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Postnatal spermatogonial stem cells (SSCs) progress through proliferative and developmental stages to populate the
testicular niche prior to productive spermatogenesis. To better understand, we conducted extensive genomic pro-
filing at multiple postnatal stages on subpopulations enriched for particular markers (THY1, KIT, OCT4, ID4, or
GFRa1). Overall, our profiles suggest three broad populations of spermatogonia in juveniles: (1) epithelial-like
spermatogonia (THY1+; highOCT4, ID4, andGFRa1), (2) more abundantmesenchymal-like spermatogonia (THY1+;
moderate OCT4 and ID4; high mesenchymal markers), and (3) (in older juveniles) abundant spermatogonia com-
mitting to gametogenesis (high KIT+). Epithelial-like spermatogonia displayed the expected imprinting patterns,
but, surprisingly, mesenchymal-like spermatogonia lacked imprinting specifically at paternally imprinted loci but
fully restored imprinting prior to puberty. Furthermore, mesenchymal-like spermatogonia also displayed develop-
mentally linked DNA demethylation at meiotic genes and also at certain monoallelic neural genes (e.g., protocad-
herins and olfactory receptors). We also reveal novel candidate receptor–ligand networks involving SSCs and the
developing niche. Taken together, neonates/juveniles contain heterogeneous epithelial-like or mesenchymal-like
spermatogonial populations, with the latter displaying extensive DNA methylation/chromatin dynamics. We
speculate that this plasticity helps SSCs proliferate and migrate within the developing seminiferous tubule, with
proper niche interaction andmembrane attachment revertingmesenchymal-like spermatogonial subtype cells back
to an epithelial-like state with normal imprinting profiles.
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The pool of spermatogonial stem cells (SSCs), which en-
sures male fertility throughout adult life, is established
early after birth byprospermatogonia (gonocytes). Thepre-
cursors of prospermatogonia, the primordial germ cells

(PGCs), originate at 5.5 d post-coitum (dpc) in mice
(Ohinata et al. 2009). During their migration toward
the gonads, PGCs undergo a global DNA demethylation
(which includes complete erasure of parental imprints)
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(Seki et al. 2005; Dawlaty et al. 2011; Hackett et al. 2012,
2013; Seisenberger et al. 2012) by both active and passive
mechanisms (Seki et al. 2005; Dawlaty et al. 2011; Hack-
ett et al. 2012, 2013; Seisenberger et al. 2012; Ohno et al.
2013). Subsequently (between embryonic day 13.5 [E13.5]
and E16.5), DNA methylation (DNAme) is gradually re-
stored, and both maternal- and paternal-specific imprints
are thought to be fully established by birth in the male
prospermatogonia.
At birth, these prospermatogonia are mitotically arrest-

ed but start cycling at postnatal days 1–2 (P1–P2) (Culty
2009). During the subsequentweek (P3–P10), cycling sper-
matogonia proliferate and populate the seminiferous tu-
bule; here, a portion gives rise to the self-renewing SSCs,
and the remainder proceeds to differentiation (becoming
highly KIT+) without self renewal, originating the first
wave of spermatogenesis (Kluin and de Rooij 1981; Yosh-
ida et al. 2006), or instead commits apoptosis. This phase
of germ cell development is therefore crucial to initiate
and maintain male fertility throughout adult life.
Following puberty, adult SSCs either self-renew (form-

ing two single unpaired cells [As]) or divide into paired
cells (Apr) connected by an intracellular cytoplasmic
bridge. This is the first step toward differentiation, which
culminates in the production of mature sperm (Hess and
Renato de Franca 2008). These sequential transitions co-
incide with global changes in the epigenome (Khalil
et al. 2004; Delaval et al. 2007; Oakes et al. 2007; Turner
2007; Soumillon et al. 2013; Hammoud et al. 2014), which
simultaneously reflect the cellular developmental path,
its current transcriptional program, and its future com-
mitment to differentiate.
We provide here an in-depth epigenomic and tran-

scriptomic analysis of male germline development that
suggests three broad SSC populations in juveniles: epithe-
lial-like cells, mesenchymal-like cells, and cells commit-
ting to gametogenesis, which were defined by different
signatures related to known SSC markers, cell adhesion/
migration markers, and SSC differentiation markers. We
also reveal novel candidate receptor–ligand networks in-
volving SSCs and the niche. Curiously, we reveal novel
andunexpectedDNAme/imprintingdynamics in themes-
enchymal-like population. Together, this study and data
sets provide foundational new information about sperma-
togonial cell development.

Results

Genomic profiling of developing SSCs

THY1 and KIT are useful markers for distinguishing self-
renewing/transplantable SSCs (THY1+-enriched) from
nontransplantable cells committing to gametogenesis/
meiosis (KIT+-enriched) (Kubota et al. 2004; Oatley et al.
2009;Hammoudet al. 2014).Althoughproportions change
during postnatal development, a combination of immu-
nostaining and FACS analyses (at P7, for example) reveals
that most postnatal cells are KIT+ (∼50%–60%), a some-
what smaller proportion is THY1+ (30%–40%), and
∼10%–20% of cells appear both KIT+ and THY1+ (data

