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Abstract: The HIV-1 integrase enzyme (IN) plays a critical role in the viral life cycle by integrating
the reverse-transcribed viral DNA into the host chromosome. This function of IN has been well
studied, and the knowledge gained has informed the design of small molecule inhibitors that now
form key components of antiretroviral therapy regimens. Recent discoveries unveiled that IN has an
under-studied yet equally vital second function in human immunodeficiency virus type 1 (HIV-1)
replication. This involves IN binding to the viral RNA genome in virions, which is necessary for
proper virion maturation and morphogenesis. Inhibition of IN binding to the viral RNA genome
results in mislocalization of the viral genome inside the virus particle, and its premature exposure and
degradation in target cells. The roles of IN in integration and virion morphogenesis share a number
of common elements, including interaction with viral nucleic acids and assembly of higher-order IN
multimers. Herein we describe these two functions of IN within the context of the HIV-1 life cycle,
how IN binding to the viral genome is coordinated by the major structural protein, Gag, and discuss
the value of targeting the second role of IN in virion morphogenesis.
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1. Introduction

Human immunodeficiency virus type 1 (HIV-1) is the causative agent of AIDS, and since its
discovery in 1983 [1,2] has become one of the leading causes of the death worldwide due to infectious
disease. Intensive study of the HIV-1 life cycle has led to the identification of viral enzymes essential
for virus replication, and antiretroviral compounds that specifically inhibit the functions of these
enzymes have transformed HIV-1 infection from a death sentence into a manageable disease. The HIV-1
integrase enzyme (IN) plays a vital role in the viral life cycle by catalyzing the integration of viral DNA
into the host chromosome. This function has been successfully targeted by a class of antiretrovirals
known as integrase strand-transfer inhibitors (INSTIs) [3]. Four FDA-approved INSTIs, raltegravir [4],
elvitegravir [5], dolutegravir [6], and bictegravir [7], have become key components of anti-retroviral
therapy regimens and are both highly effective and well tolerated ([8–10], reviewed in [11]). A fifth,
cabotegravir [12], is currently in late stage clinical trials. However, despite high barriers with the
second-generation INSTIs, treatment does select for drug resistance [13–15], and mutations conferring
resistance to multiple INSTIs have been reported in clinical settings [16,17], highlighting the need for
continued research and development of both improved and novel antiretroviral compounds.

It was recently discovered that IN has a second essential role in the HIV-1 life cycle. IN binds the
viral RNA (vRNA) genome in virions and is necessary for the proper placement of vRNA within the
viral capsid lattice during virion maturation [18]. Loss of IN–RNA binding leads to mislocalization of
the viral genome in virions and prevents viral replication in target cells [18]. This discovery opens up
new avenues for therapeutic targeting of the second function of IN that is independent of its already
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targeted catalytic function. The purpose of this review is to provide an overview of the multiple roles
of IN in the HIV-1 life cycle, with a focus on its function during virion maturation and morphogenesis.
In addition, the value of targeting virion morphogenesis as a therapeutic strategy will be discussed.

2. Overview of the HIV-1 Life Cycle

The HIV-1 life cycle can be broadly divided into an early stage (up to integration) and a late stage
(after integration). Mature HIV-1 virions consist of two copies of a single-stranded RNA genome and
replicative enzymes (i.e., reverse transcriptase (RT) and IN) encased in a conical protein lattice made up
by the viral capsid (CA) protein, together forming the viral “core” (Figure 1). The viral genome inside
the core exists in the form of a viral ribonucleoprotein complex (vRNP) bound and condensed by the
viral nucleocapsid (NC) protein, and associated with RT and IN enzymes [19]. The viral core itself is
enclosed within the viral lipid envelope derived from the host cell plasma membrane. The surface of
the virion is studded with the viral envelope (Env) glycoprotein trimers (reviewed in [20]). During viral
entry, the Env glycoproteins engage the CD4 receptor and CXCR4/CCR5 coreceptors on the target cell,
which induces a series of conformational changes in Env, resulting in membrane fusion and release of
the viral core into the cytoplasm (reviewed in [21,22]).

