06 N.E. N.E. N.E. a prodrug for ganciclovir, DNA, transporters

Bortezomib 1.6E-06 N.E. N.E. N.E. proteasome inhibitor

Ribavirin 1.6E-06 N.E. N.E. N.E. adenosine kinase, Inosine-5’-monophosphate dehydrogenase 1 inhibitor

Ticagrelor 2.5E-06 N.E. N.E. N.E. P2Y, platelet aggregation inhibitor

Famotidine 4.0E-06 N.E. N.E. N.E. H2 receptor antagonist

Valaciclovir 4.0E-06 N.E. N.E. N.E. thymine kinase inducer, DNA polymerase inhibitor

Cefdinir 6.3E-06 N.E. N.E. N.E. β-lactam antibiotic

Salsalate 6.3E-06 N.E. N.E. N.E. Prostaglandin G/H synthase 1&2

Pyridoxal 6.3E-06 N.E. N.E. N.E. Pyridoxal kinase, precursor to pyridoxal phosphate

Doxorubicin 7.9E-06 N.E. 2.5E-06 N.E. DNA intercalator, DNA topoisomerase inhibitor

Bopindolol 7.9E-06 N.E. N.E. N.E. β blocker

Cefixime 1.3E-05 N.E. N.E. N.E. β-lactam antibiotic

Adenosine 1.3E-05 N.E. 1.9E-07 65 A2A agonist

Regadenoson 1.6E-05 N.E. 4.9E-08 97 A2A agonist

Sofosbuvir 2.0E-05 N.E. N.E. N.E. prodrug nucleotide analog

Capecitabine 2.0E-05 N.E. N.E. N.E. Prodrug of 5-FU, Thymidylate synthase inhibitor

Milrinone 2.0E-05 N.E. N.E. N.E. cAMP phosphodiesterase inhibitor

Nebivolol 2.0E-05 N.E. N.E. N.E. β1 receptor antagonist

Reboxetine 2.0E-05 N.E. N.E. N.E. Na+-dependent noradrenaline transporter inhibitor

Propafenone 3.2E-05 N.E. N.E. N.E. Na+, K+ channels blocker

Felbamate 3.2E-05 N.E. N.E. N.E. NMDA receptors antagonist

Flucloxacillin 3.2E-05 N.E. N.E. N.E. β-lactam antibiotic

Sulpiride 3.2E-05 N.E. N.E. N.E. D2 antagonist

Bosentan 4.0E-05 N.E. N.E. N.E. endothelin receptor antagonist

Ipratropium bromide 4.0E-05 N.E. N.E. N.E. Muscarinic receptor antagonist

Gliquidone 5.0E-05 N.E. N.E. N.E. ATP-sensitive K+-channel inhibitor

Metoprolol 6.3E-05 N.E. N.E. N.E. β1 blocker

Glimepiride 7.9E-05 N.E. N.E. N.E. ATP-sensitive K+-channel receptor inhibitor

Midodrine 1.0E-04 N.E. N.E. N.E. alpha-adrenergic receptor agonist

Norepinephrine 1.0E-04 N.E. N.E. N.E. alpha-adrenergic receptor agonist

Isradipine 1.0E-04 N.E. N.E. N.E. calcium channel blockers

Pentoxifylline 2.0E-04 N.E. N.E. N.E. Phosphodiesterase inhibitor, adenosine receptor antagonist

Verapamil 3.2E-04 N.E. N.E. N.E. L type Ca2+ channel inhibitor

Diltiazem 7.9E-03 N.E. N.E. N.E. L type Ca2+ channel inhibitor

Cefadroxil non hit N.E. N.E. N.E. β-lactam antibiotic

Nelfinavir non hit N.E. N.E. N.E. HIV-1 protease inhibitor

Cephalexin non hit N.E. N.E. N.E. β-lactam antibiotic

Rosiglitazone non hit N.E. N.E. N.E. PPARγ agonist

Cefoxitin non hit N.E. N.E. N.E. β-lactam antibiotic, carboxypeptidase inhibitor

Etravirine non hit N.E. N.E. N.E. Non-Nucleoside Reverse Transcriptase Inhibitor

Pirlindole non hit N.E. N.E. N.E. Non-Nucleoside Reverse Transcriptase Inhibitor

(Continued)
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negatives, both A2A agonists, adenosine and regadenoson were picked up by AAAR.2,

although the predicted pIC50 were 4.7 and 4.9, respectively. All other negatives were confirmed

as negatives by in vitro assays.

