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ABSTRACT
Background  With the aggregation of clinical data 
and the evolution of computational resources, artificial 
intelligence-based methods have become possible to 
facilitate clinical diagnosis. For congenital heart disease 
(CHD) detection, recent deep learning-based methods tend 
to achieve classification with few views or even a single 
view. Due to the complexity of CHD, the input images for 
the deep learning model should cover as many anatomical 
structures of the heart as possible to enhance the accuracy 
and robustness of the algorithm. In this paper, we first 
propose a deep learning method based on seven views 
for CHD classification and then validate it with clinical 
data, the results of which show the competitiveness of our 
approach.
Methods  A total of 1411 children admitted to the 
Children’s Hospital of Zhejiang University School of 
Medicine were selected, and their echocardiographic 
videos were obtained. Then, seven standard views were 
selected from each video, which were used as the input 
to the deep learning model to obtain the final result after 
training, validation and testing.
Results  In the test set, when a reasonable type of 
image was input, the area under the curve (AUC) value 
could reach 0.91, and the accuracy could reach 92.3%. 
During the experiment, shear transformation was used 
as interference to test the infection resistance of our 
method. As long as appropriate data were input, the above 
experimental results would not fluctuate obviously even if 
artificial interference was applied.
Conclusions  These results indicate that the deep learning 
model based on the seven standard echocardiographic 
views can effectively detect CHD in children, and this 
approach has considerable value in practical application.

INTRODUCTION
Congenital heart disease (CHD) is the 
most common congenital anomaly in chil-
dren, and the reported incidence of CHD is 
approximately 0.69%–0.93%, accounting for 
one-third of all major congenital anomalies.1 
With surgical intervention, the mortality for 
children with CHD can be reduced to as low 
as 3%.2 Therefore, early detection of CHD is 
very important.

At present, echocardiography reading 
mainly relies on manual labor, but the 
training cycle of echocardiographic doctors 
is long, and much experience is needed as 
the basis for accurate diagnosis. A European 
Union study recommended that beginners in 
echocardiography need to undergo >350 tests 
to achieve basic practical competence.3 This 
grim situation has led researchers to focus on 
the application of artificial intelligence.

Deep learning has revolutionized image 
classification and recognition because of its 
high accuracy; in some cases, it demonstrates 
performance comparable to or exceeding that 
of medical experts. There are many practical 
applications of deep learning in the medical 
field, especially in medical images, including 
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image registration/localization, cell structure detection, 
disease diagnosis/prognosis, etc.4 The tissue boundary 
of ultrasonic images is fuzzy, the image has more noise 
interference, and the selection and interpretation of 
images is subjective. The processing and interpreta-
tion of ultrasonic images are always difficult in medical 
imaging. Therefore, the application of deep learning in 
echocardiography is relatively lagging compared with 
other medical imaging, and the application of this tech-
nology in CHD also started late.

Unlike computed tomography (CT), magnetic reso-
nance imaging (MRI), and other medical images, the 
selection of echocardiographic views is quite subjective. 
Therefore, the selection and standardization of echocar-
diographic views are crucial for the application of deep 
learning. In 2013, a work US government-led work called 
fetal intelligent navigation echocardiography (FINE) 
succeeded in automating the selection of standard fetal 
echocardiographic views, which can automatically select 
nine stamdard echocardiographic views including four-
chamber, five-chamber, left ventricular outflow tract, etc. 
Subsequently, 54 fetuses were tested between 18.6 and 
37.2 weeks of gestation were examined, demonstrating 
that the FINE system can automatically select nine stan-
dard views for both normal fetuses and fetuses with CHD 
and can better visualize the abnormal features of complex 
CHD.5 Studies conducted by several centers in the past 10 
years have shown that the detection rate and specificity 
of fetal CHD with echocardiography are <50% under the 
traditional screening method.6–8 A study at the University 
of California, San Francisco, used deep learning tech-
niques to train, test, and verify 4108 fetuses (0.9% CHD) 
with more than one million echocardiographic images, 
and the results of the deep learning model were excep-
tional, with 95% sensitivity (95% confidence interval 
(CI)=84% to 99%) and 96% specificity (95% CI=95% to 
97%) in distinguishing normal from abnormal hearts.9 
Other studies have shown that the accuracy of CHD 
diagnosis can be significantly improved by convolutional 
neural network (CNN) preprocessing and segmentation 
of fetal echocardiographic images and then using a deep 
learning model for image diagnosis.10