After entry, the viral core is transported towards the nucleus along microtubules [23,24] and reverse
transcription ensues (Figure 1). During this stage, the core undergoes an uncoating process in which the
capsid disassembles and CA monomers are shed from the lattice (reviewed in [25]). While uncoating and
reverse transcription have long been thought to occur in the cytoplasm, recent studies have provided
evidence that these processes are not completed until after nuclear entry [26,27]. Notwithstanding,
the timing and degree of uncoating is critical for completion of reverse transcription. Several mutations
in CA can destabilize the CA lattice, resulting in severe defects in reverse transcription [28–31],
presumably due to premature degradation of the core components, including IN [32]. IN remains
associated with the reverse transcription complex, and following completion of cDNA synthesis,
a multimer of IN binds to both ends of the linear viral DNA to form the intasome, or the stable synaptic
complex. The reverse transcription complex is actively transported into the nucleus through the
nuclear pore complexes involving Nup 358, Nup 153, as well as CPSF6 (reviewed in [33,34]), and upon
entering the nucleus IN catalyzes the integration of the viral DNA into the host cell chromosome
(reviewed in [35]).

After the viral DNA is integrated into the host chromosome it serves as a template from which
single full-length viral mRNA is transcribed by the host RNA polymerase II machinery (reviewed
in [36], Figure 1). This viral transcript can remain unspliced or undergo a complex series of splicing
events (reviewed in [36]). Fully spliced HIV-1 mRNAs code for the regulatory Tat, Rev, and Nef
proteins and are exported from the nucleus via the NXF1/NXT1 pathway (reviewed in [37–39]).
Partially spliced mRNAs code for the viral envelope Env and accessory proteins Vif, Vpr, and Vpu,
while the unspliced full-length HIV-1 mRNAs can be packaged into virions as the genomic RNA
or translated to generate the major structural protein, Gag, and the frameshifting variant Gag–Pol
polyprotein [40,41], which additionally codes for the replicative enzymes protease (PR), RT, and IN
(reviewed in [37–39]). Both partially spliced and unspliced HIV-1 RNAs are retained in the nucleus
until they can be exported by the viral Rev protein [42,43] through a CRM1-dependent pathway [44–46].

Unspliced dimeric vRNA is trafficked to the plasma membrane by Gag, and this complex
subsequently nucleates the assembly of nascent virions (reviewed in [47–49], Figure 1). During this
process, the Gag and Gag–Pol polyproteins polymerize around the vRNA, acquire Env glycoproteins
recruited to the budding site, and virions bud off from the infected cell in an immature state. During or
shortly after budding, the virion undergoes a maturation process in which the Gag and Gag–Pol
polyproteins are cleaved into separate mature proteins by the virally encoded PR enzyme. This triggers
a structural rearrangement within the virion, whereby the cleaved NC proteins condense the vRNA
together with RT and IN to form the vRNP, the viral CA lattice assembles around the vRNP, and the
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now mature virion is ready to infect a new target cell and reinitiate the viral life cycle (reviewed
in [47,48]).
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3. The Essential Catalytic Function of Integrase

A defining feature of the retroviral life cycle is integration of the reverse-transcribed viral DNA
into the host chromosome. During integration, a multimer of IN binds either end of the linear viral
DNA to form the intasome complex, which inserts the reverse transcribed viral DNA into the host DNA
(reviewed in [35,50]). This function of IN was identified shortly after the discovery of HIV-1 in the early
1980s [51–54], and has been extensively studied. Each IN molecule is composed of three functionally
distinct domains: an N-terminal domain (NTD), a catalytic core domain (CCD), and a C-terminal
domain (CTD). The NTD and CTD domains mediate DNA binding and play important structural roles
in the intasome complex, while the CCD contains a highly conserved D,D,-35-E motif in the enzyme
active site necessary for catalytic activity (reviewed in [35,50]). Mutations at these conserved residues,
collectively referred to as class I IN mutations [55–57], predictably abolish the catalytic activity of IN
in vitro [55] and block the viral life cycle at an integration stage in infected cells [57].

