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Abstract

We have fabricated protein polymer-gold nanoparticle (P-GNP) nanocomposites that exhibit 

enhanced binding and delivery properties of the small hydrophobic molecule drug, curcumin, to 

the model breast cancer cell line, MCF-7. These hybrid biomaterials are constructed via in situ 
GNP templated-synthesis with genetically engineered histidine tags. The P-GNP nanocomposites 

exhibit enhanced small molecule loading, sustained release and increased uptake by MCF-7 cells. 

When compared to the proteins polymers alone, the P-GNPs demonstrate a greater than 7-fold 

increase in curcumin binding, a nearly 50% slower release profile and more than 2-fold increase in 

cellular uptake of curcumin. These results suggest that P-GNP nanocomposites serve as promising 

candidates for drug delivery vehicles.
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Introduction

The fabrication of multifunctional, stimuli-responsive organic-inorganic hybrid materials 

that can self-assemble into defined structures bears tremendous potential in drug delivery 
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and medicine [1–4]. The synthesis of hybrids combining stimuli responsive materials and 

gold nanoparticles (GNPs) has been explored in large part due to their unique properties [5–

9]. For example, a composite hydrogel material comprised of temperature-sensitive 

copolymers, N-isopropylacrylamide and acrylamide, embedded with GNPs, bearing a gold 

sulfide nanoshell designed to absorb and convert near-IR light to heat has been developed 

[10]. Upon light triggered activation, the copolymer, when entrapped with a small molecule 

drug, undergoes a conformational change that in turn leads to drug release [10]. Another 

example of using gold nanoparticles for triggered drug release relies on liposomal 

nanoparticles composed 1,2-dipalmitoylsn-glycero-3-phosphocholine, 1-palmitoyl-2-

hydroxy-sn-glycero-3-phosphocholine and 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] [11]. Such liposomes, when 

loaded with both GNPs and the hydrophilic drug calcein, when subjected to 532 nm laser 

treatments leads to light controlled calcein release due to microbubble cavitation of the 

liposome membrane[11]. While a wide range of synthetic materials have been developed 

and explored [10,12–14], proteins have attracted intense attention due to the fine molecular 

and conformational control of sequence and structure [15,16]. Recently, GNPs have been 

decorated with a library of cationic groups that complex non-covalently with green 

fluorescent protein (GFP) [17]. These GFP-GNP complexes have been employed in an array 

to chemically detect human serum proteins in complex serum. In this case, the strategy for 

construction of such protein-GNP hybrids rely on the covalent or non-covalent linkage of 

chemically pre-fabricated GNPs that have been synthesized under harsh organic solvents 

[18,19].

Specific chemical transformations are employed to prepare GNPs of discrete sizes and 

additional chemical steps are required to further decorate GNPs with key ligands as well as 

conjugate them with the macromolecule of interest [20]. Yet biological systems are able to 

fabricate GNPs under ambient conditions in situ through specific sequences [19,21–26]. We 

seek to generate multifunctional protein materials capable of: (i) templated-synthesis of 

inorganic nanoparticles in situ to fabricate organic-inorganic hybrids without the need for 

covalent bonding between each substituent part; (ii) encapsulating and stabilizing large 

payloads of small molecules; and (iii) modulating the delivery of small molecule 

chemotherapeutic drugs in clinically relevant cells (Figure 1).

Previously we have produced protein diblock copolymers comprised of two different self-

assembling domains (SADs): 1) an elastin-like peptide (E); and 2) the coiled-coil region of 

Cartilage Oligomeric Matrix protein (C) [27,28]. While the diblocks, EC and CE, exhibit 

different temperature dependent conformations and self-assembly [27], they bind to 

curcumin [28], a naturally occurring anti-inflammatory agent bearing chemoprevention 

effects [29]. Curcumin has been chosen not only for its chemotherapeutic properties against 

the breast cancer cell line MCF-7 but also because it is insoluble and degrades rapidly under 

physiological conditions [29,30]. A drug delivery system that can solubilize and stabilize 

labile molecules such as curcumin would have beneficial therapeutic applications [29].

