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A computational model of stem 
cells’ decision‑making mechanism 
to maintain tissue homeostasis 
and organization in the presence 
of stochasticity
Najme Khorasani1* & Mehdi Sadeghi2

The maintenance of multi-cellular developed tissue depends on the proper cell production rate to 
replace the cells destroyed by the programmed process of cell death. The stem cell is the main source 
of producing cells in a developed normal tissue. It makes the stem cell the lead role in the scene 
of a fully formed developed tissue to fulfill its proper functionality. By focusing on the impact of 
stochasticity, here, we propose a computational model to reveal the internal mechanism of a stem 
cell, which generates the right proportion of different types of specialized cells, distribute them into 
their right position, and in the presence of intercellular reactions, maintain the organized structure 
in a homeostatic state. The result demonstrates that the spatial pattern could be harassed by the 
population geometries. Besides, it clearly shows that our model with progenitor cells able to recover 
the stem cell presence could retrieve the initial pattern appropriately in the case of injury. One of the 
fascinating outcomes of this project is demonstrating the contradictory roles of stochasticity. It breaks 
the proper boundaries of the initial spatial pattern in the population. While, on the flip side of the coin, 
it is the exact factor that provides the demanded non-genetic diversity in the tissue. The remarkable 
characteristic of the introduced model as the stem cells’ internal mechanism is that it could control the 
overall behavior of the population without need for any external factors.

One of the major transitions in evolution is the major step from mere unicellularity into the new world of 
multicellularity. To understand this, one has to study two main characteristics of multicellular organisms that 
appeared during this transition, namely differentiation, and self-organization. These two processes are so tied 
up during development. To be more specific, through the self-organization process, genetically homogeneous 
differentiated groups of cells are organized into the tissues with different shapes and functionalities that can all 
together work as an overall patterned structure. For the proper functionality of the fully formed organism in a 
developed normal tissue, it is vital to have a strategy to generate the right proportion of different types of special-
ized cells, distribute them into their right position, and maintain the organized structure in a homeostatic state.

In a developed tissue, stem cells are the main source of producing cells1. Therefore the main focus of this 
project is understanding the stem cells’ internal mechanism which controls their decisions. The decisions which 
satisfy the primary goal of life: keeping the living organisms alive. Stem cells are characterized by their capacity 
to self-renew and differentiate into more specialized cell types2,3. Any imbalance between the tissue demand and 
these two can lead to dysfunctional tissues or tumorigenesis. Hence, here we introduce a computational model 
to understand the underlying mechanisms that orchestrate the stem cell proliferation/differentiation balance to 
regulate the non-genetic diversity, as well as maintain the spatial pattern in the dynamic stochastic environment 
of a living tissue4. This will be a step toward the big picture of our final project: introducing a comprehensive 
model to understand the stem cells’ internal activities regulating their final fate. That helps us study mysterious 
phenomena such as aging, and cancer, and manufacture artificial organs and develop stem-cell-based therapies 
in regenerative medicine.

That is for sure that, a non-genetic diversifying factor is required to produce hundreds of different cell types, in 
an organized pattern, from genetically similar stem cells. In this circumstance, stochasticity is advantageous and 
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even critical5–9. Because of the low number of reacting molecules, a cell as a biochemical system is intrinsically 
probabilistic. Therefore, stochasticity is an inevitable part of a living cell, and it makes stochasticity an available 
suitable factor for cell-cell variability. An increasing number of theoretical and experimental studies unravel that 
the controlled amount of stochasticity could lead to phenotypic variations10,11 and population heterogeneity5,6,12,13, 
while maintaining a precise and robust regulation of key reactions in the cell. For this reason, stochasticity is 
observable in all the levels of our model. Needless to say, any perturbation from the optimum amount of stochas-
ticity consequently diminishes the phenotypic diversity, and proliferation/differentiation balance.

The absence of the phenotypic diversity and proliferation/differentiation balance could doubtlessly cause 
severe damage to the structure of the tissue, which in the first place has been organized to provide its specific 
functionality. To prevent this, a robustly regulated stochastic decision-maker is required to maintain first, prolif-
eration/differentiation balance to avoid tissue depletion or abnormal growth3,14,15, second, a non-genetic diversity 
which is critical to the survival of living systems in noisy environments16–21. On the other hand, cellular regula-
tory networks have been studied in a wide range of organisms and are known to control decision making from 
viruses22–24 to bacteria25–28, yeast29, and human embryonic stem cells30–34. Considering these facts, and inspired by 
previous studies that revealed the impact of regulatory networks on the stability of biological systems6,10,23,29,35–39, 
in our model, we introduce multi-stable regulatory networks as the internal decision-makers of dividing cells. 
Here, a set of ordinary differential equations (ODEs) are defined as the typical mathematical tool to study, and 
describe the regulatory circuitries7,32,40.

The regulatory networks could provide proliferation/differentiation balance and population heterogeneity 
which are sufficient to maintain homeostasis state in the population of cells with desired proportions of different 
phenotypes. However, these two issues are not adequate to conserve the population’s structural organization. 
Intercellular communication is responsible for instructing different cell types to transition from population 
heterogeneity in a homeostasis state to ordered spatial patterns a multi-cellular organism13,41,42. Therefore, it is 
necessary to equip the model with intercellular communication as the third issue required for surviving and 
functionality. In other words, it is assumed that the decision-maker in the stem cell in addition to being con-
trolled by the intrinsic factors, being influenced by extracellular signals allowed to diffuse between the cells in 
the system43. To this purpose, a reaction–diffusion process is provided in the model in order to maintain a new 
steady-state with a spatial pattern.

