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Abstract
Orientational ordering of a homogeneous mixture of uniaxial liquid crystalline (LC) molecules and magnetic nanoparticles (NPs) is

studied using the Lebwohl–Lasher lattice model. We consider cases where NPs tend to be oriented perpendicularly to LC molecules

due to elastic forces. We study domain-type configurations of ensembles, which are quenched from the isotropic phase. We show

that for large enough concentrations of NPs the long range uniaxial nematic ordering is replaced by short range order exhibiting

strong biaxiality. This suggests that the impact of NPs on orientational ordering of LCs for appropriate concentrations of NPs is

reminiscent to the influence of quenched random fields which locally enforce a biaxial ordering.
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Introduction
The past decade has witnessed an increased interest in the study

of two-component mixtures consisting of nanoparticles (NPs) in

a host material [1-5]. A characteristic feature of a nanoparticle

is that at least one of its dimensions is of the order of nano-

meters. Such systems are expected to play an important role in

the emerging field of nanotechnology and also in composites

with extraordinary material properties. These mixtures can, in

general, exhibit properties which are not encountered in either

of the isolated components, thus opening the door to new

applications.

Of particular interest are cases where the host component is a

soft material [6]. These materials can then exhibit relatively

strong responses, even to local low-energy excitations. Typical

representatives of soft materials, with great application poten-

tial, are various liquid crystals phases [6]. Their soft character is

due to continuous symmetry breaking by which LC phases are

reached, giving rise to Goldstone excitation modes. LCs are

also optically anisotropic and transparent, whose structure can

be readily controlled by the confining surfaces and by applying

an external electric or magnetic field. LCs exhibit a rich pallet

http://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:marjan.krasna@uni-mb.si
mailto:matej.cvetko@rra-mura.si
mailto:milan.ambrozic@uni-mb.si
http://dx.doi.org/10.3762%2Fbjoc.6.74


Beilstein J. Org. Chem. 2010, 6, No. 74.

Page 2 of
(page number not for citation purposes)

7

of different structures and phases that can display almost all

physical phenomena. In addition, the chemistry of LCs is rela-

tively well developed; therefore the synthesis of LC molecules

with the desired behavior can be achieved with a certain degree

of ease. As a result of these properties, even pure LC systems

have found several applications, in particular in the electro-

optics industry.

We henceforth limit our attention to rod-like LC molecules and

to thermotropic LCs in which liquid crystal phases are induced

by lowering the temperature from the ordinary liquid (isotropic)

phase. The nematic configuration represents the simplest liquid

crystal phase [6]. In the bulk nematic phase LC molecules tend

to be oriented homogeneously along a single symmetry

breaking direction. At the mesoscopic level the average local

orientational ordering is commonly described by the nematic

director field . The directions ±  of this unit vector field are

physically equivalent, reflecting the so called head-to tail invari-

ance of LC phase on the mesoscopic scale.

If ensembles are suddenly quenched from the isotropic to the

lower symmetry nematic phase, then unavoidably a domain

pattern forms [7]. The reason behind this is continuous

symmetry breaking and causality (i.e., the finite speed at which

information spreads in a system). Generality of this mechanism

gives rise to a broad universality of the phenomenon. The basic

features of domain pattern dynamics in a pure bulk are

described by the Kibble–Zurek mechanism [8,9] which was

originally introduced to explain the formation of topological

defects in the early universe following the big bang [8]. For the

latter purposes, we summarize main features of this universal

mechanism for the case of the isotropic–nematic (I–N) phase

transition. In the I–N quench the continuous orientational

symmetry is broken. A randomly chosen configuration of the

symmetry breaking field  is established in causally discon-

nected parts [7]. This choice is based on local fluctuation medi-

ated preferences. Consequently, a domain structure appears,

which is well characterized by a single domain length ξd. At the

domain walls topological defects form. Such a structure is ener-

getically costly due to the high concentration of domain walls

and defects. The costs on average domain growth with time can

be reduced by mutual annihilation of defects [10,11]. In the

pure bulk system a spatially homogeneous structure is gradu-

ally attained. However, if impurities are present, they can pin

the defects [12-14]. Consequently, the domain structure can be

stabilized.

In this contribution we study numerically a mixture of uniaxial

nemat ic  l iquid  crysta ls  and rod- l ike  NPs using a

Lebwohl–Lasher [15,16] lattice model. We consider cases

where NPs and LC molecules tend to be oriented perpendicular

to each other and show that in such systems NPs induce strong

biaxiality [17] in LC ordering. Furthermore, we demonstate that

NPs can stabilize the domain pattern giving rise to short range

ordering in the nematic LC phase [18,19].