Shortly after nuclear entry and prior to integration, viral DNAs are rapidly loaded with core
as well as linker histones [58–60]. Recent studies revealed that in contrast to integrated proviral
DNAs, unintegrated retroviral DNAs are transcriptionally silenced through deposition of histones
bearing repressive transcription marks [58–60]. In line with this, treatment of infected cells by histone
deacetylase inhibitors can allow viral gene expression from unintegrated retroviral DNAs [58,59,61,62]
by preventing the removal of histone H3 acetylation [58,59], an epigenetic modification associated
with active transcription. Silencing of the unintegrated retroviral DNAs is mediated by the HUSH
complex [59], which epigenetically represses genes by recruiting the H3K9me3 methyltransferase
SET domain bifurcated 1 (SETDB1) [63]. Depletion of a component of the HUSH complex, NP220,
allows viral gene expression from the unintegrated DNAs of some retroviruses [59]. Retroviruses
appear to have evolved strategies to prevent silencing by the HUSH complex. For example, the HIV-2
and SIV Vpr/Vpx proteins induce the proteasomal degradation of HUSH, allowing for enhanced viral
gene expression [64,65]. Finally, expressing the Tax transcription factor encoded by human T-cell
leukemia virus 1 (HTLV-1) or the ICP0 immediate early protein of herpes simplex virus type-1 (HSV-1)
in cells prevents or reverses the epigenetic silencing of integrated HIV-1 DNA, and can rescue the
infectivity of an integration-defective HIV-1 virus [66], demonstrating that the usual requirement for
integration can be bypassed if epigenetic silencing of unintegrated viral DNA is prevented.

IN is a dynamic protein and can form a population of monomers, dimers, and tetramers in vitro,
and as noted above forms multimers during integration (reviewed in [67]). Early studies indicated
that IN may function as a multimer by demonstrating that catalytically inactive mutant IN proteins
bearing substitutions at different sites could trans-complement each other and regain catalytic activity
in vitro [68–70]. More recently, a mechanistic study using a small molecule inhibitor found that the
compound binds and selectively acetylates Lys173 at the interface between two dimers within an
IN tetramer [71]. Importantly, the compound interfered with the interplay between IN subunits in a
manner that correlated with its ability to inhibit IN catalytic activity, providing further evidence that
proper IN multimerization is critical for its function [71].

The first retroviral intasome to be structurally characterized was the prototype foamy virus (PFV)
from the spumavirus genus, which consists of a tetramer of IN made up of a dimer of dimers with
viral DNA between the two subunits ([72,73] and reviewed in [74]). Each dimer includes an inner and
outer IN molecule, with the inner subunits interacting with the viral and host DNA. The catalytic
site in the inner IN CCD cooperatively coordinates the integration reaction with the NTD of the
opposing inner IN, while the inner CTDs bind the host DNA and help hold the two dimers together.
Meanwhile, the outer IN subunits further stabilize the complex by contacting the inner IN molecules at
the CCD–CCD interface.

It was generally assumed that the HIV-1 intasome complex shared a similar structure. Tetrameric
IN binds to viral DNA in cross-linking experiments [75], is catalytically active in vitro [76], and has been
observed to interact with viral DNA by atomic force microscopy [77,78]. However, recent cryogenic
electron microscopy (cryo-EM) studies have suggested that HIV-1 IN forms even higher-order multimers
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within the intasome complex [79]. In 2016 and 2017, several new retroviral intasomes were characterized
in addition to HIV-1, including that of the β-retrovirus mouse mammary tumor virus (MMTV) [80],
the α-retrovirus Rous sarcoma virus (RSV) [81], and the lentiviruses maedi-visna virus (MVV) [82].
Interestingly, there was a surprising diversity in the structure of the different retroviral intasomes
(reviewed in [74]). While detailed structural analysis of the HIV-1 intasome has long been hindered by
the propensity of HIV-1 IN to aggregate in solution, the aforementioned study overcame this issue by
generating a hyper-active HIV-1 IN mutant protein with improved solubility. Single particle cryo-EM
structures of the HIV-1 IN construct in complex with DNA indicate that a higher-order multimer of
several tetramers may be needed to efficiently integrate viral DNA, although a lower-order intasome
consisting of an IN tetramer was also observed [79].

During integration, IN multimers assemble at either end of the linear viral DNA to form the
intasome complex and catalyze insertion of the viral DNA in two separate steps: 3’ processing and
strand transfer. During 3’ processing, IN hydrolyzes a phosphodiester bond at either end of the viral
DNA and removes two to three nucleotides in front of an invariant 5’-CA-3’ dinucleotide, creating free
3’ hydroxyl groups [35,83–85]. Then, during the strand transfer reaction, the intasome binds the target
host DNA and uses the 3’ hydroxyls at either end of the viral DNA as nucleophiles to cut the host
DNA in a staggered fashion, at the same time joining the viral DNA to the 5’ ends of the cut host
DNA [86–88]. Finally, the intasome dissembles, leaving loose 5’ overhangs on the viral DNA and a pair
of single-stranded gaps on either side of the integrated viral DNA, which are subsequently repaired by
host cell machinery (reviewed in [89]). In an in vitro study using model DNA substrates that mimicked
retroviral integration intermediates, the base-excision repair (BER) pathway enzymes DNA polymerase
β, flap endonuclease 1 (FEN1), and ligase I were able to repair the gap and 5′ two-base overhangs [90].
SiRNA knockdown studies have similarly found that components of the BER pathway are important for
retroviral integration [91,92]. As a result of integration and subsequent gap repair, a short segment of
the target DNA sequence is duplicated and flanks the integrated provirus. The length of the duplicated
sequence varies between retroviruses, with HIV-1 generating 5-bp duplications [93,94].