not shown). To examine THY1+- or KIT+-enriched cells,
we initially implemented antibody-based magnetic cell
sorting (MACS) from the testes of newborn (P0; THY1+-
only) or juvenile (P7, P12, and P14; THY1+, KIT+, or com-
bined GFRa1+ and THY1+) mice (Fig. 1A; Supplemental
Fig. 1A). THY1+ selections provide a population enriched
for cells yielding successful transplantation or culturing.
Here, our MACS procedure provided a population that
was ∼86% positive for PLZF (Supplemental Fig. 1C) but
still heterogeneous forotherSSCmarkers, promptingaddi-
tional isolations of less abundant subpopulations such as
those with high OCT4, GFRa1, or ID4, as they may be
more stem-like (Chan et al. 2014). These isolations in-
volved fluorescence-activated cell sorting (FACS) and iso-
lation of high-GFP+ cells from newborn (P0) transgenic
animals (Oct4-GFP) (Yoshimizu et al. 1999) and P7 trans-
genic animals (Oct4-GFP and Id4-GFP). Here, we note
that GFP+ cells from Oct4-GFP transgenics represent
only a subset of the total OCT4+ cells (by immunohisto-
chemistry) in postnatal SSCs, typically with the highest
OCT4 (Supplemental Fig. 1B). We also isolated the high-
VASA (high-GFP+) spermatogonia atP0andP7.Wetypical-
ly isolated two biological replicates of each sample type,
which were processed separately. We note that although
MACS and FACS highly enrich, they do not fully purify
cell populations; however, we chose stringent parameters
to gate FACS populations, isolating only cells with rela-
tively high levels of GFP (see the Materials and Methods).
Transcriptional profiling involved strand-specific RNA

sequencing (RNA-seq) of total RNA from biological
replicates, whereas DNAme analyses involved whole-
genome bisulfite sequencing (WGBS) using 101-base-pair
(bp) paired-end reads and, typically, >20× genome coverage
(for statistics and replicates, see Supplemental Table 1).
To enable comparisons, we reprocessed published data
from embryonic stem cells (ESCs) and PGCs (Stadler
et al. 2011; Seisenberger et al. 2012). We also compared
with our prior data sets of “AGSCs,” which are referred
to here as “adult SSCs” to better align with the field no-
menclature. Our profiling of 5hmC and histone modifica-
tions in germ cells used standard methods and were
compared with existing ESC and/or PGC data sets (Mik-
kelsen et al. 2007; Ng et al. 2013).

Overall comparisons of postnatal spermatogonia

To compare overall profiles, we employed multidimen-
sional scaling (MDS) (Fig. 1B) as well as pairwise compar-
isons (Fig. 1C). The MDS profiles reveal three groups:
PGCs, postnatal spermatogonia/SSCs, and adult SSCs.
The heterogeneous postnatal SSC stages form a relatively
broad region in the MDS plot, requiring further analyses
(correlation plots, clustering, and gene set analyses) to
define their similarities and differences. As KIT+ cells
showgreatly reduced transplantation,wefocusedourcom-
parisons on the highly transplantable SSC populations
(THY1+, ID4+, and OCT4+); KIT+ comparisons are provid-
ed in the Supplemental Figures and Data Sets, with only
the most notable features highlighted in the main text.
Our data sets can be compared in multiple ways, and we

Transcriptome/methylome profiling of spermatogonia

GENES & DEVELOPMENT 2313



PGC
Migration

Birth

ProSpermatogonia P7 - SSC P12/14 - SSC
Niche 

(Sertoli cells)

Puberty

Adult SSC & Prog.
Niche

(Sertoli and Leydig cells)
Transcriptomes

Methylomes
Chromatin

PGC
Specification

Chromatin

Seminiferous Tubule (ST)A

D

B C

THY1+ SSC

−1 0 1
Row Z−Score

P0 P7 P12 P14 Adult

spermatogenesis

sexual reproduction
defense response

hematopoietic cell lineage

cell adhesion
extracellular structure organization

intracellular signaling cascade
metabolic processes

cell cycle
DNA metabolic processes

PGC

P0 OCT4 GFP+

P0 THY1+

P7 OCT4+

P7 ID4+

P7 VASA THY1+

P7 THY1+
P7 KIT+

P12 THY1+

P12 KIT+

P14 THY1+P14 KIT+
Adult THY1+

Adult KIT+

−100

−50

0

50

0 100 200M1

M
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.88

0.82

0.89

0.89

0.88

0.85

0.87

0.85

0.86

0.84

0.88

0.6

0.66

0.89

0.98

0.97

0.96

0.93

0.94

0.92

0.93

0.9

0.93

0.66

0.7

0.88

0.86

0.89

0.93

0.93

0.93

0.9

0.86

0.87

0.63

0.7

0.98

0.97

0.94

0.95

0.93

0.95

0.91

0.94

0.67

0.71

0.96

0.92

0.94

0.91

0.94

0.9

0.94

0.65

0.69

0.94

0.96

0.95

0.96

0.91

0.96

0.67

0.72

0.97

0.97

0.96

0.88

0.92

0.69

0.75

0.96

0.97

0.91

0.96

0.67

0.74

0.97

0.9

0.92

0.7

0.75

0.91

0.96

0.7

0.75

0.94

0.76

0.8

0.69

0.76 0.93

P0 THY1+

P7 THY1+

P7 KIT+

P12 THY1+

P12 KIT+

P14 THY1+

P14 KIT+

Adult THY1+

Adult KIT+

P7 OCT4+

P7 ID4+

PGC

P0 OCT4 GFP+

P7 VASATHY1+

E Core Pluripotency

0

2

4

8

Klf4

Lefty1

Nanog

Pou5f1

Prdm14
Sox2

6

0

2

4

6

Bcl6b
Etv5

Gfra1

Id4

Sox3

Taf4b

Zbtb16

Germ cell factors

PGC P0 P7 P12 P14 AdultPGC P0 P7 P12 P14 Adult

Tgfb3
Tgfb2
Tgfb1
Tgfbr2
Smad3
Smad2
Bmpr2
Bmpr1a
Bmp7
Bmp6
Bmp4
Bmp2
Fgf1
Fgf2
Fgfr3
Fgfr2
Fgfr1
Lifr
Lif
Klf4
Stat3

Signaling factors for self renewal

LIF

FGF

BMP

TGFB

log2(FPKM+1)
2 4 6

P0 P7 P12 P14 Adult PGC 

F

lo
g2

(F
P

K
M

+1
)