Here, we employ the two diblocks E1C-His6 and CE1-His6 each bearing an N-terminal 

hexahistidine tag for the templated-synthesis of gold nanoparticles (GNPs) in situ to yield 

the nanocomposites E1C-His6-GNP and CE1-His6-GNP, respectively (Figure 1). These 
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protein polymers are selected due to their thermostability and superior small molecule 

binding abilities [31]. We hypothesize that such P-GNP nanocomposites will influence the 

thermoresponsiveness, drug binding capacity and release. Notably, E1C-His6-GNP and CE1-

His6-GNP demonstrate elevated inverse temperature transitions, improved small molecule 

loading capacity, sustained release and enhanced uptake by cancer cells when compared to 

protein polymers alone.

Materials and Methods

General

Yeast extract and curcumin were obtained from Acros Organics (Geel, Belgium). Tryptic soy 

agar and gold(III) chloride trihydrate were acquired from MP Biomedicals (Santa Ana, CA). 

Ampicillin, isopropyl β-D-1-thiogalactopyranoside (IPTG), imidazole, sodium monobasic 

phosphate, sodium dibasic phosphate, sodium dodecyl sulfate, sodium hydroxide, sodium 

chloride, sucrose, tris-hydrochloride, tryptone, PFU high fidelity, DpnI, ACS grade methanol 

and urea were obtained from Fisher Scientific (Pittsburgh, PA). 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), magnesium sulfate, nickel chloride, sodium 

borohydride were purchased from Sigma Aldrich (St. Louis, MO). Tricine was purchased 

from Alfa Aesar (Ward Hill, MA). Glacial acetic acid and Factor Xa cleavage kit were 

purchased from EMD Millipore (Rockland, MA). Ethyl acetate was purchased from 

Pharmco-AAPER (Brookfield, CT). Ethylenediaminetetraacetic acid (EDTA) and 

hydrochloric acid were acquired from VWR (Radnor, PA). HPLC grade methanol was 

obtained from Ricca Chemical Company (Arlington, TX). Sephadex™ G-25 medium beads 

were purchased from Amersham Pharmacia Biotech AB (Piscataway, NJ). Columns were 

purchased from Bio-Rad (Hercules, CA).

Site-directed mutagenesis

pQE30/CE1 and pQE30/E1C were employed for production of CE1-His6 and E1C-His6 

proteins in this study [31]. In order to generate proteins with Factor Xa IEGR cleavage site, 

site-directed mutagenesis was performed using the following primers: 5’-

cgcagtagcagcgagctcgcgcccttctatgtgatggtgatggtg-3’ and 5’-

cgcgctagccgcaatgcgcccttctatgtgatggtg atggtg-3’ and their reverse complements to generate 

PQE30/CE1-IGER and PQE30/E1C-IGER, respectively. Following the standard protocol for 

parent strand digestion using Dpn1, the resulting product was transformed into XL1-Blue 

cells for future use. Mutations were verified by DNA sequencing at Eurofins (Huntsville, 

AL).

Protein expression and purification

Biosynthesis and purification of CE1-His6, E1C-His6, CE1-IEGR and E1C-IEGR, was 

performed as previously described (Figure S1) [31]. Briefly, PQE30/CE1, PQE30/E1C, 

PQE30/CE1-IGER and PQE30/E1C-IGER were used to express the CE1-His6, E1C-His6, 

CE1-IEGR and E1C-IEGR proteins, respectively. All proteins were purified on a HiTrap 

IMAC FF column charged with nickel under denaturing conditions. For the negative control, 

CE1-IEGR and E1C-IEGR were dialyzed in 10 mM sodium phosphate buffer, pH 8.0, using 

SnakeSkin dialysis tubing (Thermo Scientific, 3.5 K MWCO). Factor Xa cleaves the protein 
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after IEGR site, removing the His-tag. This reaction occurs in 1 µL of 0.5 unit/µL enzyme, 