Taking into account the probabilistic nature of any system with a small number of contributing determi-
nants/chemicals associated with intra-/inter-cellular processes, it is vital to utilize a stochastic model for a better 
understanding of the system behavior. Gillespie algorithm is proven to be suitable for describing the behavior of 
the systems with a small number of determinants/chemicals driven by inherent fluctuations6,44. Besides, without 
having to deal with complex mathematical solutions, just averaging over enough number of simulations of the 
Gillespie algorithm could provide an asymptotic approximation to the exact numerical solution of the corre-
sponding master equation. Therefore, to simulate the time evolution of our inherently stochastic system, here, 
the Gillespie algorithm is used.

Considering all the facts discussed before and focusing on the impact of stochasticity, here, we propose a 
computational model to reveal the mechanism which maintains the proliferation/differentiation balance as well 
as the spatial pattern in a hypothetical normal adult tissue. The proposed model is defined based on six mate-
rial principles discussed in7,13 and reconsidered as follows: (1) stochasticity is an inevitable part of any living 
cell5,7,13,38,45–49. (2) Two major sources of stochasticity, the non-deterministic position of the cell division plane 
and nonuniform distribution of determinants in the cell lead to the random distribution of the cytoplasmic 
molecules among daughter cells during cell division7,13,50–56. (3) Cell fate is determined based on the number 
of determinants in the offspring upon the completion of cell division and assumed to be fixed during cell life 
cycle7,13. (4) Cell determinants interact with each other via an internal switch16,57. (5) The decision bias in the 
internal switch is determined by model parameters representing interactions between the switch elements7,13. 
(6) The switch parameters could also be affected by the cell location in its environment, and it is the key to the 
spatial pattern in the population13.

Studying spatial patterns in living organisms is challenging and limited to a few model organisms that can 
be easily imaged and manipulated. Besides, experimental methods are usually very expensive and face barriers 
that are so difficult to overcome. On the other hand, proposed computational methods study self-organization 
in particular cell types by considering a few specific factors. In this project, we propose a comprehensive model 
relying on stochasticity to describe self-organization in all cell types, based on signal diffusion in cell-cell com-
munication. The overall outcome of our model implies that in the presence of controlled noise in a population 
of genetically similar cells, we could maintain population heterogeneity, homeostasis, and also structural pat-
tern. Furthermore, we investigate how affecting the parameters in cell regulatory switches by the stochastic 
environmental factors could manipulate cellular decision-making bias and let the cells know their location in 
the population and their neighboring cells and maintain the initial organization as a result. We show that how 
the spatial order of cells in the population could be harnessed by the colony geometries. In addition, our model 
could easily retrieve its initial pattern in terms of injuries. Finally, to further illustrate the strength of the model, 
we explore the behavior of the system in the face of more complex structural patterns.

Methods
Mathematical model of the system.  We consider a model for an adult normal tissue consisting of a 
population of stem cells (S) as the source of producing demanding cells and specialized (differentiated) cells 
to fulfill the tissue functionality. In most living tissues there is an intermediate population of cells between 
stem cells and terminally differentiated cells. These cells with a limited capacity of proliferation and restricted 
potential of differentiation, known as progenitor cells58. The primary role of progenitor cells is to produce an 
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enormous number of specialized cells demanded in the tissue by going through many rounds of cell division58. 
Therefore, the production of thousands of differentiated cells could be maintained with a low rate of stem-cell 
division rate. This is beneficial in the sense that the larger number of stem cell division cycles, the greater is the 
risk of stem-cell mutations. This way, the presence of progenitor cells can prevent the accumulation of mutations 
which is sufficient to cause cancer. Therefore, it is assumed that the developing tissue that we are studying is 
made up of progenitor cells (P) as well as stem cells, and differentiated cell type58,59.

In our model, the stem cells can self-renew and also can be divided into progenitor cells which present a bi-
stable system. Progenitor cells can give rise to only one or a few types of specialized non-dividing cells. Without 
loss of generality, here the progenitor cells can divide into two non-dividing differentiated cells termed A, and B, 
which die after several days or weeks59. From the dynamical system point of view in our model, the progenitor 
cells are studied as a tristable system, which is also biologically reliable.

Investigations of tissue regeneration unveil a remarkable degree of flexibility, with progenitor cells able to 
recover the stem cell presence following injury, and even under normal conditions. It is also has been shown 
that reversible transfer of cells provides a more viable mechanism to maintain homeostasis under all sort of 
conditions60–70. That being the case, in this model stem and progenitor cells can switch stochastically between 
two states: stem cells could transit to progenitor cells and vice versa with a fixed rate. In addition, it is assumed 
that stem and progenitor cells diminish with rate of γS , and γP . Within the described framework, the model 
dynamics could be described as follows:

where η , ηs , and ηp denote the rates of stem cell’s three different division types, ωp,s represents the transition rates 
from S to P, and S to P, respectively, and �p , �A , �B , µd , µA , and µB denote the rates of progenitor cell’s six differ-
ent division types. The last two processes denote the rates, γA , and γB , at which A, and B cells commit to death.

The time evolution of the average densities of cell type S, cell type P, cell type A, and of cell type B-where nS , 
nP , nA , and nB are cell numbers normalized by volume-is given by

In steady state:

then,

As n∗S > 0 , n∗P > 0 , and wS > 0 then:

(1)S
η
−→ S + P, S

ηS
−→ S + S, S

ηP
−→ P + P.

(2)S
wP

⇋
wS

P.

(3)S
γS
−→ �, P

γP
−→ �

(4)
P

�P
−→ P + P, P

�A
−→ A+ P, P

�B
−→ B+ P,

P
µd
−→ A+ B, P

µA
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µB
−→ B+ B.
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−→ �, B

γB
−→ �
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∂tnS = f (nS , nP , nA, nB)

= nSηS − nSηP + nPwS − nSwP − nSγS,

∂tnP = g(nS , nP , nA, nB)

= nSη + 2nSηP + nSwP − nPwS − nPγP

− nP(−�P + µd + µA + µB),

∂tnA = h(nS , nP , nA, nB)

= nP(�A + µd + 2µA)− nAγA,

∂tnB = q(nS , nP , nA, nB)

= nP(�B + µd + 2µB)− nBγB.

