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Although the approach of contact network epidemiology has been increasing in popularity for studying transmission of infectious
diseases in human populations, it has generally been an underutilized approach for investigating disease outbreaks in wildlife
populations. In this paper we explore the differences between the type of data that can be collected on human and wildlife
populations, provide an update on recent advances that have been made in wildlife epidemiology by using a network approach,
and discuss why networks might have been underutilized and why networks could and should be used more in the future. We
conclude with ideas for future directions and a call for field biologists and network modelers to engage in more cross-disciplinary
collaboration.

1. Introduction

Conventional methods for studying infectious disease dyna-
mics include a repertoire of modeling techniques: tradi-
tional mean field (or Susceptible-Infected-Recovered (SIR)
compartmental), metapopulation, lattice-based, reaction-
diffusion, and network models [1]. Many of these modeling
approaches have been around for decades. The contact
network approach, originally developed for applications in
the field of statistical physics, has only recently gained in
popularity. In network terminology, individuals, or groups of
individuals, are defined as nodes, connections between those
nodes are edges, and the number of edges from one node to
another is the degree (Figure 1). In network epidemiology,
diseases spread from node to node following the edges. If
the transmission probability along edges is high enough, an
epidemic can occur. A very appealing property of networks is
their ability to easily depict the complexity of the real world.
In particular, the degree distribution captures heterogeneity
in transmission among hosts, allowing the disproportionate
role of highly connected individuals—superspreaders—to be
easily investigated [2, 3]. Networks also often include lists
of attributes to nodes or edges that describe between-edge

variation in disease transmission or between-host variation
in infectiveness or pathogen excretion patterns.

The network approach is not inherently different from
the other modeling tools. It is simply a more general
way of representing epidemiological systems. In fact, most
alternative models can be considered as particular cases of
network model. For example, modeling an epidemic using an
SIR compartmental model is equivalent to using a complete
network model in which all the nodes are connected to
each other (Figure 2(a)). A lattice-based model can also
be replaced by a network model in which nodes that are
neighbors on the lattice are connected to each other and all
nodes have same degree.

Because it offers more flexibility, the network approach
can be used to answer new questions and to improve disease
control. Since all individuals and all potential transmission
paths are represented in the network, it becomes possible
to identify individuals or edges that play a key role for
disease transmission. Epidemiologists can then propose
measures to alter the network in order to prevent or stop
disease percolation. For example, vaccinating super-sprea-
ding individuals changes the degree distribution, which may
be a more efficient way to achieve herd immunity than
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Figure 1: An example of a wildlife network: the Serengeti lion network [4]. In the within-pride network, the nodes (circles) are individuals
and edges (lines between circles) are contacts observed on a short time scale (this is a cartoon, not based on data). The between-pride
network is derived from behavioral observations of individually known lions as in [4] where nodes represent prides, and edges represent
contacts between prides. The histogram represents the degree distribution of the between-pride network.

random vaccination. For these reasons, network techniques
have been increasingly used for the study of human diseases
[2, 7, 8]. To obtain parameters for these contact network
models, populations of humans can rather easily self-report
contact data quickly and efficiently through contact tracing
or contact diaries [9]; there are also clever ways of using
proxies for human disease incidence, such as mining the
number of flu-related internet queries [10] or using mobile
phone locations as a proxy for human movement or contact-
tracing studies [11].

Despite the advantages over traditional disease models,
networks are still underused for the study of diseases in
wild animal populations. In this paper we describe the
state of the art for wildlife network modeling, discuss
reasons why network models are an underused tool in
wildlife epidemiology, and suggest how contact network
epidemiology could become more widespread for biologists.
For clarity, we restrict our discussion to microparasites
with simple life cycles and focus on between-host disease
dynamics.

2. Current Use of Network Models in
Wildlife Epidemiology

This section provides an overview of the current state of
wildlife network epidemiology. We first present the main

reasons why network models are particularly suited to
wildlife epidemiology. We then expose a critical particularity
of wildlife epidemiology: the type of data that are collected.
Finally, we present recent advances made in the field.