G

Lhx1

P
0 

TH
Y

1+

P
7 

TH
Y

1+

P
7 

K
IT

+

P
12

 T
H

Y
1+

P
12

 K
IT

+

P
14

 T
H

Y
1+

P
14

 K
IT

+

A
du

lt 
TH

Y
1+

A
du

lt 
K

IT
+

P
7 

O
C

T4
+

P
7 

ID
4+

P
G

C

P
0 

O
C

T4
 G

FP
+

P
7 

VA
S

AT
H

Y
1+

Figure 1. Transcriptional changes accompanying SSC development. (A) Graphical summary of the biology of germline stem cell speci-
fication, transitions, and data sets generated in this study. (B) Multidimensional scaling (MDS) plot comparing transcriptional profiles of
PGCs, undifferentiated SSCs (THY1+, high-ID4,OCT4, or VASA), and differentiating SSCs (KIT+) fromall tested developmental stages. (C )
Pairwise RNA sequencing (RNA-seq) correlationmatrix plot of all data sets generated. The color intensity and the size of the circle reflect
the correlation between the data sets. (D) RNA-seq hierarchical clustering of developing THY1+-enriched SSCs, with enriched gene on-
tology terms at the right. Note that all cell purifications were performed usingMACS or FACS. (E,F ) Line plots depicting the dynamics of
genes involved in germline THY1+ SSC maintenance or self-renewal (E) or embryonic stem cell pluripotency (F ). The X-axis is the chro-
nological developmental time course, and theY-axis is log2 (FPKM [fragments per kilobase permillionmapped fragments] + 1). (G) Expres-
sion heat map summarizing signaling pathways involved in self-renewal or maintenance. Scale is log2 FPKM.
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first addressed changes in themajority population (THY1+)
over the postnatal developmental time course and noted
that high-ID4/OCT4 cells are also THY1+ (Fig. 1E) and
therefore are included within the THY1+ population.

Transcriptional dynamics of THY1+-enriched SSCs
during postnatal development

We first focused on genes with dynamic expression across
the THY1+-enriched spermatogonia data sets (P0–P14)
(Fig. 1D; Supplemental Fig. 2A) and performed gene ontol-
ogy (GO)/Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses (Supplemental Table 2). Categories pro-
minent at P0 include cell adhesion and morphogenesis
(consistent with gonad colonization) and the piRNA sys-
tem, which is active at this time (e.g., Piwil2 and Tdrd9)
(SupplementalTable 2). P7 cells emphasize cell cycle/divi-
sion, histone synthesis, RNA splicing, and translation,
consistent with their proliferation and expansion within
the seminiferous tubule. P12 cells experience changes in
metabolic programs and signaling pathways. Thus, GO/
KEGG analysis reflects the expected developmental tran-
sitions of postnatal SSCs, which are explored in pathway-
and gene-specific detail below.

Developmentally regulated changes
in transcription factors

We then examined developmental transcription dynam-
ics in THY1+-enriched cells, choosing factors linked to
processes of known function (or interest) in developing
SSCs, and hereafter use the following FPKM (fragments
per kilobase per million mapped fragments) scale: silent/
low, <1; moderate, 2–5; high, 5–25; and very high, >25.
We first examined whether factors important for PGC
specification (e.g., Blimp1/Prdm1, AP2g/Tcfap2c, Wnt3,
T, and Prdm14) remain present in SSCs. Interestingly,
we observed silencing of these markers between P0 and
P14 (Supplemental Fig. 2B), suggesting their lack of in-
volvement in maintaining a germline stem cell state.
For transcription factors of known importance in SSC de-
velopment, we foundZbtb16/Plzf and Bcl6b low/silent in
PGCs but highly activated from P0 to P14 (Fig. 1E), Lxh1
high from PGCs to P7 but silent by P12, Sox3 low to mod-
erate in PGCs and at P0 but high or very high in SSCs, and
Etv5 high or very high at all stages but noticeably lower in
KIT+ cells.
Regarding pluripotency, certain key genes are expressed

in early PGCs (e.g., Pou5f1/Oct4, Klf4, Nanog, Sox2,
Lefty, and Prdm14), but a subset (e.g., Sox2 and Nanog)
decline later in PGC development (Seisenberger et al.
2012; Lesch et al. 2013; Sachs et al. 2013). Accordingly,
we found Nanog, Lefty, and Prdm14 silent at P0 and
Sox2 silenced by P7 (Fig. 1F) Thus, SSCs lack many core
pluripotency factors but express alternative adult stem
cell factors, including noncoding RNAs (e.g., Lin28a)
linked to pluripotency in postnatal SSCs (Supplemental
Fig. 2C), prompting further study. Although HOX family
genes are generally silent in SSCs, we found Hoxd8 and
the HOX-related Rhox1, Rhox10, and Rhox13 genes ex-

pressed at low to moderate levels in SSCs, with Rhox13
peaking at P7 (Supplemental Fig. 2D). This aligns with re-
cent work showing that Rhox13 is needed for progression
from P3 to P7 (Song et al. 2012).
For proliferation, we found Myc and Mycn high in