(7)

∂tnS = 0

∂tnP = 0

∂tnA = 0

∂tnB = 0,

(8)

n∗S = n∗P
−wS

ηS − ηP − γS − wP

w∗
S =

(ηS − ηP − wP − γS)(−γP + �P − µd − µA − µB)

η + ηP + ηS − γS
,

n∗A = nP(�A + �d + 2µA)/γA,

n∗B = nP(�B + �d + 2µB)/γB.
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Besides, it is clear that w∗
S > 0 , then by considering Eq. (9), one of the following conditions should be satisfied:

or

Progenitor cells are known as the intermediate type of cells with a limited capacity of proliferation58. In other 
words, after a limited number of cell divisions, they terminally differentiate to fulfill their responsibility in 
producing specialized cells in a normal mature tissue59. Consequently, it is interpreted that the progenitor cells’ 
potential to self-renew lowered through generations. In our model, it is made to happen by setting the parameters 
in a way that the conditions in Eq. (11) are satisfied. Because, in contrast to the second condition in Eq. (10), 
when the conditions in Eq. (11) are satisfied, through generations it becomes more and more probable for a 
progenitor cell to be differentiated than self-renew. It can be easily interpreted as the limited capacity of prolif-
eration in progenitor cells.

To study the stability of the model, it is needed to compute the Jacobian matrix of Eq. (6):

where f (nS , nP , nA, nB) , g(nS , nP , nA, nB) , h(nS , nP , nA, nB) , and q(nS , nP , nA, nB) are denoted as F, G, H, and Q.
The system fixed point, (n∗S , n

∗
P , n

∗
A, n

∗
B) , is stable if all four eigenvalues of J, or all the roots of equation 

det(J − �I) = 0 , at the fixed point are negative71. For κ = (ηS − ηP − wP − γS)− � , θ = (η + 2ηP + wP)− � , 
ξ = (−wS − γP + �P − µd − µA − µB)− � , χ = �A + µd + 2µA , υ = (−γA)− � , ψ = �B + µd + 2µB , and 
φ = (−γB)− � , we get:

In this case, det(J − �I) = (κξ − wsθ)υφ which is independent from the values of χ , and ψ . Therefore, one could 
say that from the stability point of view, our system in (6) is equivalent to two independent two-dimensional 
systems as follows:

and

In the former two-dimensional system, det(J ′ − �I) = κξ − wsθ (first term in det(J − �I)), and in the latter one, 
det(J ′′ − �I) = υφ (second term in det(J − �I)). Hence, if all four roots of these two equations are proven to be 
negative, the condition for the stability of the system in Eq. (6) is fulfilled.

Here, we aim to study the conditions which lead to the stability of the first system’s fixed point, namely, 
(n∗s , n

∗
p) . The time evolution of the average densities of cell type S, ns , cell type P, nP is given in Eq. (14). Clearly, 

the average total density of dividing cells (stem and progenitor cells), n, could be computed as follows:

then,

When we substitute nS = n− nP , the Eq. (14) becomes:

where we introduced the functions

(9)ηS − ηP − γS − wP < 0.

(10)η + ηP + ηS < γS, and �P > γP + µd + µA + µB,

(11)η + ηP + ηS > γS, and �P < γP + µd + µA + µB.

(12)J(nS , nP , nA, nB) =
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∂tnS = nSηS − nSηP + nPwS − nSwP − nSγS,

∂tnS = nSηS − nSηP + nPwS − nSwP − nSγS,

− nP(−�P + µd + µA + µB),

(15)
{

∂tnA = nP(�A + µd + 2µA)− nAγA,

∂tnB = nP(�B + µd + 2µB)− nBγB.

(16)n = nS + nP ,

(17)
∂tn = nS(ηS + ηP + η − γS)

+ nP(−γP + �P − µA − µB − µd − ηS − ηP − η + γS).

(18)
∂tnP = f ′(nP , n)

∂tn = g ′(nP , n),
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To study the stability of the model, we compute the Jacobian matrix of Eq. (18),

where, f ′(nP , n) , and g ′(nP , n) are denoted as F ′ , and G′.
The fixed point (n∗P , n∗) is stable if both eigenvalues of J ′ at the fixed point are negative. This is the case if

For the system defined in Eqs.  (18), and (19), the Jacobian reads as Eq.  (25), where 
ζ = −wS − γP − wP − η + �P − µd − µA − µB − 2ηP ,  ϑ = −γP + �P − µA − µB − µd − ηS − ηP − η + γS , 
and ηS = ηS(n).

In steady state we could substitue wS = w∗
S (Eq. 8), and compute det(J ′(nP , n)) , and tr(J ′(nP , n)) as follows:

It is clear that det(J ′(nP , n)) > 0 , and tr(J ′(nP , n)) < 0 as long as η′S(n) < 0 , and the conditions in Eqs. (9), and 
11 are satisfied. Therefore, the fixed point (n∗P , n∗) is stable.

The Jacobian matrix of the second system (Eq. 15) reads:

In this system, as det(J ′′(nA, nB)) = γAγB > 0 , and tr(J ′ − (nA, nB)) = −γA − γB < 0 , the fixed point, ( n∗A , n∗B ) 
is stable. Therefore, it can be instantly concluded that the system fixed point of (n∗S , n

∗
P , n

∗
A, n

∗
B) is stable.