2.1. Why Might Network Models Be Preferred to Tradi-
tional Modeling Techniques? Traditional compartmental or
metapopulation epidemiological models assume that indi-
viduals constituting an epidemiological system can be pooled
in a small number of functional groups within which
the disease incidence rate is simply proportional to the
number of susceptible and infectious individuals. These
models are often qualified as “mass-action models”. Within
these functional groups, all the individuals are therefore
assumed to be epidemiologically identical. The originality of
network models resides in their ability to take into account
interindividual or intergroup (i.e., internode) variations
in epidemiological properties (e.g., degree, infectiveness,
recovery rate). With this high resolution, the role played
by each individual in the network can be assessed. Since
network models capture more heterogeneity among nodes
than traditional models, fitted network models can be used
to predict the impact of interventions targeting individuals
that are critical for disease percolation.

Network models therefore constitute powerful tools to
analyze highly heterogeneous epidemiological systems. For
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Figure 2: Three examples of contact networks with identical number of nodes (with 100 nodes) and connectedness (where the mean number
of effective contacts per node = 4), but different degree distributions. (a) Fully-connected network. Each node has a degree of 99, but a weight
of 4/99 = .0404 is applied to each edge to keep the average connectedness of each node equal to four. Diseases spread through this network
in an equivalent way as in a mass action model. For clarity, only 25 nodes out of 100 are represented here. (b) Random network with Poisson
degree distribution and mean degree = 4, generated following the Erdos and Renyi model [5]. (c) Scale-free network generated using Barbasi-
Albert’s preferential attachment algorithm [6], with mean degree = 4 and a power law degree distribution. The network is created by starting
with one node and no edges. At each time step, a node is added and connected to two other vertices chosen in proportion to their current
degree. This network is characterized by a few highly connected nodes, which may act as superspreaders during epidemics. (d) Stochastic
SIR simulations of disease dynamics through the three networks (120 runs per network type). Squares, circles and triangles correspond to
networks (a), (b), and (c), respectively. The final epidemic size (attack rate) is represented in relation to the intergroup transmission β. The
recovery rate is fixed at 0.1. Note that even when the mean connectivity is kept constant, disease impacts vary with network structure.

example, when the degree distribution is strongly right-
skewed, the small number of individuals with the highest
degree values tend to be infected very early during the
epidemic, and subsequently redistribute the disease to a large
number of individuals. These “hub” individuals are then
responsible for very high incidence rates at the beginning

of the epidemic, which traditional models are unable to
predict (see Figure 2). If a mass-action model is used to fit
prevalence data collected during this epidemic, the associated
goodness-of-fit will be poor, and the estimates of epidemio-
logical parameters will be biased. As explained below, wild
animal populations are typical examples of heterogeneous
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systems and therefore greatly benefit from the network
approach.

2.2. How Is Wildlife Data Different from Human Data? From
the epidemiological point of view, wildlife systems differ
in four important respects from human systems: (i) the
underlying structure of the population, (ii) the tools available
to collect data on the network structure, (iii) available
epidemiological data, and (iv) potential control options.

First, wild animal populations are often highly struc-
tured. Numerous species live in groups, which generally
interact nonrandomly. And within a given area, several
species susceptible to the same disease can also interact.
In such a complex system, the global contact network is
modular. It can be decomposed into elements corresponding
to the different observation scales: within-group networks
(level n = 1), between-group networks (n = 2), and
sometimes higher order level networks like between-species
network (n = 3). Level-n networks (with n ≥ 2) can
then be considered as metanetworks, that is, networks of
networks, with the networks of the level n-1 constituting
the nodes of the level n (Figure 1). Wildlife epidemiologists
need to estimate basic structural parameters of their study
population in order to know how these different networks
are combined together. Basically they need to answer the
following questions: do the animals live in groups? If so, what
is the group size distribution? How do individuals interact
within a group? How do groups interact? Does the disease of
interest likely involve several species in the study area? Are
there other potentially relevant hierarchical levels, such as
subgroups (groups inside groups) or subpopulations (groups
of groups)?

Second, wildlife biologists face multiple challenges when
collecting contact data [12–14]. Behavioral observations of
animals rarely allow inferring exact, full contact networks,
as it is basically impossible to watch all individuals of a
population at the same time. The use of indirect measures
(through technology) can help this problem, although the
number of individuals that can be simultaneously monitored
is often limited due to logistical difficulties or the high costs
of technology (but see [15] which might have recorded a
full network of a study lizard population). More commonly,
a representative subset of the study population is generally
chosen and then either directly observed using standard
behavioral sampling methods or indirectly monitored using
biologgers, radio telemetry, mark-recapture, or other meth-
ods (for a discussion of methods see Table 1). When choosing
a technique to inform a contact model, it is important to take
into account whether the species is habituated or not, captive
or wild, the local environment of the population (e.g., heavily
forested or underwater), the size of the animal, the resolution
of the data needed to create a contact network specific to that
animal’s behavior, the budget, and the sample size needed. It
is important not to change the animal’s behavior using these
techniques, for example through observer presence of timid
animals, or heavy tags limiting movement.