postnatal SSC stages but low in THY1+ adult SSCs.
Also, Sox3 and Sox4 are silent in adult SSCs, whereas
Sox5 and Sox30 are active, suggesting a possible handoff.
Additional switches in transcription familymembers dur-
ing development were observed for the TBX (e.g., Tbx2)
and FOX (e.g., Foxj1) families, among others (Sup-
plemental Table 2). Chromatin remodeling factors are of-
ten needed for major developmental transitions, and the
germline also assembles and uses testis-specific histone
proteins and linker histones. Notably, SSCs pass through
developmental states that employ only the Brg1-contain-
ing BAF complex (neonate and adult) or only the Brm-
containing BAF complex (at P7) (Supplemental Fig. 2E).
Likewise for chromatin assembly factors, CAF1 complex
members (Chaf1a/b), the testis-specific histone chaper-
ones (Tspy1l/2), and other chromatin factors show clear
developmental specificity (Supplemental Fig. 2E). Finally,
we examined expression dynamics of the ZNF-KRAB
family of proteins, which bind and repress retrotranspo-
sons in the germline (Supplemental Fig. 2F; Supplemental
Table 2). We found the vastmajority of ZNF-KRAB family
genes expressed during this time course and cohorts with
higher expression in PGCs, neonates, P7, or P14/adult
(Supplemental Table 2); however, we did not observe clus-
tering/colocation of ZNF-KRAB genes expressed at simi-
lar time points. Finally, we found transcripts encoding
the adaptor/repressor protein TRIM28 (which interacts
with ZNF-KRAB proteins and repressive chromatin fac-
tors) extremely high throughout postnatal develop-
ment (FPKM ∼250), consistent with the high levels of
ZNF-KRAB partners.

Signaling pathways impacting SSC
self renewal and differentiation

We then examined signaling factors of known importance
in SSC biology and/or culturing. LIF enhances SSC cultur-
ing and promotes STAT3 and KLF4 activity in ESCs (Hall
et al. 2009). Accordingly, Stat3, Klf4, and LIF receptor
(Lifr) are expressed at high levels throughout postnatal
SSCs. Likewise, FGF2 is needed for SSC culturing (Ishii
et al. 2012), and most FGF receptors (e.g., Fgfr1 and
Fgfr3) are expressed in SSCs, but FGF2 is only expressed
at P0. Regarding BMP signaling, BMP2, BMP4, and
BMP6 are expressed at P0; reduced in prepubertal SSCs;
and absent in adult SSCs, whereas many BMP receptors
are expressed throughout SSC development (Fig. 1G).
Thus, the results for BMP and FGF suggest transitions
from autocrine to paracrine after P0.
Gfra1 is silent in PGCs but high in prepubertal SSCs

(Fig. 1E; Supplemental Fig. 2G), and its ligand (Gdnf) is
low (Supplemental Fig. 2G), consistent with known pro-
duction by Sertoli cells (Meng et al. 2000; Hofmann
et al. 2005). Curiously, both appeared low in THY1+ adult
SSCs; however, immunostaining and Western blot
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analysis suggest translational control, as GFRa1 protein
was still detected in Thy1+ SSCs (Supplemental Fig. 2H,
I). Notably,Gfra2 andGfra4 (which bind neurturin prefer-
ably to GDNF) were both high in THY1+ adult SSCs but
not in postnatal stages, suggesting utilization of addition-
al GFRA receptor subtypes in adult SSCs (Supplemental
Fig. 2G–I). For theWNT pathway, canonicalWNT ligands
were absent in SSCs, whereasWNT receptors (Fzd and Lrp
genes) and transducers were expressed in SSCs (Sup-
plemental Fig. 2G), suggesting a paracrine mechanism.
Notably, only neonates expressed noncanonical WNT re-
ceptors at moderate levels (e.g., Ror1/2), whereas all SSC
stages expressed high Ryk. For RAS signaling, we found
Hras, Rras, Rras2, and Nras all moderately to highly ex-
pressed in SSCs (Supplemental Fig. 2G).

Finally, regarding differences between THY1+ and KIT+

cells along this time course, we found THY1+ SSCs and
KIT+ spermatogonia quite similar at P7 (r = 0.97) (Fig. 1B,
C) but developing modest and increasing differences; by
P14 (r = 0.94) (Fig. 1B,C), this modest difference is domi-
nated by the activation of genes for meiosis and gameto-
genesis (Supplemental Table 2) and the lowering of
certain SSC stem-like genes (e.g., Zbtb16/Plzf, Etv5) in
KIT+-enriched cells, as these spermatogonia commit to
the first wave of spermatogenesis.

Features of SSC subpopulations at P7

As THY1+-enriched cells are heterogeneous, we sought to
better understand similarities and differences among the
subpopulations. First, correlation plots (Fig. 1C) and MDS
plots (Figs. 1B, 2A) show the high similarity between high-
ID4 and high-OCT4 cells at P7 (r = 0.98). Furthermore,
high-OCT4 cells at P0 highly resembled high-OCT4 cells
at P7 (r = 0.98), showing that high-OCT4 and high-ID4
cells differ only modestly in transcriptional profiles in
these stages. However, as high-OCT4 cells (high GFP)
are the minority at P0 and P7 (Supplemental Fig. 1B), we
compared them with the larger population (THY1+ and/
or VASA+), which revealed moderate differences (Fig.
2A), suggesting heterogeneity.

For comparison, we determined differentially expressed
genes (FPKM> 1, greater than twofold change between
any two cell types, yielding∼4000 genes), whichwere sub-
jected to clustering analyses. First, high-OCT4/ID4 cells
express higher levels of many of the known stem cell
markers for SSCs (e.g., Zbtb16/Plzf and Gfra1) compared
with the THY1+ population (Fig. 2B). High-OCT4/ID4
cells also express higher levels of factors involved in
DNA repair and chromatin (Fig. 2C, cluster 4). Interesting-
ly, the THY1+-enriched population showed only modest
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reductions in stem-related genes but instead appeared
more mesenchymal, with higher levels of many key mes-
enchymal markers (e.g., Zeb2 and Vimentin) (Fig. 2D),
lower levels of key epithelial markers (e.g., Cdh1), and
enrichment of GO categories such as cell adhesion, cell
migration, and vasculature (Fig. 2C, clusters 1 and 5), cat-
egories that coenrich for mesenchymal genes. Finally,
KIT+-enriched cells had lower levels of many SSC genes
compared with the THY1+-enriched subtype.