44 µL protein sample of 0.2 mg/mL concentration and 5 µL cleavage buffer (final cleavage 

buffer condition is 2 mM Tris-HCl, 50 mM NaCl, 0.5 mM CaCl2, pH 7.25). This ratio was 

scaled up to cleave 4 mL of the samples and cleavage reaction was allowed for 4 days at 

4°C. This solution containing cleaved protein, His-tag and Factor Xa was transferred into 

Factor Xa capture resin and then passed through nickel beads to isolate the cleaved CE1 and 

E1C (Figure S2). After confirming the purity using sodium dodecylsulfate-polyacrylamide 

gel electrophoresis (SDS-PAGE), CE1-His6, E1C-His6, CE1 and E1C were dialyzed into 10 

mM sodium phosphate buffer, pH 8.0.

Gold nanoparticle templated-synthesis

A 0.1 M HAuCl4·3H2O solution (reactive gold solution) was prepared in dH2O. 

Approximately, 1.2 µL of the reactive gold solution was added into 300 µL of 10 µM protein 

sample, followed by gentle vortex for 10 minutes at room temperature. To the mixture, a 3.6 

µL freshly prepared 0.1 M NaBH4 solution in dH2O, was added to reduce Au3+ to Au0. The 

mixture was then gently rotated to prevent aggregation or uneven templated-synthesis. The 

reaction was carried at room temperature for 1 hour. The molar ratio of Au3+ to protein was 

40 to 1, while the NaBH4 to Au3+ ratio was 2.5 to 1. The resulting protein polymer-gold 

nanoparticle (P-GNP) nanocomposites were stored at room temperature for 1 hour before 

further characterization.

Absorbance spectroscopy

The absorbance spectrum from 200 nm – 1000 nm of each P-GNP nanocomposite was 

scanned using SpectraMax M2 (Molecular Devices) in UV-transparent 96 well microplate 

(Corning, half area flat bottom). As a control, buffer, CE1-His6 and E1C-His6, in addition to 

the cleaved CE1 and E1C proteins at pH 8 were scanned. All protein samples were prepared 

at 10 µM in 10 mM sodium phosphate buffer, pH 8.0.

Transmission electron microscopy

Transmission Electron Microscopy (TEM) was used to identify the nanometer-sized 

structures that resulted from self-assembly at room temperature. Samples were prepared in 

water at 10 µM concentrations in 10 mM sodium phosphate buffer pH 8.0. The samples were 

gently mixed and applied on a carbon coated 400 mesh Cu/Rh grids and negatively stained 

with 1% uranyl acetate as previously described [31]. The images of the samples were 

collected on a Phillips CM12 TEM instrument at 120 kV. The particle area and size were 

measured using Image J [32–34]. The protein particle sizes were determined from at least 

>130 particles, while sizes of the resulting GNPs were determined from at least >130 

particles via Image J [32–34]. A histogram of the GNP sizes was generated to determine the 

average size distribution.

Circular dichroism (CD) spectroscopy

Wavelength-dependent Circular Dichroism (CD) spectra were collected on a Jasco J-815 CD 

Spectrometer equipped with a PTC-423S single position Peltier temperature control system 

and counter-cooled with an Isotemp 3016S (Fisher Scientific) water bath. Samples were 
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loaded in a Hellma 218 quartz cuvette (500 µL, 1 mm path length). A far-UV temperature-

dependent wavelength scan from 185–260 nm as a function of temperature was completed 

for CE1-His6 and E1C-His6 in the absence and presence of GNPs at 0.2 mg/mL in 10 mM 

sodium phosphate buffer pH 8.0 at scan rate of 50 nm/min for a range of temperatures (25–

90°C) with 3 accumulation scans. At least two batches of separately purified proteins were 

measured. CD data was converted into mean residue molar ellipticity (MRW) via equation 

[θ]MRW = θ·MW/(10·n·C·l), where θ is in mdeg, MW is molecular weight, n is amino acid 

number in protein, C is concentration in mg/mL, l is path length in cm [35]. Fitting and 

calculation of protein secondary structure was processed with CDSSTR methods [36–38]. 