HIV-1 does not integrate randomly, but rather preferentially targets transcriptionally active genes
in the nuclear periphery [95–97]. The pre-integration complex (PIC) is guided to its integration
site by the chromatin-associated cellular protein lens epithelium-derived growth factor (LEDGF),
also called transcriptional coactivator p75, which interacts with IN at its C-terminal integrase-binding
domain [98–101]. The LEDGF/p75 N-terminus consists of a PWWP domain, which binds nucleosomes
trimethylated at Lys36 of histone H3 (H3K36me3), an epigenetic mark associated with transcriptionally
active sites [102,103]. Stringent knockdown or knockout of LEDGF/p75 significantly diminishes
HIV-1 titers by specifically inhibiting integration, and also changes integration site-selection [104–106].
Additionally, replacing the PWWP domain of LEDGF/p75 with a heterologous chromatin binding
domain redirects HIV-1 integration to chromatin regions bound by the alternative domain [107],
further supporting the conclusion that LEDGF/p75 is responsible for guiding and tethering the HIV-1
PIC to its integration site.

Integrase strand-transfer inhibitors (INSTIs) prevent the integration reaction by targeting the
strand transfer step [3]. These drugs bind to the active site of the IN CCD, displacing the reactive
3’ end of the viral DNA and preventing its insertion into the host DNA [73]. Mutations in the IN
active site confer resistance to INSTIs by directly or indirectly inhibiting drug binding, albeit at a
viral fitness cost (reviewed in [15,108,109]). As such, other compensatory mutations that increase
the catalytic activity of IN are additionally found in patients undergoing INSTI therapy [108,109].
Emergence of resistance and cross-resistance is commonly observed for the two first-generation
INSTIs, raltegravir and elvitegravir [110]. In spite of the improved potency and higher barriers for
resistance, second-generation inhibitors also select for viral resistance [108,111], highlighting the need
for antiretroviral compounds that inhibit IN by a different mode of action.
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4. HIV-1 Gag as the Master Regulator of Virion Assembly

Virion assembly, release, and maturation is a multistep process involving coordinated
protein–protein, RNA–RNA, and protein–RNA interactions (reviewed in [112]). Like all retroviruses,
HIV-1 selectively packages two copies of the full-length vRNA genome (reviewed in [113]), which are
non-covalently dimerized at their 5’ untranslated region (5’ UTR). The HIV-1 5’ UTR is highly structured
and forms six stem-loops with various roles in transcriptional regulation, reverse transcription,
dimerization, RNA splicing, and packaging (reviewed in [114]). The regions responsible for RNA
dimerization and packaging overlap and contain four stem loop structures, SL1, SL2, SL3, and SL4,
which are often collectively referred to as the packaging sequence, or psi (Ψ). Dimerization of the
RNA molecules is required for packaging and infectivity, and is initiated by a region termed the dimer
initiation site in SL1. This site contains an apical bulge of nine bases, six of which form a palindrome,
allowing the formation of classic Watson–Crick base pairs with the complementary sequence on the
other RNA molecule, resulting in a “kissing-loop” structure [47,114–116]. The dimer initiation site is
able to mediate dimerization of RNA molecules both in vitro [117–120] and in vivo [121–123], and is a
major determinant in partner selection and copackaging [121,122].

Early biochemical studies have found that Gag first interacts with vRNA in the cytoplasm as a
monomer or low-order multimer, and brings the genome to the plasma membrane [124]. Further Gag
molecules are recruited to this nucleation site, and Gag forms high-order multimers through interactions
mediated by CA–CA interactions with the neighboring Gag molecules. Many of these findings were
later corroborated by total internal reflection fluorescence (TIRF) microscopy studies [125–127]. In these
experiments, vRNA was observed reaching the plasma membrane first, followed by recruitment of
further Gag molecules soon after. In the absence of Gag, vRNA moved rapidly towards the plasma
membrane, suggesting that Gag is responsible for docking vRNA at the plasma membrane. Over time,
the amount of Gag at the nucleation site increased, consistent with many Gag molecules polymerizing
around the initial Gag–RNA complexes [125–127].