There are relatively few studies on the application of 
deep learning in pediatric echocardiography, and the 
research progress in the whole field is relatively slow 
compared with that in fetal echocardiography. Diller et 
al proved that deep learning technology can effectively 
remove artifacts and noise in both normal and CHD 
images.11 After processing specific pediatric echocar-
diographic images by deep learning technology, the 
average individual leaflet segmentation accuracy in chil-
dren with hypoplastic left heart syndrome is close to the 
limit of human eye resolution.12 A research center has 
developed an unsupervised deep learning model named 
DGACNN in view of the characteristics of echocardio-
graphic images, and its ability to automatically label and 
screen fetal echocardiographic images (four-chamber 
view images only) has surpassed that of middle-level 

professional doctors in related fields.13 Capital Medical 
University and Carnegie Mellon University designed a 
five-channel CNN with a single-branch that can diagnose 
negative samples and ventricular septal defect (VSD) or 
atrial septal defect (ASD) classifications with an accuracy 
over 90%.14 Most of the deep learning studies in pedi-
atric echocardiography are basic technical studies with 
fewer clinical applications. Major clinical studies tend 
to achieve classification with five (four) views or even a 
single view.

This paper aims to use a new method of view selection 
named the seven views15 approach, and apply the deep 
learning model to analyze pediatric echocardiographic 
images, to achieve mass detection of pediatric CHD.

METHOD
Standard view selection
Compared with CT, X-ray, and other examinations, ultra-
sound examination is highly subjective. Therefore, the 
existence of the standard view is of great significance to 
echocardiography examinations. At present, there are 
five standard views commonly used in pediatric echocar-
diography: (1) parasternal long-axis view; (2) parasternal 
short-axis view; (3) apical four (five)-chamber view; (4) 
subxiphoid four-chamber view; (5) suprasternal long-
axis view. Each view corresponds to specific anatomical 
structures of the heart, and abnormal cardiac anatomy is 
the essence of CHD. Previous deep learning studies have 
been based on one or more of these views, for example, a 
study on transposition of great arteries (TGA) conducted 
by Imperial College London used apical four-chamber 
and parasternal short-axis view as input data in its deep 
learning model.16

There are various types of CHD. To improve the 
accuracy, the input images of the deep learning model 
need to cover as many anatomical structures of the 
heart as possible, and show the relationship between 
each anatomical structure in more detail. Therefore, we 
proposed using seven views instead of the traditional five 
views as the standard view of pediatric echocardiography, 
and verified its feasibility with the deep learning model. 
The seven views15 are as follows:
1.	 Parasternal long-axis view;
2.	 Parasternal short-axis view;
3.	 Parasternal four-chamber view;
4.	 Parasternal five-chamber view;
5.	 Subxiphoid four-chamber view;
6.	 Subxiphoid biatrial view;
7.	 Suprasternal long-axis view (figure 1).

Compared with the traditional five views, the main 
transformations are as follows: (1) parasternal four 
(five)-chamber view is adopted instead of apical four 
(five)-chamber view, and both four-chamber view and 
five-chamber view are selected instead of one of them; 
(2) add subxiphoid biatrial view. The former shows 
better performance in the diagnosis of ASD and can 
always reveal part of the morphology of the aorta, while 
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the latter shows good results in the performance of the 
atrial septum and the superior and inferior vena cava, 
and reveals part of the pulmonary veins and the connec-
tion between the superior and inferior vena cava and the 
right atrium.

This improved view selection approach can more stably 
reflect the anatomic abnormalities of aortic-related CHDs 
such as coarctation of the aorta, and reveal the anatomic 
details around the atrial septum carefully, which is of 
great benefit for the detection of ASDs.

