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A three-membered ring approach to carbonyl
olefination
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The carbon–carbon double bond, with its diverse and multifaceted reactivity, occupies a

prominent position in organic synthesis. Although a variety of simple alkenes are readily

available, the mild and chemoselective introduction of a unit of unsaturation into a functio-

nalized organic molecule remains an ongoing area of research, and the olefination of carbonyl

compounds is a cornerstone of such approaches. Here we show the direct olefination of

hydrazones via the intermediacy of three-membered ring species generated by addition of

sulfoxonium ylides, departing from the general dogma of alkenes synthesis from carbonyls.

Moreover, the mild reaction conditions and operational simplicity of the transformation

render the methodology appealing from a practical point of view.
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The C–C double bond is a functional group of central
importance in organic chemistry, it is expressed as such in
countless secondary metabolites and, more importantly, it

is arguably one of the most useful functionalities for the practi-
tioners of the art of total synthesis1. Some of the most powerful
reactions available to organic chemists rely on the reactivity of
olefins: the Heck reaction, olefin metathesis and the Sharpless
asymmetric dihydroxylation are notable examples2–4, coin-
cidentally all recognized by Nobel Prizes during the last 16 years.
There are a number of different possible approaches for the
introduction of a double bond into a molecule, amongst which
the olefination of carbonyl moieties is the most developed5, 6.
Since the 1950s and the landmark report of the Wittig reaction7, a
multitude of variations and new methodologies have been
developed, such as the Peterson, Julia, and Tebbe olefinations or
the HWE modification of Wittig’s original conditions7–11. Not-
withstanding, investigation into the improvement and expansion
of the toolset of reactions employed to introduce olefins into
molecules remains a rich field of research to this day12–14. With
this idea in mind, we embarked on the development of a strategy
to achieve the olefination of carbonyls.

Typical classifications of olefination methodologies tend to
discriminate between the nature of the reagent employed, such as
phosphonium ylides (Wittig), sulfones (Julia), silicon-stabilized
carbanions (Peterson), or metal alkylidenes (Tebbe). Given that
all these reactions are assumed to proceed through cyclic inter-
mediates which undergo different types of cycloreversion reac-
tions in the olefin-yielding step, we propose a different and
perhaps richer view, assigning a classification based on the ring
size of that key reaction intermediate (Fig. 1a).
For instance, the modified Julia (so-called Julia–Kocienski)
reaction involves a five-membered spirocyclic intermediate,
whereas the Wittig, Tebbe, and Peterson olefinations all proceed
via a four-membered ring, as does recently developed aza-
phosphetanes chemistry15, 16. The conspicuous scarcity of three-

membered ring intermediates in this analysis drove us to develop
a new approach to olefination relying on an aziridine inter-
mediate17–20.
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Table 1 Optimization of reaction conditions
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Entry Azine Pronucleophile Base Temperature
(°C)

Isolated
yielda

1 2a BrCH2COPh LiHMDS −78 0%
2 2a CH2Br2 n-BuLi −78 0%
3 2a Me3S(I) NaH −20 9%
4 2a Me3SO(I) NaH 0 71%
5 2a Me3SO(I) t-BuOK r.t. 84%
6 2a Me3SO(I) t-BuONa r.t. 60%
7 2a Me3SO(I) t-BuOLi r.t. 27%
8 2b Me3SO(I) t-BuOK r.t. 53%
9 2c Me3SO(I) t-BuOK r.t. <10%
10b 2a Me3SO(I) t-BuOK r.t. 16%
11c 2a Me3SO(I) t-BuOK r.t. 56%

r.t. room temperature
aIsolated yield over two synthetic steps
b1.05 equiv. Me3SO(I), 1.05 equiv. t-BuOK
cNo exclusion of water
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Over the past few years, our group has reported unprecedented
transformations that take advantage of underdeveloped
reactivity21, 22. In this context, we herein present an unusual and
conceptually method for the synthesis of olefins from aldehydes,
which we believe brings further diversity to the field while pos-
sessing synthetic advantages in its own right.

Results
Initial considerations. Our approach, depicted in Fig. 1b pre-
dicated access to an olefin from an aldehyde in a unique process.
We proposed the transient generation of an N-iminyl aziridine
and its subsequent cheletropic cycloreversion23–28 to unveil the
desired olefin product.
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At the outset of the project, we foresaw two main challenges.
First, the formation of an N-iminyl aziridine from a carbonyl
precursor in a synthetically useful manner29, 30 and then finding
appropriate conditions for a facile cheletropic elimination31.

We eventually settled for the aziridination of an in-situ
generated N-iminyl imine (azine) as route to the three-membered
ring intermediate (Fig. 1b). Key to addressing the two aforemen-
tioned challenges would be the nature of the hydrazone R1 and R2

substituents.