Stem cells’ internal mechanism.  The regulatory mechanism which provides the first part of the model 
dynamics in (1) is described by a set of ordinary differential equations (ODEs) which previously was used in 
several studies7,32,40. The following set of ODEs are employed to describe the stem cells’ internal mechanism as a 
two-element bi-stable regulatory switch:

In this model, It is assumed that the cell type is controlled by the relative amount of two cytoplasmic cell fate 
determinants, namely Xs and Ys whose interactions can be described in a form of a bi-stable regulatory switch (see 
Fig. 1a). The dynamical behavior of the determinants Xs and Ys is studied by considering their mutual repression 
effect which is modeled in the form of a Hill function7,13,23, and their degradation rate. Here, n is the Hill coeffi-
cient, βs is the effective rate of determinants synthesis, ιXs and ιYs are inhibition rates, and γ is the degradation rate.

The parameters of Eq. (26) are set in such a way that there will be two stable steady states, as shown in Fig. 1b, 
corresponding to two different cell fates, stem cell type S and progenitor cell types P. The number of determinants 
of Xs ( Ys ) involved in attractor S (P) is much larger than those of Ys ( Xs ). Figure 1b represents the domains of 
the two attractors, S, and P, with two different colors, yeloow and blue, respectively. Each daughter cell with a 
specific value of Xs and Ys , right after birth, can be shown as a point in Fig. 1b. The value of Xs and Ys determines 
to which attractor the cell will be absorbed, and based on that it defines the domains of two attractors. In other 
words, each cell fate can be determined and fixed exactly after division based on the number of determinants 
Xs and Ys in the daughter cell.

Since, based on Eq. (26), ιxs , and ιys are the parameters which determine the number of determinants of Xs ( Ys ) 
involved in stem cells, it can be easily concluded that they are the parameters which control the rate of symmetric 

(19)

f ′(n, nP) = n(η + 2ηP + wP)

+ nP(−wS − γP − wP − η + �P − µd − µA − µB − 2ηP)

g ′(n, nP) = n(ηS + ηP + η − γS)

+ nP(−γP + �P − µA − µB − µd − ηS − ηP − η + γS)

(20)J ′(nP , n) =

(

∂nP F
′ ∂nF

′

∂nPG
′ ∂nG

′

)

(21)det(J ′(n∗P , n
∗)) > 0, and tr(J ′(n∗P , n

∗)) < 0.

(22)J ′(nP , n) =

(

ζ η + 2ηP + wP

ϑ ηS + ηP + η − γS + nη′S(n)

)

(23)
det(J ′(nP , n)) = ζ ∗ [ηS + ηP + η − γS + nη′S(n)]

− ϑ ∗ [η + 2ηP + wP]

= ζnη′S(n)

(24)
tr(J ′(nP , n) = ζ + ηS + ηP + η − γS + nη′S(n)

= (−w∗
S )+ (ηS − ηP − γS − wP)+ (�P − γP − µd − µA − µB)

(25)J ′′(nA, nB) =

(

−γA 0

0 − γB

)

(26)
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divisions ( S
ηS
−→ S + S , and S

ηP
−→ P + P ) directly. Furthermore, to have the first condition in (11) be satisfied in 

steady state, we set ηS < ηP . Therefore, for this purpose it is enough to set ιxs < ιys . Besides, corresponding to 
ηS = ηs(n) , in our model ιxs is considered as a function of n, in a way that ιxs (n)′ < 0.

Progenitor cells’ internal mechanism.  The regulatory mechanism of the progenitor cells (shown in 
Fig. 1c) is described by the following set of ordinary differential equations (ODEs) as a two-element tristable 
system7,32,40:

Xs Ys

b

c

d

a

e

f

Figure 1.   The model’s regulatory networks together with their corresponding force-field representations. 
The nullclines are drawn in red and black (a) A bi-stable regulatory network. (b) The stem cell’s force-field 
representation. (c) A tristable regulatory network. (d) The progenitor cell’s force-field representation. (e) The 
signalling molecules’ bi-stable regulatory network. (f) The signalling molecules’ force-field representation. Two 
critical zones around two attractors in the field are zoomed in in two red frames.
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Likewise, It is assumed that the cell’s final fate is determined by the relative amount of two cytoplasmic deter-
minants, namely Xp and Yp whose interactions can be described in a form of a tristable switch (see Fig. 1c). The 
dynamical behavior of the determinants Xp and Yp is studied by considering their self-activation, and mutual 
repression effects which are modeled in the form of a Hill function7,13,23, and their degradation rate. In the same 
manner as the bi-stable system, n, βp , ιXs/Ys , and γ plays their role as the Hill coefficient, the effective rate of 
determinants synthesis, inhibition, and degradation rate, respectively. Besides, there are four more parameters, 
αxp , and αyp , as activation rates, and εs1 , and εs2 as “signalling effect coefficients” (will be discussed in this session).

As shown in Fig. 1d, the parameters of Eq. (27) lead to a tristable steady-state system. In this system, there are 
three fixed points corresponding to three different cell fates, one progenitor cell type, P, and two differentiated 
cell types, namely, A, and B. The number of determinants Xp , and Yp are in balance in P cells, where in A (B) 
cells the number of determinants Xp ( Yp ) exceeds that of determinants Yp ( Xp ). Figure 1d represents the domains 
of the three attractors, corresponding to P, A, and B cells, with three different colors, green, yellow, and blue 
respectively. As the number of determinants in the cell is updating, their corresponding trajectory in the phase 
plane is changing and finally reaches the domain of their attractor. It is worth mentioning that each cell fate can 
be finalized right after its birth based on the number of determinants Xp and Yp in it.