SSCs display DNA hypomethylation and
bivalency of developmental genes

Prior work revealed bivalent loci with underlying DNA
hypomethylation at somatic developmental genes (and es-
pecially developmental transcription factors) in sperm
and adult SSCs (Hammoud et al. 2014). To examine loci
in postnatal SSCs, we performed chromatin immuno-
precipitation (ChIP) experiments profiling the locations
of H3K4me3 (typically correlated with activation) and
H3K27me3 (typically correlated with silencing) in P7
THY1+-enriched SSCs. Here, we observed bivalent chro-
matin (coincident H3K4me3 and H3K27me3) and DNA
hypomethylation at the promoters of many genes impor-
tant for embryo development, including Hox, Sox, Fox,
Tbx, andGata family transcription factors ( e.g.,HoxA lo-
cus) (Supplemental Fig. 3A,B), but not housekeeping
genes. These properties are sharedwith PGCs, ESCs, adult
SSCs, and sperm (Seisenberger et al. 2012; Lesch et al.
2013; Sachs et al. 2013; Hammoud et al. 2014), reinforcing
the emerging notion that this bivalent/DNA hypomethy-
lation status of developmental genes might be generally
present throughout the entire germline cycle. We note
that genes shown to be bivalent in THY1+-enriched
SSCs were likewise silent in high-OCT4/ID4 cells but
were not directly tested for bivalency here. Finally, this bi-
valent/DNA hypomethylated state was also observed at
P7 at the promoters or enhancers of the silent/poised
Nanog, Sox2, Lefty, and Prdm14 genes, as noted previous-
ly in adult SSCs (Hammoud et al. 2014).

DNAme reprogramming in THY1-enriched SSCs
of genes for gametogenesis, olfactory receptors,
and protocadherins (PCs)

To examine DNAme dynamics across germline develop-
ment, we set thresholds for changes in CG methylation
(>30% change) at either repetitive elements or gene pro-
moters (2 kb, promoters centered on the transcriptional
start site [TSS], yielding ∼3000 dynamic promoters) and
performed clustering, de novo transcription factor-binding
motif analyses, andGO/KEGG analyses (Fig. 3A).We note
that high-ID4 profiles were omitted from Figure 3A due to
low to moderate sequencing depth, but where coverage
met thresholds, themethylation statuswas virtually iden-
tical to high OCT4 (e.g., Fig. 4D; data not shown).
Examination of changes in promoter DNAme (via clus-

tering) revealed considerable differences between the epi-
thelial-like and stem-like high-OCT4 population and the
alternative mesenchymal-like THY1+- and/or VASA-

enriched cell types. For example, within clusters 1 and 6
(Fig. 3A), promoters fromTHY1+- or VASA+-enriched cells
are methylated at P0 and then progressively lose methyl-
ation over the developmental time course. In contrast,
these promoters in high-OCT4 cells are already hypome-
thylated at P0 and remain so throughout development.
Cluster 1 is highly enriched for categories of sexual repro-
duction, meiosis, and gametogenesis and includes Piwil1,
Sohlh2,Mael,Ctcfl, Stra8,Rad51, Sycp, and Syce (Fig. 3B).
Recent studies established that meiotic genes are DNA-
methylated in PGCs but fully DNA-hypomethylated in
adult SSCs (and “poised” by low/moderate H3K4me3)
(Hammoud et al. 2014) but had not addressed when
DNA hypomethylation occurs. Our results suggest that
these genes are differentially DNA-methylated in these
two populations. Furthermore, we observed a bimodal al-
lelic distribution of DNAme in THY1+- or VASA+-en-
riched cells between P0 and P7, suggesting that alleles
gradually (but asynchronously) convert from largely
methylated to largely unmethylated rather than synchro-
nous partial/diminishing methylation (Supplemental Fig.
3C). Thus, in the mesenchymal-like THY1+- or VASA+-
enriched cells, meiotic gene promoters lose DNAme in
advance of their future expression in spermatocytes. Curi-
ously, we found low/moderate H3K4me3 at these meiotic
promoters in P7 THY1+-enriched SSCs, far prior to their
expression in spermatocytes (data not shown), and high
levels of Tet2 and Tet3 transcripts (Supplemental Fig.
4C). However, whether the presence of H3K4me3 alone
deters DNMTs or whether active DNA demethylation
machinery is used remains to be determined.
Interestingly, two prominent gene families are also pre-

sent in Figure 3A clusters 1 and 6: PCs and olfactory recep-
tors. Olfactory receptor genes are located either in gene
clusters (e.g., on chromosomes 11, 13 and 15) or as individ-
ual genes. Here, with THY1+- or VASA+-enriched cells, we
observed ∼50 olfactory receptor genes (scattered through-
out the clusters) undergoingDNAdemethylation, primar-
ily between P7 and P12. Specifically, both the promoter
and the entire gene undergo pronouncedDNAdemethyla-
tion (Fig. 3C; Supplemental Fig. 3D,E) and further acquire
H3K27me3 during the round spermatid stage (Fig. 3C).
Most PCs reside in one of three linked PC clusters on chro-
mosome 18, termed the α, β, and γ classes (Fig. 3D–F). At
these PC clusters, we observed striking DNA demethyla-
tion focally focused at each of the separate promoters for
each variable exon (58 of 58 PC genes) (Fig. 3D–F) but gen-
erally not at the dispersed PC δ class (only one of 20 genes).
Regarding mechanism, we did not observe 5hmC at these
loci (data not shown). Taken together, in THY1+- or
VASA+-enriched cells, a large fraction of olfactory receptor
genes and especially PCs undergo extensive DNAme/
chromatin reprogrammingduringSSCdevelopment; nota-
bly, these two gene families share neuronal utilization,
combinatorial regulation, and knownmonoallelic expres-
sion. Finally, beyond PC and olfactory receptor genes, we
observed a large number of promoters (∼500) that likewise
undergo pronounced focal DNA demethylation during
SSC development, including melanocortin receptors, cy-
tokines, and interleukins.
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Finally, we observed clear DNAme addition at the vast
majority of L1 and IAP elements occurring between E16.5
PGCs and P0 prospermatogonia (Supplemental Fig. 3F,G),

consistent with different rates of DNAme acquisition as
PGCs develop into P0 prospermatogonia. Here, the very
small fraction that avoids acquiring full DNAme at P0
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(or remains unmethylated throughout germline develop-
ment) is found in intergenic regions that are not linked
to known gene promoters.