There are a few specific challenges in constructing contact
networks from empirical data. (i) Contact networks are
normally derived from healthy individuals, and an animal’s

behavior, and hence the topography of the contact network,
might change upon infection. Often it is unknown whether
infection would alter the network structure by causing more
contacts (e.g., “furious” rabies) or fewer contacts (“dumb”
rabies). In this case, a sensitivity analysis could be used to
hedge against any changes in contact rates due to infection.
(ii) It is quite difficult to define a “contact”; clearly the
definition of a contact will depend on the transmission of the
pathogen of interest. Is the pathogen sexually transmitted?
Aerosol borne? Does it persist in the environment? What
is an effective contact? (of course, a contact does not
necessarily mean a transmission event.) The best way to get
answers to these questions is to do controlled transmission
experiments, but this can be ethically challenging, especially
for wild animals of conservation concern. (iii) Once a
definition of “contact” is created, and a technique chosen
to capture these contacts, it is then difficult to measure
other types of social interactions for which you are not
monitoring. (iv) Despite the recent technological advances
allowing the collection of biologically relevant contact data
for the majority of a population, how to sample a network
is still a problem. For example, technological failures can
lead to incomplete networks even if the whole population
was successfully tagged, and there are often edge effects with
other populations [24]. (v) The type of method used to
collect the contact data can influence the properties of the
network, hence the infectious period of the disease must be
taken into account when choosing a method [27]. Because
another behavioral variable is normally being used as a proxy
for contact (i.e., proximity data), the raw data collected
from these indirect measures does not immediately yield a
contact network. But, after adequate processing, it becomes
possible to reconstruct contact networks that will not exactly
match the actual full network, but will rather have the same
statistical, and hence epidemiological, properties.

Wild animal contact networks also often, if not always,
exhibit temporal variation, creating a dynamic network. For
example, individuals or groups can migrate to a different
area (e.g., reindeer [40], wildebeest [41], birds [42], monarch
butterflies [43]), individuals can transfer to a different group
(e.g., [44]), and animal societies can fission-fusion (e.g.,
hyenas [45], chimpanzees [46], bottlenose dolphins [47],
elephants [48], lions [49], and guppies [50]). In addition,
contact networks can change over long time scales due to
demographic processes such as births and deaths. Theoretical
studies have shown that the spread of infectious diseases
in dynamic networks differs from static networks [51].
Significant changes in contact patterns during the course
of an epidemic need to be accounted for, and this data
describing contact network dynamics can be obtained using
direct observation or technology as listed above and in
Table 1.

Third, epidemiological parameters can also be challeng-
ing to collect [52]. Incidence can be recorded through passive
surveillance operations or direct observation for only the
few diseases where wild animals exhibit overt clinical signs
(e.g., rabies [53]). However, the majority of wild animals
do not show visual signs of disease and most wild animals
simply disappear when they die. In the field it is often
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Table 1: Direct and indirect techiques that could be used to collect contact network data on wildlife populations and selected examples using
these techniques.

Technique
Useful for which type of
species?

Comments
Selected

references

Direct

Behavioral observations of
known individuals

Diurnal habituated animals
that can be easily observed
(not cryptic species)

Potentially a “gold standard” for
contact networks (multiple types of
social interactions can be recorded);
labor intensive

[16–19]

Viewpoint scanning

Visible animals active
during the day; open
habitat (not cryptic
species)

Allows between-species
observations at replicable sites;
labor intensive yet incomplete
observations

[20]

Indirect

Biologging
Easily captured and
handled individuals

Population needs to be saturated
with detectors; excellent resolution
of proximity data although
proximity does not mean contact;
continuous time record; cannot
distinguish between types of close
contacts (e.g., fighting versus
mating)

[21]

Biologging:
animal-borne
acoustic proximity
receiver

Marine mammals
Need to handle animal to retrieve
device; good between-animal
resolution

[22]

Biologging: PIT (Passive
Integrated Transponder)
tags

Useful for small mammals

Good data on duration of
presence/absence of marked
individuals at specific places (e.g.,
supplemented foraging sites)
equipped with PIT loggers;
approximation of contacts

[23]

Biologging: proximity
data loggers/collars

Medium to large animals
measure frequency and duration of
contact; complete temporal data;
need to recover loggers

[24–26]

Capture-mark-recapture
Easily captured and
handled individuals

A contact is defined as occupying
same area during same period of
time; good for capturing
movement/dispersal data, not good
at capturing within-group contacts

[27–31]

Direct manipulation
Captive populations of
common animals

Great for repeatable experiments on
experimentally infected individuals
to measure transmission, but does
this reflect contact patterns in wild?