Representing in Fig. 2a, it is assumed that there is a dish, occupied with four types of cells, S (cyan), P (green), 
A (yellow), and B (red), as the main scene for our system dynamics. As another assumption in our model, cell 
types A, and B produce signaling molecules namely, S1 (yellow triangles), and S2 (red triangles), respectively. 
Depicted in Eq. (27), theses signalling molecules could affect the self-activation rate of the progenitor cells 
through the parameters εs1 , and εs2 . The signaling effect coefficients read as follows:

(27)































dxp

dt
= (αxp + εs1)

xnp

βn
p + xnp

+ ιxp

βn
p

βn
p + ynp

− γ xp

dyp

dt
= (αyp + εs2)

ynp

βn
p + ynp

+ ιyp

βn
p

βn
p + xnp

− γ yp

(28)εsi =















aSi

b
if Si ≤ b

a o.w.

b

c

a

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

Figure 2.   Hypothetical dish as a main scene for our system dynamics, and the filters representation for scoring 
algorithm. (a) the hypothetical dish is occupied with four types of cells, S (cyan), P (green), A (yellow), and B 
(red). Yellow, and red triangles represent signalling molecules namely, S1 , and S2 , produced by cell types A and B, 
respectively. (b,c) Filters representing template, and penalty matrices corresponding to the perfect borders of the 
population initial pattern and the valid territory of the entire dish, respectively.
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where i ∈ {1, 2} , a = 10 , and b = 15 . Clearly, when in a part of dish, number of signalling molecules S1 ( S2 ) 
increases, εs1 ( εs2 ) increases in value. As a result, the self-activation effect of xp ( yp ) on itself grows, and the birth 
of A (B) daughter cells in that part of dish will be more probable. In the other words, by increasing the number 
of S1 ( S2 ) molecules, A (B) cells conquer the territory from other types of cell. Another point to mention is that 
a, and b values are set in such a way that territory of A (B) cells in dish remains unchanged.

As it is studied before7, βp is the parameter which determines the position of two boundaries in the force-field 
plane (in Fig. 1d). In other words, by shrinking (expanding) the progenitor cell’s territory (the green domain), it 
controls the proportion of daughter cells which remain as progenitor cells, or differentiate to specialized cells. It 
can be easily concluded that it can directly control the rate of different types of divisions. To be specific, in our 
model, βp is set in such a way that the rate of symmetric division, P �P

−→ P + P is much less than divisions in the 
forms of: P

µd
−→ A+ B , P

µA
−→ A+ A , and P

µB
−→ B+ B . Therefore, the second condition in (11) will be satisfied 

in a steady state. To sum up, for each progenitor cell four reactions, X/Y synthesis/degradation, and one division 
process could occur, at each time step.

Signalling dynamics.  As discussed in  “Progenitor cells’ internal mechanism”, it is assumed that differen-
tiated cells, A, and B secrete signaling molecules, S1 , and S2 respectively. The diffusion of signaling molecules 
between the pixels of the dish (Fig. 2a) can be governed by a set of reaction-diffusion equations as follows:

Here D, and, k represent, respectively, diffusion coefficient and the rate of decay of the signaling molecules, and 
αs1 ( αs2 ) is the production rate. The number of signaling molecules at each point of the dish is shown by terms, 
s1 , and s2 , and their interactions are described in a form of a bi-stable regulatory switch (see Fig. 1e). The second 
term in Eq. (29) demonstrates the mutual inhibition effect of the signaling molecules, S1 , and S2 in the form of a 
Hill function. Here, n is the Hill coefficient, β is the effective rate of signaling molecules synthesis.

Figure 1f represents the domains of the two attractors corresponding to S1 , and S2 , with two different colors, 
blue, and yellow, respectively. Each pixel of the dish with a specific value of S1 , and S2 can be shown as a point 
in Fig. 1f. The values of S1 , and S2 determines which attractor the cell will be absorbed to, and based on that it 
defines the domains of two attractors. Therefore, in the steady state, and in the deterministic environment, each 
pixel could only contain S1 or S2 , and not both.

In the simulations, the production of signaling molecules S1 ( S2 ) is proportional to the number of A (B) cells. 
When differentiated cells emerge in the dish, their corresponding signaling molecules diffuse in their environ-
ment where they interact with each other based on Eq. (29). The number of signaling molecules at any location 
in the dish determines how much a progenitor cell at that location is affected by the signal values. As shown in 
Eq. (27), the number S1 ( S2 ) will increase the birth rate of A (B) cells. Therefore, it is expected that if some parts 
of the dish are occupied by A (B) cells, it remains the same.

Gillespie algorithm.  The time evolution of the system is captured by the Gillespie algorithm7,13,44 which is 
known as the gold standard for simulating models whose stochasticity arises from the small discrete number 
of reactant molecules72. In each time step 24 different reactions can potentially happen. Table 1 demonstrates 
all the reactions and their corresponding propensity functions. In each iteration, one of the above-mentioned 
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processes occurs, time is updated, and the simulation continues to the point that all progenitor cells have gone 
through at least 50 divisions.

The simulation starts with initializing the hypothetical dish (shown in Fig. 2a) with four types of cells and 
signalling molecules in an organized pattern. The number of determinants in stem (progenitor) cells, XS , and 
YS ( XP , and YP ), are initialized randomly from the corresponding attractor territory. The number of signalling 
molecules in each mesh is chosen corresponding to the initial pattern in the population. The meshes with A (B) 
cells contains maximum number, almost 100, of S1 ( S2 ) signalling molecules. In a mesh occupied with a stem 
(progenitor) cell, four reactions, production/degradation of determinant XS ( XP ), and production/degrada-
tion of determinant YS ( YP ) can potentially happen. In the deterministic manner, the ODE in Eq. (26) (Eq. 27) 
provides the exact description of these four reactions in our bistable (tristable) system. The propensity function 
of production/degradation reaction of determinant XS ( YS ) is determined based on the positive/negative term 
in the first (second) ODE in Eq. (26) (rows 1–4 in Table 1). The propensity functions of production/degrada-
tion reaction of determinants XP , and YP follow the same rule (see rows 9–12 captured based on Eq. (27)). At 
each time step, based on the probabilities corresponding to the propensity functions, the Gillespie algorithm 
determines which reaction occurs. As a result, in the current mesh, the determinants of the stem (progenitor) 
cell decrease or increase in number.