A subpopulation of postnatal SSCs bears high DNAme
at most paternally expressed imprinted loci

Previous studies in themale germline have suggested that
the establishment of all paternal/maternal imprints and
imprinting control regions (ICRs) begin in utero and are
completed by birth. This expectation was met when ex-
amining high-OCT4 SSCs and was also met for all other
SSC subpopulations tested when solely considering the
paternally imprinted ICRs (Igf2/H19, Dlk1/Gtl2, and
Rsgrf1), which were generally fully methylated (>0.8 frac-
tion methylation) at birth (Fig. 4A–C). Interestingly, in
THY1+- or VASA+-enriched SSCs at P0 or P7 (but not
high-OCT4 SSCs), we found ∼70% (24 of 37 genes) of all
known paternally expressed imprinted (those normally

DNA hypomethylated) genes to be DNA methylated
(Fig. 4A,B,D). As additional confirmation, THY1+ and
GFRa1+ SSCs at P7 also showed DNAme at the same
genes. As a further test, single-cell DNAme assays were
performed using Fluidigm Biomark arrays on P7 THY1+

SSCs separately isolated from an alternative mouse colo-
ny. This analysis, which relies on a methylation-sensitive
enzymatic digestion (Lorthongpanich et al. 2013), like-
wise revealed clearDNAme of promoters of the paternally
expressed imprinted loci tested (Airn, Igf2, Impact, Mest,
Nap1l5, Peg10, Peg3, Plagl1, Snrpn, and Xist) (Fig. 4B,D;
Supplemental Fig. 4A,B; data not shown). Moreover, these
results confirmed the normal/expected high DNAme at
known methylated paternal ICRs (H19-Igf2, Gtl2-Dlk1,
and Rasgrf1) (Fig. 4B,C). Furthermore, whereas the pro-
moters of most maternally expressed imprinted genes
showed the expected promoter DNA hypomethylation
in all subpopulations tested, three genes (Meg3, Cdkn1c,
and Gnas) deviated and bore DNAme at P0 in THY1+- or
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VASA+-enriched SSCs but not in high-OCT4 SSCs
(which display normal imprinting). Curiously, many of
the genes that displayed improper imprinting displayed
improper expression as well (Supplemental Fig. 4A,B).
However, all paternal and maternal imprints and gene
expression patterns resolve to the normal/expected pat-
tern in late juveniles (P14) (Supplemental Fig. 4A,B).
Taken together, whereas high-OCT4 cells (and high-ID4
cells, where threshold coverage is available) displayed
expected imprinting patterns, other subpopulations (P0
THY1+, P0 VASA-cre [GFP-sorted], P7 THY1+ GFRa1+,
P7 THY1+, and single-cell formats) displayed unexpected
patterns (Fig. 4C,D); with these, the majority of pater-
nally expressed imprinted genes and three maternally
expressed imprinted genes lacked full imprinting at
P0/P7 but resolved to the expected imprinting patterns
by P12/P14, prior to the onset of puberty and adult
gametogenesis.

Discussion

Germline stemcells are specified at approximately E5.5 as
PGCs and soon after undergo remarkable phases of
genome-wide DNA demethylation—coupled to imprint
erasure—followed by the re-establishment of parental im-
prints prior to gametogenesis. Beyond imprinting, these
cells pass through multiple developmental stages from
PGCs to adult SSCs that involve complex migration and
proliferation phases and culminate in adult SSCs that bal-
ance self-renewal and differentiation through communi-
cation with niche cells. Although prior genetic and
molecularworkprovidedsignificant insights into involved
genes and physiology,much remained unknown regarding
the transcription, chromatin, imprinting, and signaling
programs that drive or accompany these developmental
phases and also imprinting regulation.Here,weconducted
extensive genomic profiling of several postnatal subtypes
to reveal the transcription networks, chromatin programs,
and signaling systems (inferred by transcription) that drive
and/oraccompanythesedevelopmental stages, providinga

foundation for functional studies and revealing several un-
expected features (Fig. 5).

To aid in the interpretation of these data, we first pre-
sented challenges and limitations. One clear challenge
was the known heterogeneity of postnatal SSCs, requiring
isolation and comparison of multiple subtypes during de-
velopment. Here, we profiled multiple subtypes and fo-
cused on markers best correlated with transplantation
(and comparisons with poorly transplanting KIT+ sperma-
togonia). However, these profilings were not exhaustive,
so informative subtypes likely remain untested. Second,
SSC subtypes were isolated by cell surface markers (e.g.,
THY1 or KIT) or GFP sorting (e.g., for high OCT4 and
ID4) using MACS or FACS, respectively. Both methods
are enrichment rather than purification procedures, and
genes expressed at high levels in rare contaminating cells
can impact RNA-seq profile interpretations. Third, our
GFP sortings involved transgenic animals of nonidentical
genetic background, which could impact profiles. Fourth,
our interpretations assumed that changes in transcription
impact protein levels, which remain untested. Neverthe-
less, these data sets provide high-resolution genomic pro-
filing of multiple SSC/spermatogonial subpopulations
spanning from birth to puberty, providing foundational
data sets for comparisons and analyses.