The main contact point with vRNA within Gag is its NC domain, which is later cleaved to form
mature NC protein during virion maturation. The 5’ UTR SL2 and SL3 RNA structures appear to be
recognized by NC, which adopts distinct conformations to bind either stem loop [128,129]. In addition
to recognizing structured elements on the HIV-1 RNA, there is also evidence that Gag recognizes
dimerized RNA [130]. While a minimal sequence both necessary and sufficient for the packaging of
the HIV-1 genome has not been defined, an RNA sequence containing SL1, SL2, and SL3 can both
dimerize and bind NC in vitro [131], and mutations within the 5’ packaging sequence prevent RNA
being packaged into viral particles [132]. Likewise, deletion of NC prevents RNA from being packaged
and generates particles devoid of the HIV-1 genome [133]. NC binding to RNA is mediated by two
CCHC-type zinc knuckle motifs [134–136], and swapping the NC domain of HIV-1 Gag with that of
the murine leukemia virus (MLV) Gag allows the chimeric HIV-1 Gag protein to package the MLV
genome [137,138], highlighting the importance of NC in selective genome packaging. Interestingly,
replacing the HIV-1 Gag NC domain with the mouse mammary tumor virus (MMTV) NC domain
does not change Gag’s preference for packaging HIV-1 RNA [139], suggesting that NC alone does not
account for the specificity of HIV-1 genome packaging. Gag-RNA binding is dynamic, and changes as
virions assemble, bud, and mature. In the cytosol the Gag NC domain preferentially binds structured
elements of the HIV-1 genome (i.e., Ψ and RRE) and displays a preference to bind G- and U-rich
elements on cellular mRNAs, while the matrix domain (MA) selectively binds cellular tRNAs [140].
In contrast, during virion assembly at the plasma membrane, NC preferentially binds A-rich sequences
on the viral genome as well as on cellular mRNAs, while MA dissociates from tRNAs and binds the
plasma membrane, facilitating budding of the virion [140].

After assembling at the plasma membrane, spherical immature virions bud off from the infected
cell (Figure 2). In immature particles approximately 2000–4000 Gag molecules [141] are radially
arranged along the viral envelope, with the matrix domain (MA) anchored to the membrane at one
end and nucleocapsid (NC), still bound to viral RNA, projecting towards the interior (Figure 2).
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Immediately after or during budding, the virion undergoes a maturation process in which the viral
protease enzyme (PR) cleaves Gag and Gag-Pol at multiple sites in a defined sequence to produce
independent viral structural and replicative proteins (Figure 2). Gag is cleaved to produce MA,
capsid (CA), NC, p6, and two spacer peptides (SP1 and SP2) while Pol is cleaved to yield the viral
enzymes, protease (PR), reverse transcriptase (RT), and IN (reviewed in [47,48,142]). The processed
proteins then rearrange to form the structure of the mature virion. MA remains associated with the inner
side of the viral membrane and forms a discontinuous shell immediately under the membrane (Figure 2).
Approximately 1000–1500 monomers of CA assemble to form the capsid lattice [141]. In HIV-1 the
capsid takes on a characteristic conical shape, and is composed of approximately 250 hexameric and
12 pentameric rings of CA that are stabilized by interactions within and between subunits [143–148].
Enclosed inside the viral capsid are the two single-stranded HIV-1 RNA molecules bound by NC,
and associated with IN and RT, together forming the vRNP (reviewed in [47,48,142]).
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Figure 2. Virion maturation and morphogenesis. (A) The Gag and Gag-Pol polyproteins assemble with
vRNA at the plasma membrane, bud from the surface of the cell as immature virions, and then undergo
a maturation process. (B) During maturation PR cleaves Gag and Gag-Pol into independent structural
and replicative proteins.