First experiments. In initial experiments, we sought to convert 2-
napthaldehyde as model substrate to the corresponding azine. We
started our investigation with the use of the hydrazone derived
from methyl pyruvate (1a, Table 1). A facile condensation
between the two delivered the crude azine (2a) in analytically
pure form, on which we explored suitable conditions for aziridine
formation. The use of an α-bromo enolate in imino-Darzens-like
conditions, as well as the combination of CH2Br2 and butyl
lithium were attempted, but without success (Table 1, entries 1
and 2). We next turned our attention to the use of sulfur ylides,
generated in situ from sulfonium salts, as nucleophiles32. To our
delight, the desired terminal olefin was directly isolated in 9%
yield (Table 1, entry 3). Encouraged by this result we turned to
sulfoxonium ylides, known to exhibit greater stability, which
allowed us to increase the temperature of the reaction33. The use
of NaH as base led to the formation of the olefin in 71% yield
(Table 1, entry 4). Variation of the base and the counterion
helped us to identify t-BuOK as the best combination (Table 1,

entries 5–7). Changing the substituents R1 and R2 on the imine
moiety did not lead to further improvement (Table 1, entries 8
and 9). Finally, a slight excess of sulfoxonium ylide is necessary to
achieve high yield (Table 1, entry 10) and rigorous exclusion of
water while beneficial is not mandatory (Table 1, entry 11).

Substrate scope. With suitable conditions for this olefination in
hand, we next explored the scope of aromatic aldehydes. As
shown in Fig. 2, a diverse array of electron-neutral (3a, 3b),
electron-poor (3c–3f), and electron-rich (3g–3i), in addition to
heteroaromatic aldehydes (3j–3m), performed well in this pro-
tocol. Due to the mildness of the reaction conditions, a wide
range of functional groups are well tolerated: esters, nitro groups,
amides, ethers, and aryl halides. Importantly, although the overall
transformation implies one extra step for N-iminyl imine pre-
paration, this is a very facile operation for all aldehydes studied.
Indeed, simple stirring at room temperature in presence of
MgSO4 leads to quantitative conversion into the free-flowing,
generally yellow powder products. The only side products,
detected in the crude products mixtures, are the homologated
azines.

We next applied our reaction conditions to α,β-unsaturated
azines, derived from enals (Fig. 3a). Surprisingly, the reaction of
sulfoxonium ylides with unsaturated azines resulted in a clean
1,2-addition to generate dienes 4 after cheletropic elimination.
Notably, no product of conjugate addition was observed by 1H
NMR analysis, despite the fact that reaction between sulfoxonium
ylides and α,β-unsaturated carbonyls is a textbook transforma-
tion. This effectively allows a smooth access to synthetically useful
E-configured di- and trisubstituted dienes (4a–4d).

The generality of the reaction was also investigated on aliphatic
aldehydes (Fig. 3b). In this case, the use of hydrazone 1b was
crucial, as when 1a was employed, a rapid isomerization to an
unstable side product (tentatively assigned as the N-iminyl
enamine tautomer) was observed. It is likely that 1b, carrying an
extended π-system, stabilizes the hydrazone tautomer. Other
types of highly conjugated hydrazones with more electron rich
system (1d) or more electron poor system (1e), were tested but
failed in providing the desired product. Compound 1e exhibited
prohibitively slow rate of azine formation and provided trace
amounts of olefin with considerable degradation. Compound 1d
led to efficient azine formation, but nucleophilic attack from the
sulfoxonium ylide was not observed. Finally with the use of
hydrazone 1b, the desired olefins could be isolated in good yields
after cheletropic extrusion triggered by heating in toluene (5a,
5b). Moreover, the reaction conditions tolerate standard protect-
ing groups such as silyl ether- (5c) and benzyl (5d). To test the
limit of applicability of this olefination procedure (Fig. 3c), we
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applied the reaction conditions to form a trisubstituted olefin
starting from either a branched sulfoxonium salt (6a) or from a
ketone (6b, 6c), but no aziridine formation could be observed in
any of these examples.

Finally, we investigated the applicability of the methodology to
the formation of disubstituted olefins (Fig. 4). By employing
appropriately substituted and readily accessible sulfoxonium salts,
we were able to obtain internal olefins in good to high yields,
starting from aromatic aldehydes (7a, 7b, 7c) or aliphatic and
conjugated aldehydes (7d, 7e). Notably, the alkene products were
obtained with marked E selectivity. This might be a consequence
of either stereospecific cheletropic elimination from the more
stable trans-aziridine intermediate or non-concerted ring-open-
ing pathways that allow isomerization to take place23–34. This E-
selectivity is a noteworthy trait of the method.

Significantly, this olefination can also be applied to sensitive
aldehyde substrates bearing a stereogenic center at the α-position
(Fig. 5). It should be noted that, in contrast to Wittig procedures,
which usually lead to a significant erosion of enantiopurity by
base-mediated epimerization35, the procedure reported herein
produced the desired olefin 7 with minimal loss of chiral
information.