Transcription and chromatin programs
of germline stem cells

Here, we profiled the majority THY1+ SSC population
from P0 to P14 and compared it with prior data sets
from PGCs and adult SSCs, revealing many dynamic
changes. First, we found PGC specification factors declin-
ing in P0 prospermatogonia and low/absent in SSCs,
strongly suggesting that PGC specification factors are
not required for the maintenance of SSC identity. In addi-
tion, several transcription factors linked to pluripotency
and self-renewal in ESCs are absent in SSCs (e.g., SOX2,
PRDM14, NANOG, and LEFTY), while others that con-
tribute to self-renewal in ESCs and other stem cells
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remain present, prompting future work on their involve-
ment in self-renewal. Regarding chromatin, we extend
to P7 SSCs our earlier observations in adult SSCs that
bivalency and DNA hypomethylation reside at the pro-
moters or enhancers of the silent/poised Nanog, Sox2,
Lefty, and Prdm14 genes (Hammoud et al. 2014), which
we speculatemay underlie their ability to be activated fol-
lowing normal fertilization (or during their conversion to
pluripotent embryonic germ cells in vitro).
Regarding DNAme changes in the germline, DNAme is

low in early PGCs (reflecting recent genome-wide DNA
demethylation). However, we found that bulk DNAme
levels are largely restored by P0. In keeping with this, L1
and LTR elements are largely highly methylated by P0.
Furthermore, we found the piRNA system highly ex-
pressed in P0 prospermatogonia (e.g., Piwil2 and Tdrd9),
consistent with their function in DNAme maintenance
and retrotransposon silencing at this stage. Moreover,
we observed stage-specific expression of many ZNF-
KRAB family proteins. Thus, we reveal the developmental
transcriptional timing of many factors involved in innate
immune defense against transposons.

Signaling pathway dynamics in developing
germline stem cells

Our examination of signaling pathways (inferred by tran-
scription) reveals changes in signaling pathway compo-
nents during SSC development. For FGF and BMP
pathways, our work supports a shift from autocrine to
largely paracrine signaling (using the niche) as postnatal
SSCs develop into adult SSCs. In contrast, our profiles
support WNT signaling through a paracrine system, as
canonical WNT ligands are generally silent in SSCs,
but the receptors (Fzd and Lrp genes) are expressed. No-
tably, we also found noncanonical WNT receptors
expressed but only in neonates. We also observed partic-
ular transitions in GDNF signaling components during
development. For example, very high levels of the recep-
tor (Gfra1) and partnered signaling factors (e.g., Ret)
were observed in the juvenile, in contrast to low expres-
sion levels in adult SSCs. However, we found GFRA1
protein still clearly present in adult SSCs although at
lower levels than in differentiating spermatocytes. In-
stead, adult SSCs express high levels of GFRA2, which
preferably binds neurturin to GDNF. Together, these re-
sults provide new information for designing more ad-
vanced cell culturing systems for SSCs and for genetic
investigation.

SSC subtypes differ transcriptionally, revealing
epithelial-like or mesenchymal-like properties

Transcriptional profiles of high-OCT4 and high-ID4 cells
proved highly similar (r = 0.98), and prior work reveals
them both as highly transplantable subtypes. In accor-
dance with their stem-like potential, they express factors
known to promote SSC maintenance (e.g., Zbtb16/Plzf
and Gfra1) at levels moderately higher than THY1+-en-
riched cells (which also transplant well). Notably, KIT+-

enriched cells had even lower levels of these SSCmarkers
compared with the THY1+-enriched subtype, which may
result in poor transplantation. GO categories enriched in-
clude DNA repair and chromatin organization, which
may help ensure genome integrity. Perhaps the most
striking differencewas the higher levels of many keymes-
enchymal markers (e.g., Zeb2 and Vimentin) (Fig. 2D) in
the THY1+-enriched subtypes, along with lower levels of
key epithelial markers (e.g., Cdh1), and enrichment of
GO categories such as cell adhesion and migration (Fig.
2C, clusters 1 and 5), categories that coenrich for mesen-
chymal genes. Here, we speculate that this heterogeneous
population of SSCs may transition between more epithe-
lial-like states and more mesenchymal-like states, which
helps enable proliferation, migration, and attachment of
these SSCs to the basement membrane of the seminifer-
ous tubule during these postnatal stages.

Dynamics of monoallelic genes in THY1+-enriched SSCs

Interestingly, THY1+-enriched SSCs, but not high-OCT4/
ID4 SSCs, display DNAme/chromatin changes at a large
proportion of olfactory receptor and PC loci during postna-
tal SSC development. However, all SSC subtypes arrive at
the same DNAme status for these genes by P14: hypome-
thylated. Notably, these two gene families share neuronal
utilization, combinatorial regulation, and knownmonoal-
lelic expression (Singh et al. 2003; Esumi et al. 2005; Chess
2013). Finally, beyond PC and olfactory receptor genes, we
observed a large number of promoters (∼500) that likewise
undergo pronounced focal DNA demethylation during de-
velopment in theTHY1+-enriched subtype, includingmel-
anocortin receptors, cytokines, and interleukins. These
gene promoters are generally DNA hypomethylated in
both mature sperm (Hammoud et al. 2014) and oocytes
(Smith et al. 2012).Here, future studies areneeded todeter-
mine which transcription and chromatin factors conduct
this phase of reprogramming and their impact on SSC
biology.

Dynamics of imprinting in developing
germline stem cells

Interestingly, we found that THY1+ and KIT+ cells from
neonates and P7 mice display normal imprinting of pater-
nal and maternal ICRs but surprisingly lack full imprint-
ing of most paternally expressed imprinted genes and
three specific maternally expressed imprinted genes (Fig.
5). However, these genes/loci attain their full/expected
imprinting prior to puberty. In contrast, the high-OCT4/
ID4 subtypes displayed expected paternal imprints
throughout postnatal development, supporting recent
work in high-OCT4 neonatal SSCs (Kubo et al. 2015).
Here we note that the subset of THY1+ and KIT+ sper-
matogonia that shows both imprinting defects and mes-
enchymal-like features may contribute to the pool of
spermatogonia that participates in the first wave of game-
togenesis (Yoshida et al. 2006). Future work will examine
targeting proteins and the mechanism of demethylation
(passive vs. active, including TET family proteins) as
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well as whether the imprinting/transcription status of
these imprinted genes (and the monoallelic genes de-
scribed above) affects proliferation or themoremesenchy-
mal-like properties of these SSC subtypes.