[32, 33]

GPS recorders
Easily captured and
handled medium to large
individuals

Need recorders on all individuals in
select area; if recorders are synced
well, excellect contact data for the
time the GPS takes point (with
spotty coverage in between). Maybe
local avoidance happens but would
be undetected?

[15]

Powder marking
Easily trapped and handled
individuals

Gives good contact data if contacts
involve direct phyical contact; can
only monitor a few indivuals at a
time due to contstraints on the
number of powder colors

[23]
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Table 1: Continued.

Technique
Useful for which type of
species?

Comments
Selected

references

Radio telemetry
Handled individuals, not
good for very small
individuals

Contact defined as occupying same
area during same period of time.
Good indicator of (i) scale of
interaction but gives coarse
resolution of a “contact”, (ii) mixing
between groups of animals, but not
within groups and (iii) den-sharing
contacts. Presence of fieldworkers
may alter behavior.

[27, 34–36]

Trapping and bait
marking

Easily trapped and handled
individuals who use
latrines to mark territories

Good data on home range overlap
and intergroup movement rates

[37]

Video tracking from
animal’s perspective

Animal must be able to be
caught and wear something
like a video backpack

Great contact data from individual
perspective

[38]

Video trapping from
fixed perspective
(automated)

Social insects that can be
individually tagged and the
group monitored

Great resolution of contact data;
software records duration and
frequency of contacts

[39]

difficult to detect carcasses, and more worrying, even detect
any sort of die-off (e.g., [54]). As another example, out of
over 1000 lions suspected to die in a fatal canine distemper
virus outbreak in the Serengeti in 1994, only 11 carcasses
were recovered from a highly-monitored population [55].
Prevalence data can be collected through active surveil-
lance methods such as serological surveys. Blood can be
screened directly for pathogens or indirectly for antibodies
to pathogens to provide insight on disease dynamics [56].
Longitudinal surveys are generally the preferred type of
serological survey; cross-sectional serological surveys can
be misleading because antibodies persist long after the end
of the infection [57]. Collecting blood samples is only
possible if the study animals can be trapped or darted.
It is generally expensive, time-consuming, and potentially
risky to the animal. However, in recent years, noninvasive
disease screening methods have been developed, such as
immunoglobulin dosage in urine and feces (e.g., SIV in
chimps [58]) or parasite genotyping in feces (e.g., malaria
in great apes [59]).

In contrast to human diseases, multiple hosts are often
involved in wildlife diseases. Human outbreaks often involve
animals, but generally only at the very beginning; whereas
in wildlife, multiple species are often involved during the
entire course of the outbreak. This increases the complexity
of building a multihost network, and often it is challenging to
have accurate assessments of contact networks from multiple
hosts, forcing a fall-back strategy on mean field models [60].

Finally, despite constraints to inferring the structure of
the contact network and collecting disease data, network
models allow us to easily evaluate a wide range of disease
control interventions in wildlife populations. In humans,
because there are numerous ways to modify human net-
works, such as school closure, travel warnings, and airport
closure in certain cases, public health actions often focus on

improving epidemiological surveillance and implementing
subsequent vaccination campaigns. In wildlife epidemiology,
altering networks is also possible, but in very different ways
[61]. For example, oral vaccination baits can occasionally be
used with success [62]. Parenteral vaccination can be used
for small wild animal populations [63], but is logistically
challenging and sometimes considered too invasive. Wildlife
contact networks can also be modified by reducing contacts
between domestic animals, humans, and wildlife to avoid
the spillover to wildlife in the first place—this is a type of
quarantine [64–66]. Population density can also be reduced
through culling or decreasing birth rates [34, 67]. An
important benefit of the network approach is the ability
to identify central individuals likely responsible for most
transmission events. When those individuals are targeted for
intervention purposes, this reduces the number of wildlife
needing to be culled or vaccinated, for example.