The compounds were determined as “active” when confirmed by at least 1 type of in vitro

assay. Identifying actives using 3 different assays was to reduce any “omissions” (false nega-

tives) caused by artifacts with any one form of particular assay. The sensitivity and specificity

of AAAR.2 for predicting the random 56 drugs are summarized in Table 5.

Discussion

Selectivity screening is an essential step to realize the vision of predicting the adverse events in

human from molecular targets, and ultimately design away from these liability targets. With

the increasing demand for in vitro assays as well as the expanding list of liability targets, tools

such as ligand- and structure-based virtual screens have been evaluated to aid and optimize

the profiling process in the realm of Predictive Safety. For targets whose structures are not

available or for targets whose binding sites are flexible, ligand-based approach provides a

Table 4. (Continued)

Molecule IC50-predicted IC50,

cAMP, M

IC50,

Ca2+, M

%inhibition, binding b Primary target(s) and/or function(s)

Desogestrel non hit N.E. N.E. N.E. synthetic progestational hormone

Pheniramine non hit N.E. N.E. N.E. H1 antagonist

Gabapentin non hit N.E. N.E. N.E. Voltage-gated Ca2+ channel inhibitor

Ticlopidine non hit N.E. N.E. N.E. P2Y antagonist

Mesalazine non hit N.E. N.E. N.E. Prostaglandin G/H synthase 1&2 inhibitor

Flumethasone non hit N.E. N.E. N.E. GR agonist

Cabergoline non hit N.E. N.E. N.E. dopamine agonist, prolactin inhibitor

Lamotrigine non hit N.E. N.E. N.E. Voltage-gated Na+ channel inhibitor

Nitisinone non hit N.E. N.E. N.E. 4-Hydroxyphenylpyruvate dioxygenase inhibitor

Ertapenem non hit N.E. N.E. N.E. β-lactam antibiotic

a N.E., no effects. Results showing an inhibition or stimulation lower than 50% are considered to represent insignificant effects of the test compounds.

b % of inhibition ¼ 100 �
Measured specific binding
control specific binding � 100

� �
. Compound binding was calculated as a % inhibition of the binding of a radioactively labeled ligand specific for

each target.

https://doi.org/10.1371/journal.pone.0204378.t004

Table 5. Performance of prediction and chemical similarities a,b.

Model Training 1 vs Test 1 Training 2 vs Test 2 Training 3 vs 75 A2A ligands Training 3 vs 56 drugs b

# of clusters in training 26 55 55 55

# of actives in training 53 35 97 97

# of inactives in training 88 48 171 171

Max similarity to test set c 0.65c 0.67 0.37 0.13

Sensitivity, % 82 96 78 72

Specificity, % 94 94 74 77

a Sensitivity = TP/(TP+FN), specificity = TN/(TN+FP), false positive rate = FP/(FP + TN), false negative rate = FN/(TP+FN), where TP is true positive, TN is true

negative, FP is false positive, FN is false negative.
b Based on in vitro assay results, TP = 5, TN = 38, FP = 11, FN = 2.
c Similarities calculated using radial binary fingerprints. The 268 training and test compounds were represented by 55 centroid structures from the 55 chemical clusters.

https://doi.org/10.1371/journal.pone.0204378.t005
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powerful predictive tool, especially with carefully curated training and test compounds. In sil-
ico approaches in safety profiling are still at an early stage as questions remain in data interpre-

tation as well as how to best incorporate these tools [27]. From the presented case study of

screening antagonistic activity against A2A, we evaluated how to best use and interpret phar-

macophore-based 3D QSAR model in Safety.