Thus, virion morphogenesis is a highly complex process that requires coordinated interaction
between the Gag polyprotein and viral RNA, as well as regulated cleavage of Gag into separate mature
proteins. While the process has long been thought to be driven solely by Gag, there is emerging
evidence that IN plays an unexpected role in proper placement of the viral RNA genome inside the
capsid during maturation.
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5. Role of Integrase in Particle Morphogenesis

While integration is the canonical function of IN, early mutagenesis studies indicated that IN
may also play a role in other aspects of virus replication. In particular, a group of IN substitutions
referred to as class II IN mutations lead to pleiotropic effects in HIV-1 replication, including defects in
particle assembly [57,149–161], morphogenesis [18,57,151,157–159,162,163], and reverse transcription
in target cells [18,56,57,153,155–157,159,161–179], in some cases without impacting IN catalytic function
in vitro [55,151,152,155,156,165,166,169,171,180,181]. When visualized using electron microscopy,
class II IN mutant viruses generate particles with vRNP complexes mislocalized outside the capsid
lattice [18,57,151,157–159,162,163]. A similar phenotype was noted in IN-deleted viruses [158],
again suggesting that IN is necessary for proper virion morphogenesis. Such aberrant viral particles
are generally referred to as “eccentric particles,” due to the mislocalization of the vRNPs outside the
capsid lattice, and are morphologically distinct from immature virions.

Surprisingly, it was recently discovered that treatment of virus-producing cells with a class
of 2-(quinolin-3-yl) acetic acid derivatives known as allosteric IN inhibitors (ALLINIs) (also called
noncatalytic IN inhibitors (NCINIs), lens epithelium-derived growth factor (LEDGF)/p75-IN inhibitors
(LEDGINs), IN-LEDGF/p75 allosteric inhibitors (INLAIs), or multimeric IN inhibitors (MINIs))
results in generation of particles with eccentric morphologies [162,163,182,183]. ALLINIs were
originally designed to prevent integration by interfering with IN binding to the cellular cofactor,
lens epithelium-derived growth factor (LEDGF/p75), important for targeting the viral pre-integration
complex to the host chromosome [184]. The compounds compete with LEDGF binding to IN by
engaging the V-shaped binding pocket created by the catalytic core domain of two IN dimers in
the intasome complex [163,184–189]. In addition to preventing IN–LEDGF interactions, ALLINIs
also prevent integration in a LEDGF-independent manner by inducing aberrant IN multimerization,
locking IN in catalytically inactive multimers that are unable to assemble on viral DNA and carry out the
integration reaction (reviewed in [185,189]). However, subsequent studies found that many ALLINIs
are more potent when added to producer cells, and that they inhibit viral replication at the later stages
of the viral life cycle [163,182,183,186–188]. Specifically, treatment with ALLINIs interferes with virion
morphogenesis and leads to the generation of eccentric viral particles with vRNPs mislocalized outside
the capsid lattice, strikingly similar to those generated by class II IN mutations [163,182,183,187,190].
Similar to the mechanism by which they can prevent integration, ALLINIs are proposed to interfere
with virion morphogenesis by inducing aberrant IN multimerization, and mutations that confer
resistance to ALLINIs also prevent ALLINI-induced IN multimerization [182,191]. Many class II IN
mutations also alter IN multimerization [76,180,192,193], suggesting that proper multimerization is
important for IN’s function during virion morphogenesis. However, a defined mechanism by which
IN ensures viral RNA is correctly packaged inside the capsid lattice remained elusive for many years.

A seminal study in 2016 revealed that IN binds viral genomic RNA in mature virions, and that
IN–RNA binding is necessary for viral replication [18]. Crosslinking immunoprecipitation sequencing
(CLIP-seq), an approach that captures protein–RNA interactions in relevant physiological settings [140],
was instrumental in this discovery and demonstrated that IN binds the HIV-1 genome at discrete sites
with a distinct binding pattern from that of NC. IN not only binds RNA, but also modulates RNA
structure in vitro by bridging multiple RNA molecules together [18]. Several basic residues in the IN
CTD, K264, K266, and K273, directly interact with RNA, and substitutions at these positions abolish
IN–RNA binding in virions. Importantly, virus production in the presence of ALLINIs, BI-D and BI-B2,
also prevented IN–RNA binding, likely through aberrant IN multimerization as detailed below [18].
Finally, inhibiting IN interactions with RNA, either by introducing mutations at the CTD binding site
or by ALLINI treatment, leads to the generation of eccentric, non-infectious viral particles (Figure 3)
with vRNPs mislocalized outside of the core [18].
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Figure 3. Inhibition of IN–RNA interactions result in the formation of eccentric virions. Immature viral
particles consist of many molecules of Gag and Gag–Pol concentrically arranged along the inner leaflet
of the viral membrane and bound to viral RNA (vRNA) at the NC domain. In mature viral particles,
the vRNA is bound by NC and condensed with RT and IN to form the vRNP, which is enclosed in
the conical capsid lattice made up of CA monomers. In eccentric viral particles, as observed upon
inhibition of IN binding to the viral genome, the vRNP is mislocalized outside of the capsid lattice.