Parameters for the calculation using CDSSTR program were identical to our previously 

published work [31].

Turbidometry

The turbidometry, or inverse temperature transition (Tt), was determined via UV-Vis 

Spectrophotometer Cary-50 (Agilent Technology) equipped with TC 125 temperature 

controller (Quantum Northwest) in Type 21 quartz cuvette with 10 mm path length (Buck 

Science) by monitoring the change in turbidity at 800 nm from 25°C to 80°C at a rate of 

1°C/min. Protein stock solutions for Tt measurement were prepared in 0.2 mg/mL (or 14.3 

µM and 14.4 µM for CE1-His6 and E1C-His6, respectively) in 10 mM sodium phosphate 

buffer, pH 8.0. In order to bring Tt value of all the samples into instrument operation range, 

highly concentrated NaCl solution was added prior to Tt measurement (Table S1). 

Measurements were performed on at least two different protein sample preps to calculate the 

average Tt. The Tt was determined at the midpoint of the normalized turbidity [39].

Small molecule loading and release

Curcumin (6.5 nmol final concentration from 3 mM stock solution in HPLC grade methanol) 

was incubated with 1.3 nmol of CE1-His6, E1C-His6, CE1-His6-GNP and E1C-His6-GNP at 

room temperature for 2 hours and loaded onto Bio-Rad Spin6 columns packed with 

Sephadex G-25 medium beads 0.5 cm high. Bound protein polymer-curcumin complexes (in 

the presence or absence of GNP) were eluted by size, washed 3 times in 50 µL sodium 

phosphate buffer, followed by centrifugation for 5 min at 14000 rpm. The beads containing 

unbound curcumin were collected separately and resuspended back to buffer for solvent 

extraction. Both bound and unbound curcumin were extracted by adding 150 µL ethyl 

acetate and quantitatively determined by measuring absorbance at 416 nm. Absorbance was 

measured in a Hellma 105.201-QS type cuvette (10 mm light path, 100 µL sample) on 

SpectraMax M2. This binding study was performed on at least three different protein sample 

preparations to calculate the average loading capacities with errors represented as the 

standard deviation of the three trials.

Release of curcumin from CE1-His6, E1C-His6, CE1-His6-GNP and E1C-His6-GNP was 

then investigated. Curcumin (26 nmol) was added to 200 µL of 26 µM (5.2 nmol) protein 

sample. After 2 hours of incubation at room temperature, the solution was adjusted to 

contain a final concentration of 0.5 M NaCl. The protein polymer-curcumin complex (in the 

presence or absence of GNP) were incubated at 45°C (well above the Tt) for 30 min and 

centrifuged to separate protein polymer-curcumin complex from excess curcumin. The 
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pellets were resuspended in 200 µL of 50 mM phosphate buffer, pH 7.4 and kept at room 

temperature in the dark for release. After 10 min, the suspensions were centrifuged and the 

supernatant was removed and used for extraction assessment of released curcumin. This 

resuspension-incubation-spin-release cycle was repeated for the next eight hours at the 

following time points: 10, 25, 55, 85, 135, 195, 255, 315 and 495 min. Release study was 

performed on two different protein sample preparations to obtain the averaged release 

profile. Error bars on the release data represented standard error of the two sample 

preparations.

Cell culture studies

MCF7 human breast cancer cells were obtained from ATCC and maintained at 37°C, 5% 

CO2 as monolayer cultures in Dulbecco’s modified Eagle’s medium (DMEM with high 

glucose containing phenol red) supplemented with 10% (v/v) fetal bovine serum (FBS), 

gentamicin (50 µg/mL), 100 U penicillin/ 100 µg/mL streptomycin. Because the loading 

capacities of curcumin for P-GNP nanocomposites are much larger than those of the proteins 

in the absence of GNP we prepared two corresponding curcumin controls that represented 

the bound curcumin levels in P-GNP and protein polymers alone (Table S2). To avoid any 

uptake of unbound curcumin by the cells directly, we limited the curcumin amount that is 

equivalent to the loading capacity of 26 µM of protein samples in 50 mM sodium phosphate 

buffer, pH 7.4 and allowed to bind for 2 hours at room temperature prior to cell culture 

studies.