Mechanistic experiments. Finally, we performed control
experiments to propose a reasonable mechanism. N-iminyl azir-
idine 9 (generally prepared and used in situ throughout this
manuscript) was isolated and subjected to specific conditions:
upon heating 9 to 90 °C in toluene, in presence of catalytic
Rh2(OAc)4, cyclopropane 10 was isolated in 90% yield (Fig. 6a).
When the reaction is performed in DMSO, benzophenone is
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obtained in 43% yield (Fig. 6b)36. These results provide evidence
for the formation of a diazo compound through cheletropic
elimination. Further proof of a concerted cheletropic elimination
can be inferred from the high sterospecificity of the reaction. Pure
samples of either cis or trans-aziridine were subjected to the
reaction conditions, delivering respectively pure Z (Fig. 6c) or E
(Fig. 6d) olefin as product. Finally, a different nucleophile for the
aziridine formation was used, namely triethyl sulfonium iodide,
and a different ratio in the double-bond geometry was obtained
(Fig. 6e). Since the aziridine eventually formed would be the same
for the two different nucleophiles, and the cheletropic reversion
from the latter is stereospecific, a different ratio in the olefin
product geometry hints at the fact that the nucleophilic attack on
the azine is the stereo-determining step.

Based on these experiments, we are able to propose a working
mechanism for the reaction (Fig. 7). Starting from the azine (2d),
an initial nucleophilic attack of the sulfoxonium ylide on the
aldimine carbon delivers a zwitterionic compound, which then
quickly collapses in an intramolecular fashion to form the
aziridine with extrusion of a sulfoxide molecule. This is the key
stereo-determining moment: two possible faces of attack are
feasible, aziridine formation via I would deliver a cis three-
membered ring II while an attack via III would deliver
trans three-membered ring IV. Moreover, the formed aziridines
are stable and not prone to geometric interconversion37, 38. At
this stage is not possible to state the factors leading to a
preference for attack on one of the two faces, most probably
subtle stereoelectronic factors are playing a role. Eventually,
the aziridine, when heated cycloreverts to unveil the desired
olefin in a concerted mechanism and in a stereo-specific manner.
A two-step ionic mechanism of degradation via V is operating at
the same time leading to a homologated compound VI. Anyway,
this is not a reversible process as no geometry swapping is
observed.

In conclusion, we have developed a new concept for carbonyl
olefination, relying on formation of a three-membered ring as key
intermediate. This intermediate, an N-iminyl aziridine, is
conveniently accessed in a one-pot procedure by addition of a
sulfoxonium ylide to an azine, the thermal decomposition of
which leads to formation of the desired olefin in good to high
yields. Notably, this methodology selectively delivers trans-
disubstituted olefins and affords dienes from α,β-unsaturated
carbonyls, in contrast to the usual selectivity of sulfoxonium
ylides. Importantly, α-chiral aldehydes can be olefinated with
minimal epimerization. While we are well aware of the power and
historical weight of the venerable Wittig, Julia, Peterson, Tebbe,
and related olefination procedures, developed continuously over

the past 60 years, we believe that the approach reported herein
has significant complementarity to these methods.

Methods
Representative procedure for the olefination reaction. Method A: A mixture of
aldehyde (1.0 equiv.) and hydrazone 1a (1.1 equiv.) was stirred in the presence of
MgSO4 (100 mg/mmol) in MeOH at 60 °C overnight. Then, the reaction mixture
was filtered and the solvent was removed under reduced pressure. In another flask,
potassium tert-butoxide (2.0 equiv.) was added to a solution of trimethyl sulfox-
onium iodide (2.5 equiv.) in MeCN (0.2 M). The resulting mixture was stirred for
30 min at room temperature. To this solution was added the previously formed
azine in MeCN (0.2 M) and the reaction mixture was stirred at room temperature
until complete conversion (usually 3–6 h). Toluene (0.2 M) was then added and the
reaction mixture was heated to 90 °C overnight. The reaction was then diluted with
a saturated aqueous solution of NH4Cl and extracted with EtOAc. The combined
organic layers were washed with brine, dried over anhydrous Na2SO4 and con-
centrated under reduced pressure. The crude product was purified by flash column
chromatography on silica gel to afford the desired product.

Method B: A mixture of aldehyde (1.0 equiv.) and hydrazone 1b (1.1 equiv.)
was stirred in the presence of MgSO4 (100 mg/mmol) in CH2Cl2 (0.3 M) at room
temperature for 30 min. Then, the reaction mixture was filtered and the solvent was
removed under reduced pressure. In a pressure vial, potassium tert-butoxide (1.5
equiv.) was added to a solution of trimethyl sulfoxonium iodide (1.75 equiv.) in
MeCN (0.3 M). The resulting mixture was stirred for 30 min at room temperature.
To this solution was added the previously formed azine in MeCN (1M) and the
reaction mixture was stirred at room temperature until complete conversion. At
completion of the reaction, the volatiles were removed under reduced pressure and
the solid residues were diluted with toluene (0.5 M) and heated to 150 °C. After 24
h, the reaction is generally complete and the mixture is cooled to room
temperature. The solution is then diluted with aqueous NH4Cl and extracted with
EtOAc (3×). The combined organic layers were washed with brine and dried over
MgSO4. The crude product is then purified via flash chromatography on silica gel
to afford the desired product.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information Files.
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