Data acquisition and dealing
The study participants were 1411 children admitted 
to our hospital between 2018 and 2020, including 
336 normal children and 1075 children with CHD. A 
small number of children were excluded due to lost to 
follow-up or poor echocardiographic video quality, and 
the final number of children included was 1376. The 
distribution is shown in table  1. All echocardiographic 
videos were obtained by Philips iE 33, Philips EPIQ5, 
Philips EPIQ 7C color Doppler ultrasonography with 
probe model S8-3 (probe frequency range 3–8 MHz). 
S5-1 (probe frequency range 1–5 MHz). Seven standard 

view images (including color images, grayscale images, 
and bimodal images) were selected and marked from 
the echocardiographic videos by professional echocar-
diographic doctors. The number of images obtained for 
the first time was 16 088, and the final number of images 
was 14 838 after screening and cleaning. In this study, the 
echocardiography data set is mainly divided into three 
parts: training data (for model training), validation data 
(for model parameter adjustment), and test data (for the 
final evaluation of the model), and the data volume ratio 
of each part is 8:1:1. Vertical flip transformation is used 
to increase the size of the training data set. To improve 
the generalization ability of the model and its robust-
ness to adversarial examples, Mix Up17 is used for data 
enhancement. Finally, the amplified images are resized 
to 224×224×3.

Since there are two image modalities of bimodal images 
at the same time, when they are used as input data, it is 
necessary to segment the bimodal images into grayscale 
images and color images in advance, and then the two 
types of images are input. We found that the grayscale 
images obtained by this segmentation as the input result 
will be different from the result obtained after running 
of simple grayscale images, and the same is true for color 
images. Thus, for these three different types of echocar-
diographic images, the following different image input 
combinations can be constructed: (A) single grayscale 
echocardiographic images; (B) single color echocardio-
graphic images; (C) single bimodal echocardiographic 
images; (D) bimodal echocardiographic images 
combined with grayscale echocardiographic images; 
(E) bimodal echocardiographic images combined with 
color echocardiographic images. It should be noted here 
that the bimodal images and the single modal images 
come from different groups of participants, which can 
reduce the duplicate information in groups D and E and 
enhance the value of input data.

Model development and training
The classical CNN model mainly relies on the superpo-
sition of the convolution layer and the pooling layer. 

Figure 1  Seven standard views of echocardiography. (A1) Parasternal long-axis view (grayscale modality); (A2) parasternal 
long-axis view (color modality); (B1) parasternal short-axis view (grayscale modality); (B2) parasternal short-axis view (color 
modality); (C1) parasternal four-chamber view (grayscale modality); (C2) parasternal four-chamber view (color modality); (D1) 
parasternal five-chamber view (grayscale modality); (D2) parasternal five-chamber view (color modality); (E1) subxiphoid four-
chamber view (grayscale modality); (E2) subxiphoid four-chamber view (color modality); (F1) subxiphoid biatrial view (grayscale 
modality); (F2) subxiphoid biatrial view (color modality); (G1) suprasternal long-axis view (grayscale modality); (G2) suprasternal 
long-axis view (color modality).

Table 1  The distribution of CHD

Category Initial children count Final children count

Normal 336 330

PFO 63 62

PDA 113 112

VSD 428 411

ASD 433 423

Complex 38 38

Total 1411 1376

Complex, which means having more than one CHD, or complex 
CHD (which is quite rare) such as pulmonary stenosis.
ASD, atrial septal defect; CHD, congenital heart disease; PDA, 
patent ductus arteriosus; PFO, patent foramen ovale; VSD, 
ventricular septal defect.
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However, with the increase in convolution layers and 
pooling layers, the learning effect of the model does not 
improve as expected, and the vanishing/exploding gradi-
ents and degradation problems appear instead. To solve 
these problems, Kaiming et al proposed the Residual 
Network (ResNet) model,18 which alleviates the problem 
of network degradation and is beneficial to the extrac-
tion of deep image features. In this paper, ResNet50 is 
used as the feature extraction network.

In the training process, the AdamW optimizer was 
employed with a batch size of 12, and the initial learning 
rate was set to 5e-4. The network was trained on an NVIDIA 
GeForce 3060 GPU. The experimental model was built in 
Python 3.7 and Pytorch 1.7.1. Each sample is labeled as 
negative and positive inputs to the neural network. Nega-
tive represents normal, and positive represents patients 
with CHD. All echocardiographic seven-view images are 
evaluated using a single model.

To judge the antinoise ability of the deep learning 
model when echocardiographic seven-view images are 
used as input, in addition to the previously mentioned 
data enhancement methods, each group forms a self-
contrast based on whether shear transformation (regard-
less of whether the shear transformation is performed, all 
of the previously described data enhancement methods 
have been applied), shear transformation is performed 
on all images in the group (instead of regrouping within 
a group). Taking group A as an example, all the images 
in group A are first input into the deep learning model 
for operation to obtain a result. Then, all the images in 

group A undergo shear transformation, and are input 
into the deep learning model again to obtain another 
result. Thus, one group will end up with two results.