Data collection for model building

The success of modeling requires large and diverse training sets. Many researchers suggested a

10:1 or 4:1 ratio for the numbers of compounds in training and test sets [39,40] Although a sig-

nificantly sized training set will help greatly in a QSAR exercise, in the reality of drug discovery

particularly in safety, it is not always attainable to generate large quantity of in vitro data

upfront. The notion of requiring in vitro data for large number of compounds indeed hampers

the prospective utilization of QSAR models in the pharmaceutical industry. Besides, if a partic-

ular in vitro assay was readily available and new synthetic chemistry was quickly worked out,

there would be practically no need to use in silico approaches. The most frequent question is:

how many compounds are enough? Although it is not possible to put a fixed number, it would

help to know how many compounds will be screened in the prospective utilization. Our study

presented an extreme case using 268 training/test compounds to screen 1,897 compounds,

demonstrating that the possibility of utilization QSAR even with smaller training/test set.

We suggested a couple of mitigation solutions to use QSAR when training and test sets are

smaller than future screening task. One is to include data from public databases, such as

ChEMBL [42] and Guide to Pharmacology [43]. Although these external compounds may rep-

resent different chemistry compared to an in-house produced collection, incorporation of

these compounds enhanced chemical diversity. The second is to split training and test sets in

various ways. As shown in our study, splitting training and test sets in various ways impacted

the performance with external set (Table 3). Changing composition of the training and test set

disturbed the basis of modeling, which in turn alters the outcomes [40,49]. Last, generating

more than one hypothesis and model from each training set may be beneficial. Using the same

training 3, various hypotheses yielded different statistics. For example, when changing

AAADR.4 to AAADR.1, the compounds accounted for in the training set increased from 87%

to 91%, as shown in the R2 values (Table 2). When changing from 5-site to 4-site hypotheses,

the coverage further increased to 93%.

The 4-site AAAR.2 is a relevant model to mechanistically predict new

molecules for A2A

Up to 7 pharmacophore sites can be defined in Schrödinger Phase [48,51]. Typically increasing

numbers of pharmacophore site renders additional definitions for ligand features, which may

better distinguish actives from inactives. While this might be true with more rigid binding

pocket such as kinases [52], it was not the case for A2A as demonstrated in our study. With

training set 3, several 5- and 4-site models were obtained, all of which yielded good statistics as

shown in Table 3. Despite the significantly improved P values in 5-site model, the 4-site model

AAAR.2 yielded a significantly improved outcome when predicting the structurally different

subset of 75 A2A ligands. As revealed by our training set, logP values of the active compounds

ranged from 0.2 to 7.2, suggesting ligands with a broad diversity are able to bind to this target.

Indeed promiscuity is well known for target classes such as GPCR and nuclear hormone recep-

tors [50,53,54].Fewer pharmacophore sites may instead allow more freedom for the structur-

ally “fluid” GPCRs. Therefore, it is important to test hypotheses composed of different number

of pharmacophore sites, and evaluate the resulting models in the external set.
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Model AAAR.2 was determined to be the most relevant pharmacophore model based on its

performance against the 75 A2A ligands and the 56 randomly selected drugs, both of which

are structurally very different comparing to the 268 training compounds. AAAR.2 contained 4

pharmacophore features, 3 hydrogen bond acceptors and 1 aromatic ring. The emphasis for

hydrogen bond acceptors can be seen from the 97 actives in training set 3, among which the

number of hydrogen bond acceptor ranged from 3 to 8. In contrast, the presence of a hydrogen

bond donor was not necessary for antagonistic activities, as 9 out of 97 actives contained no

hydrogen bond donors. An in-depth survey for a database (SCOPE database [55]), containing

proprietary compound optimization data, showed that average number of hydrogen bond

acceptors for GPCR ligands increased from 3 to 4 from starting material to optimized com-

pound [55]. This was in good agreement with increasing hydrogen bond acceptors favoring

binding to GPCRs.