This discovery uncovered an important clue as to how IN contributes to virion morphogenesis by
highlighting its interaction with RNA, but also raised questions regarding the relationship between
IN–RNA binding, IN multimerization, and proper virion morphogenesis. Specifically, the findings
described above strongly indicated that IN–RNA binding was a driving force behind proper virion
maturation, but the observation that numerous class II IN mutations lead to eccentric virion morphology,
yet are distally located from the RNA-binding site in the IN CTD, argued that the loss of IN–RNA
may be correlative and another characteristic of IN, such as its proper multimerization, was the true
determining factor.

Recent characterization of the effects of class II IN mutations on IN–RNA binding, IN multimerization,
and virion morphology has revealed that all of the class II IN substitutions examined compromise
IN–RNA binding and lead to the generation of eccentric viral particles [190]. IN–RNA binding was
prevented by one of three distinct mechanisms: reducing IN levels in virions and precluding formation
of IN–RNA complexes, directly preventing IN–RNA binding without substantially affecting IN levels
or IN multimerization, but most commonly through adversely affecting functional IN multimerization
and indirectly impairing IN–RNA binding. In vitro, IN binds RNA as tetramers, and class II IN mutant
proteins that form predominantly dimers have a reduced affinity for RNA. The mutations cause an
even greater defect in the ability of IN to bridge multiple RNA molecules, suggesting that although
IN dimers may be able to weakly bind RNA, IN must form tetramers to bind RNA with high affinity
and recruit additional viral RNA molecules, as would possibly occur when viral RNA is condensed
and placed within the core during maturation. Taken together, these recent findings argue that proper
IN multimerization is likely a prerequisite for IN–RNA binding in virions and is important to IN’s
function in virion morphogenesis. The identification of multiple mechanisms responsible for the
loss of IN–RNA binding helps answer how multiple IN substitutions can cause the same phenotype
and strengthens the conclusion that IN–RNA interactions account for the key role of IN in virion
morphogenesis [190].

Whether IN plays a similar role during virion maturation in other retroviruses has yet to be
studied. Although the process of maturation is relatively conserved across different retroviruses,
there is considerable diversity in particle and core morphologies [147,194,195]. Interestingly, mutations
in the C-terminus of the murine leukemia virus (MLV) IN cause defects in reverse transcription
reminiscent of those caused by class II IN mutations in HIV-1 [196,197]. More studies are needed to
determine if this defect is the result of aberrant virion morphology, or if IN–RNA interaction is required
for proper virion morphology.



Viruses 2020, 12, 1005 10 of 22

6. The Fate of Eccentric Viral Particles

It is intriguing that eccentric viral particles are unable to complete reverse transcription in target
cells despite packaging comparable levels of RT enzyme and vRNA as wild-type particles [162,198].
In addition, neither the binding pattern of NC [199] on the viral genome nor genome condensation
by NC [162] seem to be affected in eccentric virions. Multiple studies have reported that class II
IN mutant viruses or viruses treated with ALLINIs are defective for reverse transcription in target
cells [18,56,57,153,155–157,159,161–179,182,183,187,188,200,201], but offer varying explanations for this
observation. One possibility is that direct interaction between IN and RT is required for reverse
transcription, a hypothesis that is bolstered by the finding that IN interacts with RT in vitro, and IN
mutations that abolish this interaction also prevent reverse transcription in cells [175,201,202]. It is
also possible that while vRNA is mislocalized outside the viral capsid in eccentric particles, RT is not,
and physical separation of RT from vRNA underlies the defect in reverse transcription [199]. Finally,
there is growing evidence that the defect in viral infectivity is caused by the premature loss of vRNA and
IN in target cells. Several studies have found that when class II IN mutant viruses or ALLINI-treated
viruses enter target cells, vRNA and IN itself is lost from the cells using both biochemical [199] and
microscopy-based assays [203]. Interestingly, mutations in CA that destabilize the capsid lattice in vitro
also block reverse transcription in target cells [28–31], and treating producer cells with a CA-targeting
compound leads to the generation of eccentric viral particles defective for reverse transcription [204],
much like viral particles produced in the presence of ALLINIs. Taken together, these findings argue
that proper encapsidation within the viral core is necessary to protect vRNA and viral replicative
proteins from the host cell environment, and when unprotected by the viral capsid, vRNA and IN are
either passively or actively degraded.