The extensive changes in DNAme/chromatin occur-
ring during the postnatal phase of mouse SSC develop-
ment are striking and focused on regulatory regions
rather than the repetitive regions observed in PGCs.
Whether these same phenomena extend to humans re-
mains unknown; however, epidemiological studies in hu-
mans and animals suggest that caloric restriction or
overeating during the prepubertal period impacts risk for
cardiovascular disease, obesity, and diabetes in the next
generation (Kaati et al. 2002; Skorupa et al. 2008; Ng
et al. 2010; Ost et al. 2014; Rechavi et al. 2014). Therefore,
these epidemiological findings underscore a phase of pre-
pubertal germline plasticity where heritable perturba-
tions to the epigenome may occur.

Materials and methods

Mouse husbandry and germ cell isolation

Allmiceweremaintained on a normal 12-h/12-h light/dark cycle.
Isolation of either the THY1+ or c-KIT+ stem cell fractionwas car-
ried out with a MACS separator (Miltenyi Biotec) using anti-
CD117 antibody (KIT) or anti-CD90.2 (Thy1) (Miltenyi Biotec).
Quantitative PCR was used to confirm stem cell purity. RNA
and DNAwas harvested from SSCs as biological replicates as de-
scribed in the detailed Supplemental Material and are available
for all RNA-seq data sets. FACS analysis involved isolations
from P0 Vasa-GFP+ (The Jackson Laboratory, 006954), P0 and
P7 Oct4-GFP+ (The Jackson Laboratory, 008214), and P7 Id4-
GFP+ (J. Oatley’s laboratory). Cells were sorted using FACSCali-
bur (BD Biosciences). The percentage of live cells was >95%, by
exclusion of propidium iodide.

ChIP combined with deep sequencing (ChIP-seq)

ChIP was performed as described previously (Hammoud et al.
2014). Prior to library preparation, ChIP samples were amplified
using SEQX (SEQX-50RXN, Sigma Aldrich) due to very low im-
munoprecipitation yield.After amplification andprimer removal,
librarieswere prepared using standard Illumina pipeline. Libraries
were sequencedusing50-bp single-end reads onan IlluminaHiSeq
2000or 2500.Theantibodiesusedwereanti-H3K27ac (ActiveMo-
tif, 39135), H3K4me3 (ActiveMotif, 39159), and H3K27me3 (Up-
state Biotechnology, 07-449).

Single-cell DNAme

Single-cell DNAme analysis was carried out based on prior meth-
ods (Lorthongpanich et al. 2013). Spermatocytes and spermatogo-
nia were single-cell FACS-sorted into 96-well plates. DNAme-
sensitive restriction digest was performed using Haiti (New En-
gland Biolabs). Long and short primers were designed for each an-
alyzed site (Supplemental Table 3). Preamplification was then
performed by initial denaturation for 10 min at 95°C followed
by 22 cycles of 30 sec of denaturation at 95°C and 4min of anneal-
ing/extension at 60°C. Site-specific real-time amplification was
performed on 48.48 dynamic arrays using the Biomark System
(Fluidigm).

Immunostaining analysis

Mouse testes were fixed in 4% PFA overnight at 4°C, cut, and an-
alyzed. Immunostaining was performed using the primary anti-
bodies anti-GFRa1 (ab8026), anti-Cd90 (ab3105), anti-Oct4
(ab196585), and anti-GFP (Fischer, PIMA515256) followed by
Alexa fluor secondary antibodies 488, 594, and 647 (Invitrogen).
Nuclear counterstaining was performed using DAPI (Invitrogen).
Fluorescent images were acquired using a Leica Sp5 or an Olym-
pus FluoView FV1000 BX2.

Mouse RNA extraction and library preparation

RNA extractions were performed following Ambion standard
protocol (Ambion Life Technologies). Total RNA was DNase-
treated (Ambion, AM1907). Long directional RNA-seq libraries
(Ribozero-treated) were constructed according to Illumina’s pro-
tocol and sequenced using a 50-bp single-end format on an Illu-
mina HiSeq 2000 or 2500.

Mouse BisSeq and library preparation

Extracted genomic DNA (50 ng–1 µg) was spiked with 1% unme-
thylated λDNA (Promega), and the library was constructed using
the EpiGnome Methyl-Seq sample prep kit (Epicenter, Inc.) and
sequenced using a 101-bp paired-end format on an IlluminaHiSeq
2000 or 2500.

Bioinformatics analysis

Bioinformatics analysis was performed as previously described
(Hammoud et al. 2014). Briefly, Fastq files from BisSeq libraries
were aligned to the mm9 mouse genome assembly using No-
voalign (Novocraft, Inc.) and analyzed using the USEQ package
(http://useq.sourceforge.net). ChIP-seq libraries were aligned us-
ing Bowtie (http://bowtie-bio.sourceforge.net). RNA-seq align-
ments were done using TopHat version 2.0.9 (http://tophat.cbcb
.umd.edu). ChIP-seq, RNA-seq, and DNAme BisSeq downstream
analysis were done using the USEQ package, Cufflinks suite, and
cummeRbund R package.

Data access

All data described in this study may be downloaded from Gene
Expression Omnibus under the accession project GSE62355.
This includes raw Fastq files and processed files for BisSeq,
ChIP-seq, RNA-seq, and 5hmC enrichment experiments.
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