In a mesh with signalling molecules, based on Eq. (29), other than production/degradation of S1 , and S2 , 
diffusion is the fifth reaction to happen. The propensity functions for production/degredation of S1 ( S2 ), are 
determined based on second/third term in the first (second) ODE in Eq. (29) (see rows 19–22 in Table 1). The 
propensity function of the diffusion process is equal to D/h2 (rows 23, and 24 in Table 1). The production/
degradation of signalling molecules occur in the system similar to the ones for dividing cells’ determinants. 
However, when diffusion is the selected candidate to occur in the system, one of the neighboring meshes of 
the current mesh is selected, and the number of signalling molecules in the current mesh is decreased while 
the number of that in the neighboring mesh increases. The neighbor with much more number of signalling 
molecules comparing to the current mesh is more probable to be selected for the diffusion process. It is worth 
noting that, the above-mentioned propensity functions representing high order reactions could be used only as 
an approximation with Gillespie algorithm73.

The propensity functions corresponding to the rest of reactions are chosen as constant rates in such a way 
that satisfies the conditions introduced in “Mathematical model of the system”. In the case of death, the cell in 
the current mesh is omitted from the population. In the case of division, one of the empty neighboring meshes is 
chosen for one of the newborn daughter cell. It is assumed that the distribution of determinants in each daughter 
cell is binomial73 with parameters specified according to the whole number of determinants in the mother cell, 
and probability of success for each trial, p = 1/2 ( ∼ B(#X, 1/2) , or ∼ B(#Y , 1/2) , respectively).

All above-mentioned reactions are discussed before except the 8th, and 16th reactions, the stem, and pro-
genitor cells’ movement. In a real medium, when a cell divides its offspring could push their neighboring cells 
to make some space, and there is always a movement in the dish. However, reflecting these actions is beyond 
our simplified model. In our model we need this movement otherwise, in the regions where progenitors divide 
to non-dividing cells, the system would be blocked. In this case, A, and B cells can border progenitor cells, and 
since there will be no space for newborn cells, it restricts the cell division. To prevent a blocking system and to 
avoid physics complications to study the cell movements, it is simply assumed that dividing cells can move in 
the dish at a fixed rate. In the simplest form of the movement process, a dividing cell can change its position to 
a randomly chosen empty position in the dish.

Scoring algorithm.  To evaluate the strength of our model in maintaining the population pattern, we define 
two filters corresponding to the initial state of the medium, shown in Fig. 2b,c. These filters representing two 
matrices called template (corresponding to Fig. 2b) and penalty (corresponding to Fig. 2c) matrices from now 
on. The element values of the template matrix are equal to 1 in the middle disk of the current dish, they are equal 
to −1 in the outer ring, and the rest of the values are equal to 0. The elements of the penalty matrix are equal to 
1 out of the current dish and are equal to 0 otherwise.

Each simulation starts with an initial state with a desired spatial pattern and continues to the point that 
all progenitor cells have gone through 50 divisions on average. We select 500 d × d shots out of all the states 
model meets during the simulation, and produce 500 2d × 2d matrices corresponding to them. Each pixel in 
the medium representation could be mapped to an element in a d × d matrix. Next, we add d/2 zeros to each of 
the four sides of the matrices. In all of these 500 matrices, elements corresponding to yellow/red pixels are set 
to 1/−1 , and the rest of the elements are set equal to 0. We slide the template, and penalty filters over each of the 
500 matrices, multiply their corresponding values one by one and compute the summations. For each shot we do 
get two sets of d + 1 values, namely {t1, t2, . . . , td+1} , {p1, p2, . . . , pd+1} , corresponding to template and penalty 
filters, respectively. The assigned score value for each shot is calculated as follows:

Finally we normalize the score values in the range [0, 1].

Results
Maintaining the spatial pattern in the population.  Aiming to study the capability of the model in 
maintaining the structural pattern of the population and in the presence of signalling molecules, the cells in the 
medium are initially organized in a circular pattern in which the dish is divided to two regions, a inner disk and 
an outer ring. It is assumed that the inner disk is mostly occupied with yellow A cells, where the outer ring is 

max
i
(ti − pi); i ∈ {1, 2, . . . , d + 1}.
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mainly filled by red B cells. Stem (presented in cyan) and progenitor (presented in green) cells, as dividing cells, 
are uniformly distributed in the dish.

The first two simulations start with a population of n cells in a dish similar to the one presented in Fig. 2a. 
As shown in Fig. 3a, (and also Fig. 3d), the dish radius is initiated equal to 50 in the sense of placing at most 50 
pixels on the dish radius. The inner disk radius is equal to 25. To compute the time evolution of the cell popula-
tions, a stochastic simulation, using Gillespie algorithm, is applied, and the simulation is terminated when the 
progenitor cells have gone through 50 divisions on average.

The first simulation is run in the absence of signaling molecules, and as expected the pattern could not be 
preserved in the population under this condition (Fig. 3b). However, in the second simulation, it is assumed 
that molecules A, and B produce signaling molecules as it was discussed before in  “Signalling dynamics”. The 
final state is shown in Fig. 3e. Visually studying the first (Fig. 3d) and last (Fig. 3e) states of the system, as well as 
the abundance of four cell types through time (shown in Fig. 3g), it is clear that in the second simulation, both 
abundance of cell types, and the initial pattern are maintained properly.