Model AAAR.2 could distinguish agonists from antagonists. Such mechanistic distinction

is challenging, as A2A agonists and antagonists often shared the same bicyclic adenine core

[56]. Agonists and antagonists even engaged the same set of residues, such as Phe168, Ile274

and Asn253 as revealed by crystallographic studies [57–59]. The ribose ring structure is the

key feature that differentiates agonists from antagonists [56]. As revealed by the co-crystal

structures of A2A and its agonist UK-432097, the ribose moiety was buried deeply into the

binding pocket. The indole from a conserved Trp246 residue moved by ~1.9 Å to avoid clash-

ing into the ribose ring. Such movement not only allowed additional contacts to be made with

the ribose ring of the agonist, but also caused global movements to render the receptor’s transi-

tion into active form. Intriguingly, model AAAR.2 focused primarily on the adenine moiety

(with exception of 1 hydrogen acceptor), hence might limit the identification of antagonists

from agonists. Yet AAAR.2 still yielded above 70% sensitivity and specificity against a collec-

tion of 75 known A2A agonists and antagonists. It is important to note that both sensitivity

and specificity may be under-estimated. 16 out of the 46 antagonists were weak against A2A,

i.e., pIC50 < 5.3. These antagonists may be missed, within standard error, when the cutoff

value for pIC50 was set to be 5.0. Such “omissions” may induce an underestimation of sensitiv-

ity, which could have been higher had the pIC50 values for all the antagonists were above 6.0.

The specificity might also be higher than 70%. In our study, agonists identified as active by

AAAR.2 were deemed as false positives, resulting in a false positive rate of ~30%. However,

this might be too restrictive. Many agonists could also have antagonistic activities, as later

demonstrated with the in vitro assay results for adenosine and regadenoson. Therefore the

greater than 70% sensitivity and specificity were encouraging for this prospective application.

The promise of utilization and interpretation of pharmacophore-based 3D

QSAR in safety

With large and diverse compound sets to generate various training sets and models, followed

by thorough evaluation with a structurally different external set, 3D QSAR modeling could be

used in safety, either as a pre-screen or to support detailed structural activity analysis against

liability targets. To this end, it is important to measure the chemical similarities between query

compounds and training/test compounds. Chemical similarity analysis is not simply to deter-

mine whether the query compound is suitable for the model or not. Rather it will help guide

result interpretation, especially in safety screening.

This concept is best illustrated in Fig 7, which was divided into 4 areas including true posi-

tives, true negatives, false positives, and false negatives based on the results of in vitro and in sil-
ico assays against the subset of 75 A2A ligands. The 5 compounds that are the most similar to

training/test compounds (similarities� 0.22) all fell into the section of true positives (Fig 7A
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and 7B). For the 11 compounds whose similarity index ranged from 0.14 to 0.22 to training/

test compounds, false positives and negatives began to appear, i.e., 2 were false positives and 2

were false negatives (Fig 7C). When similarity index dropped below 0.14, false positives and

false negatives increased (Fig 7D). Encouragingly, 7 compounds (xanthinol, PSB603, PSB36,

MRS1065, MRS1084, tonapofylline and sakuranetin), were also predicted positives despite

their low similarity (similarity <0.1). The similarity was obtained from binary fingerprints,

with no consideration for 3-dimensional or the pharmacophore features of the compounds.

The success in prediction of these 7 compounds highlighted the advantage of 3D pharmaco-

phore modeling over the 2D chemical features.