Transfer learning
Transfer learning is an effective mechanism for image 
classification under limited data scenarios. Some natural 
pictures are first pretrained as objects, and then the 
echocardiographic data set is input into the pretrained 
network for retraining, and further validation and testing. 
Finally, a deep learning model with detection ability is 
obtained (figure 2).19

RESULT
Since the deep learning model can only process the image 
of one modality at a time, the bimodal images need to 
be divided into grayscale images and color images before 
input. Group A and group B are single modal images, 
which only need to be input into the deep learning 
model for running. The images of group C are bimodal 
images that need to be divided into grayscale and color 
modal images and input into the deep learning model 
separately for running. Since the grayscale part and the 
color part of the bimodal images are from the same child, 
the above two calculation results are comparable and 
can be used to evaluate the examination effect of deep 
learning technology on echocardiographic images of 
different modalities. Group D consists of bimodal images 
and grayscale images. Before input, the bimodal images 

Figure 2  Visualization for transfer learning using pretrained models.19 CHD, congenital heart disease.
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are similarly segmented, but the color modal images are 
discarded, and all grayscale images are taken as input. 
Group E is to discard the grayscale images, and the rest 
of the process is the same as group D. Combined with 
whether shear transformation is carried out, there are 
altogether 12 groups of results.

Shear transformation or not
The difference between the experimental results is not 
obvious whether shear transformation is performed 
or not. The maximum difference in accuracy is 5.6%, 
the minimum difference is 0.7%, the maximum differ-
ence in the area under the curve (AUC) value is 0.02, 
and the minimum difference <0.01 (in expressing the 
results of the AUC values, we have taken the approach 
of retaining two digits after the decimal point, in this way 
the seemingly identical AUC values are actually different 
after three decimal places, and therefore this difference 
should be expressed as <0.01).

Results of grayscale modality
According to the composition of group D, group D can 
be compared with group A, and the grayscale modality 
in group C can also be compared. However, because the 
data for groups A and C are from different participants, 
they cannot be directly compared. After shear transfor-
mation, the accuracy and the AUC value of group D are 
84.1% and 0.84, respectively, which are 15% and 0.08 
higher than the grayscale modality of group C. Compared 
with group D, the accuracy of group A is improved by 
8.2%, but the AUC value is decreased by 0.02. The results 
before the shear transformation are approximate. The 
accuracy and the AUC value of group D are 84.8% and 
0.85, respectively, which are 10.1% and 0.08 higher than 
the grayscale modality of group C. The accuracy of group 
A is 4.7% higher, but the AUC value is 0.03 lower than 
that of group D.

Results of color modality
Similarly, group E can be compared with groups B and 
C. After shear transformation, the accuracy of group E 
is 84.8%, which is 1.9% lower than the color modality of 
group C, and the AUC values of both groups are 0.91. 
Compared with group E, the accuracy of group B is 
improved by 0.9%, but the AUC value is decreased by 
0.03. Before shear transformation, the accuracy of group 
E is 87.2% and the AUC value is 0.91, which are 1.8% and 
0.02 higher than the color modality of group C, and the 
difference values between groups E and B are 4.9% and 
0.05, respectively.

Comparison between grayscale modality and color modality
As mentioned previously, the two modal parts of a 
bimodal image came from the same child. Therefore, the 
results of the grayscale modality and the color modality 
of group C are comparable. After shear transformation, 
the accuracy and the AUC value of group C in the color 
modality are better, the accuracy is 86.7% and the AUC 

value is 0.91, which are 17.6% and 0.15 higher than those 
in the grayscale modality, respectively. The results before 
shear transformation are similar, the accuracy is 85.4%, 
and the AUC value is 0.89 in the color modality, which 
are 10.7% and 0.12 higher than those in the grayscale 
modality, respectively. All the accuracy and the AUC 
values are shown in table 2.

In addition, group D can form a contrast with group 
C, and the same for group E. In summary, the receiver 
operating characteristic curves and the AUC values of 
operation results of groups C, D, and E (with or without 
shear transformation) were plotted for visual comparison 
(figure 3).