To evaluate the results by numbers, 500 shots are selected out of all the states model meets during the simula-
tion. As explained in  “Scoring algorithm”, 500 corresponding scores are calculated and plotted in Fig. 3c,f, for 
the first and second simulations respectively. One could say that our scoring algorithm compares each of the 
500 shots with the introduced filter in Fig. 2b. The filter which is chosen corresponding to the initial state of 
the system. In this case, diagrams in Fig. 3c,f demonstrates how much the population structural pattern differs 
from its initial pattern through the simulation. Figure 3c shows that at the end of the simulation the similarity 
between the initial and final states of our system is less than 10%. It clearly verifies that the initial pattern could 
not be maintained in the absence of intercellular interactions. Though Fig. 3f demonstrates the similarity score 
of ≃ 60% which indicates the model strength in maintaining the structural pattern in the presence of signaling 
molecules. Besides, in both cases, the score value diagram is saturated and it confirms the stability in the model 
which was promised in “Mathematical model of the system”. To put it another way, our system reaches the point 
that the structural pattern and the number of different cells will not change anymore. Though the stochasticity 
is observable in all levels of the system dynamic.

Size of dish, and the inner disk affects the population spatial pattern.  To show the key role of 
geometric confinement in maintaining spatial patterns in the population, we repeat the simulation with different 
sizes of inner disks as well as the whole dish. It is worth-mentioning that from now on all the simulations are 
done in the presence of signaling molecules. Figure 4a represents the results of five simulations with the same 
dish radius of 50, but different inner disk size, 5, 15, 25, 35,  and 45 from left to right. The diagrams show that 
when the number of cells in one territory exceeds, they could easily invade the region occupied by the cells on 
the opposite side. To study the effect of the whole dish size in maintaining the organized pattern in the popula-
tion, five simulations are run. Figure 4b demonstrates the results of these five simulations starting with five dif-
ferent dish radius, 10, 30, 50, 70,  and 100, from left to right. In all of these simulations, the inner disk radius is 

Figure 3.   The system behaviour in the absence/presence of inter-cellulat interactions. (a,d) The initial state of 
the system. (b,e) The final states of the system in the absence/presence of signalling molecules, in row. (c,f) The 
corresponding score diagrams. (g) The maintenance of fours cell types’ abundance through time.
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always half of the dish radius. Figure 4b shows that there is a lower bound for the number of cells in the popula-
tion, for cells to be able to defend their territory, and maintain the spatial pattern in the dish.

Model behaviour in the face of different population patterns.  We simulated the model dynam-
ics on other dish shapes and it is performed with any modification in order to study the effect of changing the 
geometry of the population. In Fig. 5a,b, the dish is initiated in the shape of a square, and rectangle, respectively. 
Studying the final results, one could say that there is an inward expansion of B cells at the corners of square and 
rectangular regions. Thus, the model behaves as it is expected based on experiments performed in previous 
researches43. Besides, in Fig. 5 it is clearly shown that by increasing the number of cells in the population, the 
inner region could be defended more easily by A cells.

Figure 4.   The system behaviour for different simulations. The first, and second rows represent the initial, an 
final states of the system, respectively. The corresponding score diagram of five mentioned simulations are 
shown in the last row. (a) Five different simulations with the dish radius of 50, but different inner disk size, 5, 15, 
25, 35, and 45 from left to right. (b) Five different simulations with the dish radius of 50, but different inner disk 
size, 5, 15, 25, 35, and 45 from left to right.
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To challenge the model, we simulated the model in more complex patterns shown in Fig. 6. Here, again one 
fate has invaded the other fate in the corners. However, the model has been successfully capable of maintaining 
the initial pattern in the population.

Model in the face of injuries.  Studying the results, one could say that our model could properly maintain 
the organized pattern in the colony. To challenge the model, even more, a new experiment has been designed. 
In this experiment, in a state in which all progenitor cells have gone through 50 divisions on average(right-hand 
plot in the second row of Fig. 3), the cells in a part of the dish are diminished at once. This sudden cells death, 

Figure 5.   The system behaviour for rectangle shape, and triangle shape dishes. The length of the middle area 
is always the half of the dish side length. The first, and second rows represent the initial, an final states of the 
system, respectively. The corresponding score diagram of five mentioned simulations are shown in the last row. 
(a) Five different simulations starting with five rectangle shape dishes of side length, 10, 30, 50, 70, and 100 from 
left to right. (b) Five different simulations starting with five triangle shape dishes of side length, 10, 30, 50, 70, 
and 100 from left to right.
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representing an unexpected injury in the tissue, could happen in different areas of the dish as shown in the 
first row of Fig. 7a, and also with different sizes, shown in the first row of Fig. 7b. Then we let the system to be 
updated to the point at which all progenitor cells have gone through 60 divisions, on average (the second row of 
Fig. 7a,b). Studying the system behavior at this point, it is clear that the model could retrieve the initial pattern 
appropriately. However, one could say that the loss of cells in the boundaries of regions with different phenotypes 
is more challenging. Besides, as it is biologically expected the smaller size of the injury region, the more easily 
the system could recover.

Discussion
An organism’s life depends on the precise functionality of its organs. On the other hand, the organs’ proper 
functionality could not be achieved without the proper proportional tissue structure. Needless to say that there 
is a long way ahead to introduce a comprehensive model which controls the stem cell’s decisions (stem cells as 
the main source of producing cells) to generate and also maintain the proper structure in the tissue. However, in 
this project, we took a step toward this tempting big picture and introduced a simple model which could properly 
maintain the pattern in the tissue.

Here, by focusing on the presence of stochasticity in all levels of cell activities, we define a regulatory switch 
as a mechanism to maintain both proliferation/differentiation balance and the spatial pattern in a hypothetical 
normal adult tissue. In the presence of progenitor cells an enormous number of specialized cells (to fulfill the 
tissue functionality) could be produced with a low rate of stem-cell division. It is pretty safe to conclude that it 
lowers the risk of mutation accumulation in stem cells!58. Besides, progenitor cells with the capability of reversible 
transfer between states destined for self-renewal or differentiation may provide a surprising degree of flexibility, 
with recovering stem cell population in the case of injury60. Therefore in the most simple model, it is assumed 
that this hypothetical developing tissue consists of progenitor cells other than stem cells and two differentiated 
cell types. As expected, stem cells could self-renew and differentiate to the intermediate progenitor cells, while 
progenitor cells could give birth to progenitor cells and two specialized cell types needed for the functionality 
of our hypothetical tissue.