Multiple sets of experiments were performed to record curcumin uptake by image 

acquisition using FITC filter (Em: 520 nm) under fluorescence microscopy and direct 

measurement of curcumin uptake in cell extractions. Cells were grown directly on 24-well 

culture plates (8 × 104 cells/well) for cell extraction or on cover slips for microscopy. After 

24 hours of cell plating, cells were treated for 4 or 24 hours with different combination of 

proteins with or without GNP and/or curcumin. For all the treatments, the total volume of 

samples with DMEM in 24-well plates was kept constant at 300 µL, with proteins prepared 

at 10 µM concentrations. The ratio of sample amount to number of cells was also kept 

constant. The results are representative of two such independent sets of experiments.

For direct measurement of curcumin uptake, cells were washed with Dulbecco’s phosphate 

buffered saline and lysed with 200 µL RIPA/ well (25 mM TrisHCl pH7.6, 150 mM NaCl, 

1% NP-40, 1% sodium deoxycholate, 0.1% SDS) at room temperature for 20 min with 

gentle shaking. Lysed cells were then collected and vortexed. For curcumin extraction, 150 

µL ethyl acetate was added the lysed cells. Thorough extraction was ensured by violently 

shaking the lysate-solvent mixture for 30 seconds. Curcumin containing solvent phase was 

then separated by centrifuging at 14,000 RPM for 2 minutes at room temperature. 

Absorbance of curcumin in ethyl acetate was measured using SpectraMax M2 (Molecular 

Devices) in Hellma 105.201-QS type quartz cuvette (100 µL volume, 10 mm light path) at 

416 nm [40,41].

For fluorescent imaging of curcumin uptake, cells on coverslips were fixed with 300 µL 4% 

paraformaldehyde solution in DPBS for 20 minutes at room temperature on a plate rocker 

[42]. Following fixation, cell-containing coverslips were washed 3 × 300 µL DPBS and were 
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mounted on glass slides using DAPI containing mounting medium (Southern Biotech Dapi 

Fluoromount-G). Coverslips were then sealed using clear nail polish for viewing under 

microscopy and long-term storage. Cells were viewed using fluorescence microscope IX71 

(Olympus) using DAPI (for cell nuclei) and FITC (for curcumin uptake) at 60× 

magnification while keeping the exposure time for the FITC images constant at 200 

milliseconds.

Cell viability measurements were carried out using a CellTiter 96® Aqueous One solution 

kit (Promega) in a 96-well plate, seeded 1 × 104 cells/well. After 24 hours, the cells were 

treated for 4 hours or 24 hours with protein polymers and P-GNP nanocomposites with and 

without curcumin along with control treatments of curcumin alone and media alone. After 

the treatment periods, 20 µL [3–(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-

(4-sulfophenyl)-2H-tetrazolium (MTS) was added to each well, followed by incubation at 

37°C for 3 hours. The plate was centrifuged for 3 minutes at 2500 rpm and then subjected to 

absorbance measurements at 490 nm (Tables S3 and S4).

Results

Fabrication of P-GNP nanocomposites

Both CE1-His6 and E1C-His6 were biosynthesized through recombinant bacterial expression 

and purified via nickel affinity resin. The protein diblock polymers were subject to GNP 

templated-synthesis without use of capping reagents. Gold salt (HAuCl4) solution was 

directly added to protein samples [24,25], followed by reduction with NaBH4 [43] under pH 

6 and 8 (Figure 2a). Surprisingly, the P-GNP nanocomposites were stable at pH 8; within 

one week, absorbance spectra of complexes remained nearly the same with no observed 

precipitation even after one month when stored at room temperature (data not shown). The 