Results and Discussion
Model
The three-dimensional (3D) spin model simultaneously

describes the orientational field of a LC molecule and the

dimensionless magnetization of the magnetic component. We

henceforth refer to these elements as nematic spins and

magnetic spins, respectively. Here a molecule might represent a

small group of real LC molecules. The system is represented by

a rectangular simulation cell consisting a lattice of N = Nx × Ny

× Nz sites. Each site is enumerated by a set of indices (i, j, k),

where 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny and 1 ≤ k ≤ Nz, and is occupied

either by nematic or magnetic spin  ≡ , which may

point in any direction. At the mesoscopic level, nematic spins

represent the conventional nematic director field. Neighboring

alike spins tend to align in parallel directions, whilst nematic

and magnetic spins tend to be perpendicular to each other. The

probability for a specific site to contain the magnetic

component (instead of LC) is x, yielding on average xN

magnetic spins in the cell. The parameter x is set in advance,

and then the computer random generator is used to insert

randomly magnetic spins into the cell according to the probab-

ility x. During the simulation (relaxation of spins approaching

equilibrium) this positional configuration of magnetic and

nematic spins remains unchanged.

The total energy of the system is given by:

(1)

where the energy term fijk equals:

The six terms include the spin interactions between the nearest

neighbors (denotation n.n.): the spin (i, j, k) interacts with

(i+1, j, k), (i−1, j, k), (i, j+1, k), (i, j−1, k), (i, j, k+1)

and (i, j, k−1), respectively. The factor 1/2 is included because

each neighboring spin pair is counted twice in the double sum.

The interaction Jijk is equal to a constant, JLC–LC or JLC–NP or

JNP–NP, reflecting the cases where an interacting pair is a

LC–LC spin, LC–magnetic spin or magnetic–magnetic spin,

respectively. We scale the system into a dimensionless form by

setting JLC–LC = 1. The parameter (JNP–NP) is taken as positive

since neighbouring magnetic spins tend to align parallel. By
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contrast, we set JLC–NP < 0, tending to orient LC molecules and

NP perpendicularly. In the simulations we take JLC–LC =

JNP–NP = 1, and JLC–NP is either set to −1, −2 or −4. The expo-

nent a is equal to 1 for magnetic–magnetic coupling while for

nematic–nematic or nematic–magnetic coupling it has the value

2. The different values for exponent a for the different kinds of

spins reflects their different symmetry properties. Unlike

magnetic spins, nematic spins are insensitive to an inversion

operation:  ≡  − .

The equilibrium spin configuration is obtained by minimizing

the total interaction energy with respect to all the spins. There-

fore, we neglect thermal fluctuations. Consequently, our

approach is sensible, deep in the nematic LC phase region, i.e.

well below the isotropic–nematic phase transition. In order to

satisfy the normalization of the spin vectors,  = 1, the

“operational” total interaction energy must be rewritten as:

(2)

where:

with Lagrange multipliers λijk, which must also be evaluated in

order to solve the system.

From the obtained spin configurations, we calculate various

quantities which reflect the structural properties of the system.

One of these is the equilibrium total energy which is conveni-

ently normalized to one spin site:

(3)

and represents the average energy term per spin.

The orientational ordering of the LC part of the system can be

characterized by the traceless symmetric order parameter tensor

with 3 × 3 components:

(4)

where Sijk,m is the m-th component of the LC spin . The

brackets <...> denote the average of the quantity through the

simulation cell and I is the identity matrix.

The degree of biaxiality of the LC component is measured with

the biaxiality parameter [20,21]

(5)

where 0 ≤ β2 ≤ 1. The uniaxial states are characterized by

β2 = 0, and the states exhibiting maximal biaxiality by β2 = 1.

Average structural characteristics of the system can be inferred

from the orientational correlation function:

(6)

Here <...> denotes averaging over spin pairs separated by a

distance r. Due to the isotropic character of our ensembles, the

relationship  holds.

The correlation function is calculated numerically in the

following manner. First, the “vector index difference” (Δi, Δj,

Δk) is chosen, for instance (2, 1, −3), giving the vector relative

position of correlated spin pairs in units of the nearest neighbor

distance a0. Next, the pairs r and G, corresponding to (Δi, Δj,

Δk), are calculated:

Averaging of individual pair correlations over the spin lattice is

used. To avoid technical difficulties, periodic boundary condi-

tions are performed when one of the indices exceeds the limit.

For example, if i = Nx and Δi = 3, we take i + Δi = 3 instead of

Nx + 3. This is in accordance with the periodic boundary condi-

tion used in the evaluation of the spins themselves (for instance,

in Equation 2 the “right” nearest neighbor of the spin on the

right border of simulation cell with index i = Nx has the corres-

ponding index i = 1).

The “vector index difference” (Δi, Δj, Δk) is systematically

varied to obtain the G(r) dependence, and the data pairs (r, G)

are sorted by increasing distance r. However, the same r may

correspond to different combinations of index differences (Δi,

Δj, Δk), for instance in all sign combinations of (±Δi, ±Δj, ±Δk).