DISCUSSION
CHD is still an important cause of death in children, 
which has created a worldwide socioeconomic burden 
that cannot be ignored20; therefore, early diagnosis 
of CHD is of great significance to prognosis. Quite a 
number of children with CHD have difficulty with sellf-
healing during growth, and surgery is almost the only 
treatment for them. The mortality rate of children with 
CHD who are suitable for surgery can be reduced to a very 
low level.6 20 21 However, late detection of CHD is more 
likely to progress to pulmonary hypertension, increasing 
the risk of surgery and mortality. Some patients develop 
Eisenmanger’s syndrome and miss out on surgery.22 23

Status of congenital heart disease detection
The false negative rate of CHD diagnosis in children is 
high worldwide. For critical CHD with more obvious clin-
ical manifestations, there is still a false negative rate of 
>10% in high-income countries, and even >40% in some 
hospitals.24 With such a high false negative rate, the accu-
racy is definitely difficult to guarantee. It is difficult to be 

Table 2  Results of different groups

Group to be 
input

Shear 
transformation

Accuracy 
(%) AUC value

Group A No 89.5 0.82

Yes 92.3 0.82

Group B No 82.3 0.86

Yes 85.7 0.88

Group C 
(grayscale 
modality)

No 74.7 0.77

Yes 69.1 0.76

Group 
C (color 
modality)

No 85.4 0.89

Yes 86.7 0.91

Group D No 84.8 0.85

Yes 84.1 0.84

Group E No 87.2 0.91

Yes 84.8 0.91

AUC, area under the curve.
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optimistic in the low-income and middle-income coun-
tries, where healthcare is even poorer.

Some studies suggest that pulse oximetry can be used 
to detect CHD. However, for major CHDs such as ASD 
and VSD, when pulse oximetry is used as the detecting 
method, even in high-income countries with high 
medical levels, the sensitivity is <50%.25 A study has 
shown that the sensitivity of pulse oximetry as a screening 
method for children’s pneumonia can exceed 90%.26 
Obviously, similar respiratory diseases may also reduce 
blood oxygen saturation, which also explains pulse oxim-
etry’s poor screening performance for major congenital 
heart defects. With the addition of traditional methods 
such as auscultation of cardiac murmur, the sensitivity of 
screening children with CHD can be improved to 98%, 
but the specificity is only 39%,27 and such a high false 
positive rate will undoubtedly increase the social and 
economic burden.

Echocardiography is a non-invasive, safe imaging 
modality that is frequently used to evaluate the heart 
function and structure. A large retrospective study 
including 1258 patients with prenatally diagnosed CHD 
found that the postnatal diagnoses were discrepant 
in 29.3% of cases.28 In another study by Aguilera and 
Dummer, 106 patients were included, with a discrepancy 
rate of 30.2%.29 Thus, fetal CHD cannot be fully detected 
with echocardiography, so echocardiography in children 
is crucial. Because of the long training period of echo-
cardiographic doctors, the application of deep learning 
technology has gradually become a trend.

Analysis of result
This is the first time that the seven-view approach 
has been applied to the detection of CHD using deep 
learning technology. From the results, many details are 
presented, which are worth further in-depth analysis.

Obviously, the experimental results of color modality 
are better, which may be related to the relatively large 
amount of information contained in color echocardio-
graphic images. Blood flow is definitely significant for the 
interpretation of echocardiographic images. Color echo-
cardiographic images can better reveal the abnormal 
shunt and abnormal manifestations of normal blood 
flow, which can reflect the abnormal anatomical struc-
ture of the heart and thus detect CHD. This may be due 
to the absence of this important diagnostic point that the 
performance of grayscale modality detection of echocar-
diographic images is worse.

With proper image input and a correct modal model, 
the accuracy rate can reach 92.3%, which is better than 
general medical institutions,24 and it performs better than 
the routine screening that is now widely available.25 27

Limitation
There are several limitations in this study. First, inherent 
bias due to the retrospective nature of this study always 
exists. Second, to ensure the comparability and consist-
ency of the data, all echocardiographic images are 
obtained from the same brand of ultrasound machines, 
which may not be conducive to the adaptability of the 
deep learning model, because ultrasound machines 