CE1-His6-GNP and E1C-His6-GNP exhibited successful templated-synthesis of GNPs with a 

distinct red-brown color change, confirmed by an observable peak at ~520 nm under pH 8 

(Figure 2a). Since the lone pair electron on ε2N of histidine is protonated at pH ≤ 6, the 

protein polymer did not undergo GNP templated-synthesis very well under pH 6 conditions, 

consistent with literature [26]. Both CE1-His6 and E1C-His6 in the absence of gold salt did 

not lead to any detectable absorption peak at 520 nm (Figure S3); gold salt in the absence of 

protein did not produce signal indicating that the protein polymers were necessary for GNP 

templated-synthesis (Figure 2a). To affirm that the GNP templated-synthesis was due to the 

His6 tag, proteins lacking the N-terminal His6 sequence did not exhibit a strong signal at 520 

nm (Figure S3).

Morphological characterization of P-GNP nanocomposites

To assess the morphology and sizes of the P-GNP nanocomposites, transmission electron 

microscopy (TEM) was performed (Figures 2b and 2c). As expected [31], the CE1-His6-

GNP and E1C-His6-GNP assembled into nanoparticles with diameters of 23.8 ± 5.6 nm and 

23.9 ± 5.2 nm, respectively (Table 1 and Figure S4). Average diameters of GNPs in both 

CE1-His6-GNP and E1C-His6-GNP were 3.4 ± 0.9 nm and 3.5 ± 0.9 nm, respectively (Table 

1 and Figure S5). Consistent with published work, the observed absorption peak at 520 nm 

is due to the GNP diameters being within 2–10 nm range (Figure S6) [44].
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Secondary structure analysis of P-GNP nanocomposites

A comparison of the secondary structures in the presence and absence of GNP was 

performed via circular dichroism (CD) to determine whether GNP templated-synthesis 

affected the protein polymer conformations (Figure 3a). While the overall shape of the 

wavelength scans were maintained, a slight loss in structure was observed for CE1-His6-

GNP and E1C-His6-GNP relative to CE1-His6 and E1C-His6, respectively (Figures 3a, S7 

and S8). To assess the impact of GNP templated-synthesis on the inverse temperature 

transition (Tt), the UV/vis absorbance of CE1-His6-GNP and E1C-His6-GNP at 800 nm was 

monitored as a function of temperature (Table 1). Relative to the parent protein polymers, 

CE1-His6-GNP and E1C-His6-GNP revealed an increase in Tt by 11.2°C and 8.3°C, 

respectively.

Curcumin loading and release

To evaluate the loading capacity of the protein polymers in the absence and presence of 

GNP, curcumin was incubated with CE1-His6, E1C-His6, CE1-His6-GNP and E1C-His6-GNP 

for 2 hours. Unbound curcumin was then separated and quantified to determine the amount 

of curcumin bound to the protein polymer and P-GNP complexes (Table 1). Surprisingly, 

CE1-His6-GNP exhibited higher binding capacity than CE1-His6 by 8 fold, while E1C-His6-

GNP demonstrated a 7.3 fold improvement over E1C-His6.

Release studies were performed by loading the protein polymers and P-GNPs with curcumin 

and assessing the amount of free curcumin over time. The protein polymers alone released 

>50% curcumin after 1.4 hours; both CE1-His6 and E1C-His6 showed rapid and nearly 

complete release of 77.0% and 78.8% free curcumin by 8.25 hours (Figure 3b). By contrast, 

CE1-His6-GNP and E1C-His6-GNP, revealed a slow and sustained release of 27.9% and 

18.8% free curcumin by 8.25 hours (Figure 3b). Thus, the P-GNP nanocomposites not only 

increased the binding capacity for curcumin but also, slowed down its release.