It is also important to note that that true negatives appeared with primarily low similarity

compounds. This is in agreement with the hypothesis that chemicals with similar features may

share similar targets. As such QSAR model could generally predict negatives with higher confi-

dence, which is especially valuable in safety profiling versus efficacy profiling. If molecules

with undesirable properties can be ruled out using virtual screening approaches, significant

resources can be saved where only “prescreened” molecules are advanced to more costly in

Fig 7. The performance of pharmacophore-based 3D QSAR modeling results in comparison to in vitro activities, when the similarities of the binary fingerprint

between the query compound and the training/test compounds are� 0.29 (A), between 0.22 to 0.29 (B), between 0.14 and 0.22 (C), and< 0.14 (D). In D, red dots

indicated that similarity ranges between 0.10 to 0.14; grey dots indicated that similarity was below 0.10.

https://doi.org/10.1371/journal.pone.0204378.g007
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vitro screens. Among the 27 compounds whose similarity are under 0.1 in comparison to

training/test compounds, 7 were true positives and 13 were true negatives. Among these low

similarity compounds, 3 and 4 are false negatives and false positives respectively, giving 11%

and 15% false negative and false positive rates. In safety, false positives could be later overruled

with negative results obtained from the follow up in vitro assays. However, false negatives are

more problematic. The 3 false negatives were MRS1191, FK453, and LUF5981. MRS1191 and

FK453 were weak antagonists, with pIC50 values of 5.0 and 5.8, respectively. LUF5981, despite

being a relatively potent antagonist with pIC50 values of 6.7, was reported to occupy the A2A

binding pocket in a different fashion [60,61]. Such ligand(s) with shifted binding position dis-

played the limitation of pharmacophore-based 3D QSAR model. Nonetheless, the false positive

and negative rates were still within a tolerable range even for the standard of in vitro assays.

Therefore, when deploying a pharmacophore model, although comparing chemical similar-

ity is important, one should not be discouraged from using the model simply because of low

similarity to training/test compounds, particularly due to the nature and emphasis of a safety

(pre)screening. The model would still be valuable when similarities are low, as demonstrated

from compounds that were least similar to training and test sets. More importantly, chemical

similarity helps guide the interpretation of predicted data. For the utilization of a virtual screen

in safety, positive prediction outcomes could be interpreted with confidence when similarity is

high (in our case, when similarity > 0.22). False positives and negatives should be expected as

they coincide with decreasing similarity (e.g., from 0.22 to 0.14). When similarity is very low

(e.g. < 0.1), negative predictions may be interpreted with confidence based on the principal

“chemical with similar structures may bind to similar targets”. The similarity cut-off values

should be established with carefully curated external set prior to the prospective utilization. In

our case, we used the subset of 75 A2A ligands. In vitro assay follow up is highly recommended

in the following 2 cases. One is when the similarity is low yet positives are predicted, the other

is when the similarity is high yet negatives are predicted.

In summary, we presented a study to evaluate the possibility of incorporating in silico
screening in the arena of safety. Instead of being carried out as a retrospective exercise, we

focused on prospective utilization in safety screening. Our study was designed with several dis-

tinct features, such as generating multiple models from various training and test sets, and utili-

zation of structurally different external set as well as a larger and more diverse set of

compounds from the real world. When integrating pharmacophore-based 3D QSAR in safety,

we recommend the following based on our analysis. First, large and diverse compound set

should be used to generate the model. Addition of extra compounds and data from publication

and public database will help enrich the diversity of training and test sets, hence increase the

prospects for future utilization of the model in broadened chemical space. Second, multiple

training and test sets should be generated, and accordingly multiple models (possibly contain-

ing different number of pharmacophore sites) should be evaluated. Third, thorough evaluation

using a structurally different external set with multiple models is important to evaluate the per-

formance against new chemotypes. The external set also helps establish the similarity cutoff

values for future prospective utilization of the model. Last, the interpretation of prediction out-

come should be viewed in combination with similarity analysis of query compound(s) and

training compounds, which will also help to prioritize the subsequent in vitro follow-ups. With

these steps this detailed case study demonstrated that an otherwise limited ligand-based QSAR

approach may be nicely integrated into the in vitro safety profiling, either as a pre-screen prior

to in vitro assays (for new chemotypes before they are even made) or to support detailed SAR

against liability targets. Neither is aimed at the discovery of new chemical series, rather, the

value of pharmacophore-based 3D QSAR model lies in helping to “design away” from liability

targets during Drug Development.
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