Figure 3  The ROC curves and the AUC values of groups C, D, and E. (A) Group C in grayscale modality (without shear 
transformation); (B) group C in color modality (without shear transformation); (C) group D (without shear transformation); (D) 
group E (without shear transformation); (E), group C in grayscale modality (with shear transformation); (F) group C in color 
modality (with shear transformation); (G) group D (with shear transformation); (H) group E (with shear transformation). AUC, area 
under the curve; ROC, receiver operating characteristic.
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in different medical institutions are different in reality. 
Third, despite the excellent performance of the accu-
racy and the AUC values in experimental results, it is 
still difficult to know the specific diagnostic details of the 
deep learning model in detecting CHD. Fourth, a study 
has shown that there are gender differences in cardiac 
anatomy of children with CHD.30 However, the present 
study does not further explore the possible influence 
of gender factor because our main objective is to find a 
universal method for CHD detection. Finally, the number 
of cases of complex CHD in this study was low because 
the seven-view approach of echocardiography is a new 
form of view selection and has been in use for a relatively 
short time, and the incidence of complex CHD is very 
low.31 We have partially addressed this problem through 
data enhancement, and further dissemination of the 
seven-view approach of echocardiography is needed to 
fundamentally solve this problem.

Dialectics of potential methods
The training model adopted in this paper inputs seven 
standard echocardiographic views from all participants 
into a single deep learning model for training, and the 
same applies to validation and testing. The advantages 
of this approach are as follows: (1) it can effectively 
expand the number of training images, which is directly 
related to the training effect; (2) it can enable the deep 
learning model to uniformly extract all view features. In 
this way, in the process of extracting the seven standard 
views described in this article during the diagnosis and 
treatment of echocardiographic doctors, even if the 
view extraction is incomplete due to the poor coopera-
tion of children, the remaining views can also be used 
for CHD diagnosis.

In the preliminary experiment, we tried to train a sepa-
rate model for each standard view and finally summa-
rize the diagnosis, but the experimental results were 
not satisfactory. The reason may be that this treatment 
method will significantly reduce the number of training 
samples for each model, thus making the experimental 
results worse than expected. In addition, this mode will 
certainly increase the complexity of the algorithm struc-
ture, potentially lengthening the training time and the 
time that it takes to diagnose individual children. More-
over, when applied to actual diagnosis, it is difficult to 
determine the final conclusion if different echocardio-
graphic views of the same patient obtain opposite feed-
back, and structural abnormalities in CHD are often 
not reflected in all echocardiographic views. Assuming 
that all positive results are judged as CHD, in this mode, 
although the sensitivity can be improved, the false 
positive rate will also increase, which also significantly 
increases the social and medical burden. Setting diag-
nostic weights separately for each view may solve part 
of this problem, but new problems are created, such 
as how to design the specific value of weight. In addi-
tion, the same echocardiographic view has different 
diagnostic value for different types of CHD. Therefore, 

the weight value of the same echocardiographic view 
will vary for different CHDs, which makes it difficult to 
choose the weight allocation method when diagnosing 
an undiagnosed echocardiographic image.

The result of this paper is bivariate: normal and CHD. 
Because the purpose of this study is to detect children 
with CHD, this bivariate outcome is appropriate. If 
further exploration is carried out in the future, it may be 
possible to take multiclassification research as a target, 
that is, output results for specific diseases, such as ASD, 
VSD, PDA, etc. The deep learning model can be used as 
a detection tool for pediatric CHD, and as a reference 
for clinicians to diagnose. However, with the increase in 
classifications, new problems will arise. To ensure that 
the sensitivity, specificity, accuracy, and other indicators 
are similar to those of the bivariate experiment, the 
sample size of the multiclassification model needs to be 
significantly increased. It is possible to collect a large 
number of echocardiographic images for relatively 
common CHD types such as ASD and VSD, but for rare 
CHDs such as TGA and total anomalous pulmonary 
venous connection, collecting a large amount of echo-
cardiographic images is quite difficult. The deficiency 
of images may lead to awful experimental results, and 
the false positive rate and false negative rate may rise. 
However, the prognosis of these rare CHDs is often 
poor, and they should be more accurately screened 
and diagnosed in the early stage. If these serious CHDs 
fail to obtain a high diagnostic rate, the significance 
of such a deep learning model will be greatly reduced. 
To solve this problem, it is probably necessary to seek 
more extensive regional medical cooperation, or more 
in-depth research on deep learning model technology 
to seek breakthroughs.

In summary, the deep learning model based on the 
input of the seven standard echocardiographic views 
can effectively detect the CHD in children. Further 
exploration showed that the use of color modal echo-
cardiographic images is relatively better. Moreover, the 
deep learning model with the input of seven standard 
echocardiographic views has certain anti-interference 
ability, which means that the detection method adopted 
in this paper also has considerable value in practical 
applications.
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