Curcumin uptake by breast cancer cells

As curcumin is insoluble under aqueous conditions and does not effectively penetrate cancer 

cells alone [40], we investigated whether the P-GNP nanocomposites could enhance small 

molecule delivery and uptake by MCF7 breast cancer cells. Both CE1-His6-GNP and E1C-

His6-GNP complexed with curcumin exhibited uptake as visualized by fluorescence (FITC 

channel); the curcumin appeared to be present in the cytoplasm as demonstrated by the 

overlay with DAPI stained cells (Figure 4). We also explored whether the protein polymers 

alone would deliver curcumin; both CE1-His6 and E1C-His6 revealed uptake albeit 

substantially less than the P-GNP nanocomposites (Figure 4). To assess whether CE1-His6-

GNP, E1C-His6-GNP, CE1-His6 and E1C-His6 were themselves toxic to the cells, MTS 

assays were conducted; neither the protein polymer or P-GNP nanocomposites exhibited 

cytotoxicity (Table S3 and S4). Under identical conditions, the curcumin alone control did 

not show any uptake at the same concentrations of the protein polymers alone and the P-

GNP nanocomposites. This was confirmed by quantifying curcumin extracted from the cells. 

Extraction of curcumin revealed 2.25-fold and 3.75-fold greater amount of available 

curcumin for CE1-His6-GNP and E1C-His6-GNP, respectively, relative to the protein 

polymers alone (Figure 5).
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Discussion

Gold nanoparticle templated-synthesis influence on secondary structure and inverse 
temperature transition

We have produced stable P-GNP nanocomposites by GNP templated-synthesis through 

engineered N-terminal hexahistidine sequences within the protein diblocks CE1-His6 and 

E1C-His6. Either removing the hexahistidine sequence or decreasing the pH to alter the 

protonation state of the histidine residues does not lead to GNP production (Figure 2). After 

confirming GNP templated-synthesis to CE1-His6 and E1C-His6 spectroscopically, 

secondary structure analysis reveals that although a slight loss in alpha helicity is observed, 

the nanocomposites maintain overall conformation (Figure 3a). While in situ GNP 

templated-synthesis does not dramatically alter the protein polymer conformations, it does 

impact their thermoresponsive behavior. The marked effects on the thermoresponsiveness 

upon GNP templated-synthesis by the CE1-His6 and E1C-His6 protein polymers, regardless 

of the orientation of the domains can explain the improved loading capacity for curcumin. 

Upon GNP templated-synthesis, the P-GNP nanocomposites possessed elevated inverse 

temperature transitions (Table 1), indicative of heightened resistance to coacervative 

temperature-induced conformation changes. The enhanced stability against coacervation 

could impose greater mobility via increased hydration on the P-GNP nanocomposites 

thereby exposing more non-specific sites for curcumin binding leading to improved loading 

capacity.

Small molecule binding properties after gold nanoparticle templated-synthesis and in vitro 
delivery

The C domain present in both diblocks CE1-His6 and E1C-His6 is capable of binding small 

hydrophobic molecules such as curcumin [31]. This phytochemical possesses medically 

relevant pharmacological properties yet it fails to remain stable under physiological 

conditions [29]. Therefore, maximizing curcumin loading capacities and optimizing slower 

release profiles in carriers would be important for drug delivery. Upon GNP templated-

synthesis of both protein diblocks with gold nanoparticles, there is a 7.3 and 8-fold increase 

in curcumin binding for CE1-His6-GNP and E1C-His6-GNP, respectively, when compared to 

the protein polymers alone (Table 1). Curcumin is interesting in that it only exhibits 

fluorescence upon binding to other molecules [40]. The curcumin bound P-GNP 

nanocomposites show quenching and a blue shift in the fluorescence spectra suggesting a 

proximity effect of the GNP on the fluorescence properties of curcumin (Figure S9). This 

further affirms that the P-GNP nanocomposites are binding to the curcumin.

The P-GNP nanocomposites demonstrate a prolonged release profile whereby nearly 70% of 

available curcumin was retained within both the P-GNP nanocomposites after 8.25 hours 

(Figure 3b). In contrast, the protein polymers alone released more than 50% of retained 

curcumin after 1.4 hours. The prolonged release profile could be due to: i) the binding of 

curcumin to GNPs and ii) the stabilization or increase in Tt observed upon GNP templation 

as mentioned. Previous work has demonstrated the ability of GNPs to bind small molecules 

directly [45], suggesting that the enhanced binding capacity of the P-GNP nanocomposites 

for curcumin could be attributed to the GNPs. The improved binding and stability provided 
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by the GNP templation (Table 1), could cause to the prolonged release profile. These results 

translate to successful delivery into MCF-7 cells.