2.3. Recent Progress in Wildlife Network Epidemiology. In the
past 5–10 years, wildlife biologists have made solid progress
in characterizing contact networks in wildlife populations.
Through the use of these contact networks we have been able
to address novel questions relating to wildlife and their dis-
eases. For example, superspreading animals have been found
in some populations (e.g., deer mice and possums [23, 28]),
while they are not obvious in other systems (e.g., Tasmanian
devil and African lion populations [4, 24]). The Tasmanian
devil network was found to be one giant component,
meaning that the whole endangered population is threatened
by a novel infectious cancer [24]. Well-connected individuals
were more likely to be infected in some wildlife populations
(brushtail possums, sleepy lizards, skinks, and bumble-bees
[15, 29, 32, 39]) but not in others (meerkats [16]). In a
study of possums, density was found to be uncorrelated
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with contact rates [25]. In contrast, abundance thresholds
above which disease can spread (percolation thresholds) have
been identified in gerbils with plague [68] and in multihost
plague systems of mice and prairie dogs [69]. With networks,
researchers were able to distinguish spatial patterns of disease
spillover from epidemic waves [17]. Temporal changes in
contact patterns were also identified as critical for the spread
of respiratory diseases in wild chimpanzees [70]. Issues of
different spatial scales have been tackled with networks,
specifically the relative importance of local versus long
range transmission events in driving disease spread [68].
Finally, multilevel network models have been developed and
successfully applied to tuberculosis transmission between
badgers groups and cows [26]. For a more extensive list of
insights we refer to Table 1 of a recent review [71].

3. Despite These Advances, Why Are Network
Models Underused in Wildlife Epidemiology?

The network approach might need a public relations cam-
paign in the literature. Networks have been used in other
fields like statistical physics for decades, yet have only in the
past 10 years really taken off with the human epidemiology
literature, and are now at the cutting edge of wildlife
epidemiology. Contact networks models are likely not well-
known in the wildlife community. The number of studies
using this approach is still relatively limited, but of those
studies combining networks and wildlife, they often get
published in high profile journals—potentially indicating
that wildlife network epidemiology is still in its infancy.

Second, the network literature, especially in the physics
literature, is quite hard to grasp and at first sight, may seem
complicated for the field biologist. The analytical treatment
of network epidemiological models is however only slightly
more difficult than solving systems of differential equations
of mass action models. A few articles are notable for present-
ing the mathematics of network models in an accessible way
for biologists [72–74]. However, finding analytical solutions
is not always necessary. Agent-based stochastic simulations
can be good alternatives and are relatively easy to implement.
They are particularly interesting to model complex systems
that have a lot of parameters and hence cannot be described
by closed form equations. Unfortunately there is limited
network software with easy-to-use graphical user interfaces
implementing these methods, and often people program
their own network simulation models (Table 2). Coding
using basic programming languages (e.g., R, Python or
NetLogo) is often a disparate skill set from a field biologist
who successfully collects contact and epidemiological data on
wild populations.

Third, networks are indeed data intensive, and wildlife
systems are unfortunately often data limited. Individual-
level data can be expensive and time-consuming to collect
[71]. For example, in constructing a contact network for a
population of Serengeti lions, only 36 pride-to-pride contacts
were observed per 1294 hours of daylight observation over a
3 year time period [4]. In addition, wild animals cannot be
continuously observed, and dealing with gaps and missing
data is often challenging (see Section 4).

Finally, contact networks are inferred from contact data
collected for a specific species, for a specific ecosystem, and
for a specific period of time. Therefore it can be difficult to
generalize epidemiological results obtained with a network
model to other circumstances (e.g., [4]).

4. What Can Be Done to Dispel
Doubts about Networks?

Network approaches need to become better known and more
accessible. Wildlife epidemiologists should be encouraged to
promote their network approach at meetings and in journals
that have not normally embraced a network approach.
More training sessions such as SISMID (University of
Washington) or INSNA’s workshops at Sunbelt would be
useful. A formal comparison between network and mean-
field models would also help spread the word. Currently,
there are few papers comparing the performance of mean-
field and network models. Although scientists might have
tried multiple modeling approaches during the course of the
study, normally only one approach is published. Mass action
models normally work “well enough,” but we are unaware
of any formal quantitative comparison of the pros and cons
of using mean-field versus network models for a range of
empirical and theoretical systems.