A mechanism responsible for the loss of vRNA and IN in target cells has yet to be defined. It is
possible that the high AU-content of HIV-1 vRNA makes it inherently unstable [205–207], in a manner
similar to that of cellular mRNAs that encode cytokines and growth factors [208]. It is also possible
that when ectopically expressed alone in cells, IN undergoes proteasomal degradation [209–213],
and knockdown of a cellular component of the ubiquitin-conjugation system, E3 RING ligase TRIM33,
enhances HIV-1 infection and replication in cells [210]. However, another study found that during
infection with eccentric viral particles, the loss of vRNA and IN was proteasome-independent [199].
Future studies are warranted to determine the precise mechanism of vRNP degradation upon its
premature exposure.

In addition to preventing premature degradation of vRNA and IN, the CA lattice may also play
an important role in shielding viral core components from host immune recognition. Mutating the
HIV-1 CA to prevent its interaction with cellular factors leads to activation of innate immune responses
and cytokine production in infected dendritic cells [214] and activation of a type 1 interferon response
in infected monocyte-derived macrophages [215], suggesting that the CA lattice is important for
recruiting cellular proteins to cloak viral components from detection. While it is important to note that
infected dendritic cells appeared to detect reverse-transcribed viral DNA through the cytosolic DNA
sensor cGAS [214], innate cytokine expression was also elicited in peripheral blood mononuclear cells
transfected with purified HIV-1 RNA [216], demonstrating that HIV-1 RNA does have the potential to
trigger immune activation.

7. Therapeutic Outlook and Conclusions

Currently, all clinically approved IN inhibitors share a common mode of action and target
the strand-transfer reaction during integration, making viral cross-resistance a problem. Therefore,
there has long been interest in targeting alternative functions of IN, and its vital role during virion
morphogenesis has become an attractive drug target. While not initially designed to interfere with
viral particle maturation, many ALLINIs lead to the generation of eccentric viral particles in addition
to inhibiting integration [18]. This dual-mode of action allows these compounds to retain antiviral
activity even when viral resistance develops to one mode of action [217], and gives ALLINIs a distinct
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and non-overlapping resistance profile with INSTIs [218,219]. While resistance mutations do arise to
ALLINIs, they are accompanied by a viral fitness cost. Importantly, mutations that confer resistance to
ALLINIs can disrupt virion morphogenesis themselves, and compensatory mutations are required to
overcome this defect [220], indicating a high barrier to resistance. Several compounds are currently in
clinical trials after demonstrating favorable bioavailability, tolerability, and pharmacokinetics, and with
more in development, ALLINIs are a promising new class of antiretrovirals.

CA has also emerged as a potential target for compounds designed to interfere with virion
morphogenesis. Compounds that disrupt the stability of the capsid lattice and cause morphological
defects in virions also block viral replication at or prior to reverse transcription [204,221], and they
likely lead to the premature loss of vRNA and IN similar to how ALLINIs work. Two recent studies
reported the effectiveness of a CA-targeting small molecule compounds in vivo, both in a humanized
mouse model [222] and in humans [223]. Both compounds demonstrated potent and sustained antiviral
activity in vitro, with no measurable cross-resistance with other antiretroviral drugs [223]. While it is
important to note that these compounds led to morphological aberrations in virions by accelerating CA
assembly rather than destabilizing it and appear to exert their antiviral effects primarily by preventing
the nuclear import of viral DNA, they still highlight the importance of proper capsid assembly to viral
replication and the value of interfering with virion morphogenesis as a therapeutic strategy.

In conclusion, virion morphogenesis is a critical step in the HIV-1 life cycle, and the discovery
that IN plays a key role in this process opens up new doors for therapeutic interventions. IN is
crucial for ensuring that the viral RNA genome is packaged inside of the capsid lattice in virions,
and interfering with this function of IN leads to morphological defects that prevent further viral
replication. Small molecule compounds that exert this effect can complement existing antiretroviral
compounds already in the clinic, and when used in combination with INSTIs could further raise the
barrier to drug resistance. Destabilizing the viral capsid by targeting CA has similar effects on viral
replication, and is also a viable therapeutic strategy. A better understanding of the events surrounding
virion morphogenesis will be important to help guide the design of future therapeutics.
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