While it is unclear whether CE1-His6, E1C-His6, CE1-His6-GNP and E1C-His6-GNP get 

taken up by the cells, there is an improved delivery of curcumin by the P-GNP 

nanocomposites. Extraction of curcumin from treated MCF-7 cells reveals a greater than 2-

fold increase in bioavailable phytochemical by both the nanocomposites relative to their 

protein polymers counterparts (Figures 5a and 5b). The high amount of curcumin recovered 

from the cells implies chemical protection and half-life extension of the labile, yet 

biologically active curcumin.

Conclusions

Remarkably, both CE1-His6-GNP and E1C-His6-GNP nanocomposites exhibit improved 

small molecule loading, slow and extended release as well as effective delivery when 

exposed to MCF-7 breast cancer cells. Further efforts are underway to elucidate the 

mechanisms by which P-GNP nanocomposites impact small molecule binding and releasing 

profile. These hybrid constructs can greatly broaden the biomaterials candidates for 

applications in targeted drug delivery. This can be achieved via the incorporation of tumor 

targeting domains in the solvent exposed residues of the protein polymer [46–48]. 

Furthermore, the drug loaded-nanocomposites, by way of templated-synthesis of GNP on 

the protein polymer, could be used for tandem chemotherapy and light-irradiated 

phototherapy [10,20,48].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Protein polymer sequences of CE1-His6 and E1C -His6 and gold nanoparticle (GNP) 

templated-synthesis strategy.
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Figure 2. 
In situ gold nanoparticle (GNP) templated-synthesis by protein polymer sequences. (a) UV-

Vis spectrum of protein polymer-GNP nanocomposites at pH6 and pH8 (inset shows the 

templated-synthesis products of CE1-His6-GNP pH6 (I), E1C-His6-GNP pH6 (II), CE1-His6-

GNP pH8 (III), E1C-His6-GNP pH8 (IV) and phosphate buffer-GNP pH8 (V)). TEM of (b) 

CE1-His6-GNP and (c) E1C-His6-GNP at pH8.
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Figure 3. 
(a) CD wavelength scans of protein polymers in the absence and presence of GNP. (b) 

Accumulated release of CCM as a function of time.
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Figure 4. 
Fluorescence microscopy images of MCF-7 cells treated with protein polymers alone or P-

GNP nanocomposites in the absence and presence of curcumin (CCM).
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Figure 5. 
Quantification of uptake via extraction from cells. Absorption plots of (a) CE1-His6-CCM 

(black) CE1-His6-GNP-CCM (red), and CCM (blue) (p value < 0.05) and (b) E1C-His6 

(black) E1C-His6-GNP-CCM (red) and CCM (blue) (p value < 0.05).
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Table 1

Particle sizes, Tt and Loading capacities of proteins in the presence and absence of GNPs.

Composite Size of
protein

particles
(nm)

Size of GNPs
(nm)

Tt (°C) CCM/Pc molar
binding ratio

CE1-His6 26.0 ± 3.0a N/A 55.0 ± 0.8 0.40 ± 0.06

E1C-His6 27.9 ± 3.7a N/A 33.8 ± 2.2 0.41 ± 0.10

CE1-His6-
GNP

23.8 ± 5.6b 3.4 ± 0.9 66.2 ± 0.8 3.16 ± 0.44

E1C-His6-
GNP

23.9 ± 5.2b 3.5 ± 0.9 42.1 ± 7.1 2.95 ± 0.42

a
Data from (ref 28).

b
Sizes were measured on P-GNP nanocomposites from > 130 particles.

c
Ratio of Curcumin to protein or P-GNP.
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