The model is described in Eqs. (1), (2), (4), (5), in details. The computation in the rest of “Mathematical model 
of the system” proves that the described model could hit the homeostatic state under some reachable conditions. 
In other words, it is proven that starting with any initial condition, the desired proportion of specialized cells 
to satisfy the tissue functionality and stem, and progenitor cells as the main sources in the tissue, is reassuring. 
Besides, it shows that this condition could be maintained in a steady state, which is needed in any normal living 
tissue to survive59. Moreover, it reflects the flexibility of our model to describe any desired tissue with a different 
proportion of differentiated cells.

Two sets of ordinary differential equations are defined to describe the internal regulatory mechanism of 
the stem (Eq. 26), and progenitor cells (Eq. 27). As discussed before, although the regulatory networks could 

Figure 6.   The system behaviour in the face of more complex initial spatial patterns. (a,d) The initial state of the 
system. (b,e) The final states of the system. (c,f) The corresponding score diagrams.
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provide proliferation/differentiation balance and population heterogeneity and, as a result, reach and maintain 
a homeostasis state, they could not conserve the population structural organization. Therefore, the model is 
equipped to inter-cellular communication as the third issue required in order to maintain a spatial pattern. The 
results present evidence for the model’s capability to maintain the organized spatial pattern in the population 
(Fig. 4a). The results also demonstrate that when one of the regions is much smaller than the other, the dominant 
cells could capture the territory of cells in the minority (the first and last plots in the second row of Fig. 4a,b). 
It is completely acceptable since as shown in Eq. (29), signaling molecules S1 , and S2 with symmetric mutual 
inhibition effects protect their territory. Therefore, It is necessary to break the symmetry in Eq. (29) to have a 
population containing regions with so much difference in population number.

Figure 7.   The system behaviour in the face of injuries. The first, and second rows represent the initial, an final 
states of the system, respectively. The corresponding score diagram of five mentioned simulations are shown in 
the last row. (a) Injuries in different regions in the population. (b) Injuries with different regions size.
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Here, studying different population sizes, consistent with results in previous studies42,43 the results suggest that 
dish size could influence maintaining spatial pattern in the population (Fig. 4b). Specifically, the smaller number 
of specialized cells in a dish, the fewer number of signaling molecules to defend their corresponding territory.

Importantly, we applied the model without any modification on other shapes (Figs. 5,6) to study the effect of 
changing the geometry of the colony. The fascinating outcome is that the model could easily maintain the spatial 
pattern in the population initiated in non-circular and even complex structures. However, an inward expansion 
of cells is observed at the sharp corners, which is in agreement with previous computational, and experimental 
predictions in previous studies43.

The death of cells caused by injury could cause organs failure due to an insufficient supply to fully restore 
tissue function. Therefore, as injuries are always a concern, shoulder to shoulder with the maintenance of the 
desired proportion of specialized cells and ordered spatial pattern, injury-induced repairability is demanded in 
the tissue74. Consequently, we computationally investigated the capability of our model to retrieve the initial pat-
tern in the case of injuries. The results in Fig. 7 show that our model could successfully and without any further 
modifications restore the initial pattern, which is equivalent to restoring the tissue functionality.

The last but not least point is about the score diagrams shown in the last row of Figs.  4, 5, and 6. The scor-
ing algorithm is designed to evaluate the results in numbers by representing how much the population spatial 
pattern differs from its initial pattern through 50 divisions. When the number of cells in two territories is both 
sufficient and in balance, the diagram decreases at the beginning, and at some point, it will get saturated. It clearly 
verifies that although the territories could not be kept in their exact initial pattern, the system reaches the point 
with the similarity score of 60% , and after that, the structural pattern and the number of different cells will not 
change anymore. It confirms the stability of the model. Here, a fundamental question could strike minds: what 
is the reason for having crooked boundaries instead of initial proper ones at the end of the simulations? The 
obvious answer is stochasticity. The stochasticity could be easily interpreted as a threat to the tissue functionality, 
which ties in with the tissue organized spatial pattern. On the other hand, stochasticity is the exact factor that 
brings demanded vital diversity out of the same genotypes in the tissue, the item, which facilitates the tissue 
functionality. These contradictory roles of stochasticity lead to one of the fascinating outcomes of this project: 
life is certainly indebted to a controlled amount of uncertainty.

In this model, by emphasizing the prominent role of stochasticity5,7,13 in the developed adult tissue, we could 
maintain the spatial pattern to fulfill the tissue functionality other than the homeostasis state to have a cycling 
adult tissue7,60. We could even maintain more complex patterns and the results agreed with previous studies43. 
Besides, it has been mathematically proved that the introduced system could reach a steady state in all cases 
under some conditions. While injuries are always possible to happen74, with the presence of progenitor cells, we 
also demonstrate that our model could retrieve the right demanded proportion of different cells in their right 
position in the case of injuries. To summarize, we introduced a mechanism, by orchestrating the cell decision-
making switch and in the presence of intercellular interactions could maintain the population’s overall behavior 
with no need for any external factors.

Although it is vital to maintain the organized structural pattern in the tissue for the proper functionality, in 
a comprehensive model, it is also important to probe the stem cells’ strategies to organize the specialized cells 
to a desired pattern in the colony. Thus, it could be interesting to investigate if our model could initiate pattern 
formation in the population and study the factors that could affect this process in future work. It could be a 
promising step toward the big picture of this project: generating organoids starting from stem cells.

Data availability
The software used to run all simulations was Python. The scripts and the data that support the findings of this 
study are available from the corresponding author upon request.
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