It is likely that network models are only going to get more
complex: they will include more parameters and variables.
“Complexity” is an intrinsic, objective property of a model.
It is not necessarily synonymous with “complicated”—a sub-
jective judgment of the difficulty of the modeling task. For
example, it is important to note that stochastic agent-based
modeling handles very complex models but is generally not
complicated. In the last few years, biologists have increasingly
used these types of models to investigate respective effects
of different variables on biological phenomenon. Several
software and user-friendly computer languages are partic-
ularly suited to develop network epidemiological agent-
based models (Table 2). It has even become possible to
fit such models to field data. The recent developments in
approximate Bayesian computation (ABC), a set of methods
initially developed by population geneticists, greatly facilitate
agent-based model fitting [84–86]. We would like to attract
the attention of epidemiologist to these methods, which we
believe will be used extensively in the future.

Technology is helping to bridge the gap between data-
intensive network models, and the challenges inherent in
collecting contact data. There has been a burst of new
technology such as satellite GPS radio telemetry, proximity
data loggers, camera and video traps, tracking, proximity
data radio collars, powder marking, PIT tags, and anten-
nae, and capture-mark-recapture (Table 1). These methods
almost always collect data at discrete time intervals. Ignoring
the gaps inherent to these datasets can lead to biased
estimates of contact network or epidemiological parameters.
For example, if an animal is observed susceptible at time t
and reobserved infected 10 days later, should we assume that
it became infected on the first day, on the last day, or maybe
after five days? The answer is that none of these assumptions
is necessary. At least three statistical methods can be used to
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deal with this uncertainty. First, survival analyses, that were
initially developed to estimate survival rates using date-of-
last-observation data can also be applied, for example, to esti-
mate rates of seroconversion. One simply has to assume that
seroconversion is equivalent to death [87]. Second, multistate
capture-mark-recapture (CMR) models have proven very
useful to estimate animal migration rates, survival rates, and
rates of change of individual state (for example, states S, I or
R). Although user-friendly software exists to fit CMR models
(Table 2), these models could be more broadly used in
wildlife epidemiology, both to estimate network parameters
and epidemiological parameters. Third, agent-based models,
coupled with ABC fitting procedure, can easily circumvent
the problem of missing data [84–86]. Our purpose here is
to attract the attention of epidemiologists to these methods
rather than to describe them in detail, so we encourage
interested readers to consult the references cited.

An exciting and useful push for future directions would
be to develop theoretical advances for network models
that allow us to develop “universal principles”. As stated
above, current network models are generally inferred from
contact data. But one generally does not know what rules
govern the establishment of contact patterns. Understanding
these rules, in particular how ecological variables such as
food resource distribution, distribution of conspecifics, and
climate influence contact patterns, would allow identifying
universal principles governing networks’ structure. It would
then become possible to extrapolate these mechanistic
models to other populations, areas, or time periods.

Network epidemiological modeling is by essence inter-
disciplinary. This is even more pertinent to wildlife network
epidemiology, because new fields such as behavioral ecology,
capture-mark-recapture, and advanced statistics are com-
bined. Collaborative work is an efficient way to do network
modeling. Field biologists know their system, and know how
to collect data, while theoreticians can work on the hardcore
modeling aspects. We would like to promote better collabo-
ration between modelers and field biologists. Modelers may
need to be seen as more approachable by field biologists.
Importantly, we believe collaborations should take place at
all stages of epidemiological studies, from the design of the
data collection protocol to the end of the modeling stage.

5. Conclusion

Network models have promising applications in the field of
wildlife epidemiology. Although using this approach requires
some substantial training, the learning curve is not as steep
as it seems, and several software and interpreted computer
languages have been developed that will make this step
easier. In any case, we strongly believe that the benefits
far outweigh these costs. The number of applications of
network models in wildlife epidemiology is already broad,
and will keep increasing. New application domains beg to
be explored. For example, network models are well-suited
to combine network and genetic data, potentially for viral
diseases such as feline immunodeficiency virus and simian
immunodeficiency virus. Contact network epidemiology
using directed networks (where there is stronger transmis-

sion in one direction) has been applied to animals using
the same resting spots for indirectly transmitted pathogens
[15, 29], and could be expanded to fresh water organisms
because river networks are easy to map, have a good spatial
component, and pathogens might travel downstream.

We feel that developing collaboration between field
biologists and network modelers will be a key factor bringing
advances to wildlife epidemiology. We need to become more
multidisciplinary and cross disciplinary [14, 88].
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