By inspecting of the results of numerical simulations, we find

that G is indeed equal in cases with the same r, except for small
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unimportant statistical variations which are subsequently

annulled by averaging G for data pairs (r, G) with the same r.

To extract structural details from a calculated G(r) dependence,

we fit it with the ansatz [22]

(7)

where ξ, m and s are adjustable parameters. Distances are scaled

with respect to the nearest neighbour distance a0. The nematic

domain length ξ estimates the average length over which LC

molecules are relatively well correlated. The distribution width

of ξ values is measured by the domain dispersion parameter m.

Dominance of a single coherence length in the system is

signalled by m ≈ 1. A magnitude and system size dependence of

the range parameter s reveals the degree of ordering within the

system. The case s = 0 indicates short range ordering (SRO),

whilst a finite value of s is consistent with either long range

ordering (LRO) or quasi long range ordering (QLRO). To

distinguish between these two cases a finite size analysis s(N)

must be carried out. If s(N) saturates at a finite value, the system

exhibits LRO. If s(N) dependence exhibits algebraic depend-

ence on N then the system possesses QLRO. In our study the

correlation function was calculated only for the LC component

of the system.

Results
We consider homogeneous mixtures of nematic LCs (nematic

spins) and elongated NPs (magnetic spins). For sufficiently

large concentrations x of NPs, such a system could undergo

phase separation. In order to estimate roughly concentrations of

NPs which are well soluble in a LC solvent, we focus on the

chemical potential μ of NPs in the mixture. It can be expressed

as [23]

(8)

where x = NNP/(NLC + NNP), NNP (i.e., NLC) represents the

number of NPs (i.e., LC molecules) in the system, μ(1) is the

chemical potential in the solid phase, kB is the Boltzmann

constant, T is the temperature and Fb is the average binding

energy of a NP with its surroundings. We further assume that

the chemical potential in a diluted and solid NP state are

comparable (depending on the chemical composition of both

phases) and consequently, the system does not possess a ten-

dency for phase separation. With this in mind we obtain kBT

ln(x) + Fb ≈ 0. From this expression we get an estimate for the

upper concentration xmax of NPs for which a homogeneous

distribution is preserved:

(9)

Therefore, high solubility is preferred by low binding energies

and high temperatures. In order to discern the influence of

geometrical details of NPs we consider dilute mixtures, where

holds, where φ is the volume fraction of NPs and vNP (i.e., vLC)

is the volume of an average nanoparticle (i.e., LC molecule).

Therefore, the upper volume fraction φmax of NPs in a homo-

geneous mixture can be expressed as

(10)

We next consider a mixture of a nematic LC phase and ferro-

magnetic NPs. Such mixtures are of interest for the develop-

ment of LC materials with pronounced magnetic properties. It

was shown [24] that in such materials orientational ordering is

predominantly influenced by elastic interactions, which are

several orders of magnitude greater than magnetic interactions.

To demonstrate that we estimate at the mesoscopic level the

typical energy changes related to the reorientation of the

nematic director  from the direction along the local effective

magnetic field  towards the perpendicular direction. Here we

assume that  originates from magnetic NPs, where μ0

is the magnetic permittivity constant and  repres-

ents the magnetization of NPs due to the magnetic dipole

moment . The resulting quadrupolar magnetic field free

energy density change ΔfB is approximately given by

where Δχ is the magnetic anisotropy of LC molecules [6]

(which can be either positive or negative). Furthermore, intro-

ducing an elongated NP of length d into a LC, which via surface

anchoring enforces elastic distortion in LC medium, typically

gives rise to free energy penalties of the order ΔFe ≈ Kd, where

K is the characteristic Frank nematic elastic constant. Typical

nematic material constants are approximately given by K ≈

10−12 J/m, |Δχ| ≈ 10−10, and for rod like NPs of radius r = 1 nm

we set d/r = 10 and pm ≈ emu. From this choice of parameters

we obtain ΔFe >> eV, vNPΔfB << eV and consequently, vNPΔfB/

ΔFe << 1. Therefore, elastic forces predominantly influence

orientational ordering of LC molecules that are surrounded by

magnetic NPs.
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Consequently, we henceforth limit the discussion to elastic

interactions between LCs and NPs. In order to obtain qualitat-

ively new features, we consider the case where NP and LC

molecules tend to orient themselves perpendicular to each other.

Such conditions are often encountered in other studies of

mixtures of nematic LCs and magnetic inclusions reported in

the literature [25-27]. On the other hand, we set it that isolated

components possess the tendency for parallel orientation. We

study structural and phase properties as a function of concentra-

tion of NPs in the diluted regime (i.e., x << 1) and of the inter-

action strength |JLC–NP| between NP and LC molecules. We

monitor quasi stable nematic configurations after quenching the

system from the isotropic phase.

In Figure 1 we plot the correlation function G(r) measuring the

degree of orientational order of LC molecules for different

concentrations x. One sees that for sufficiently low concentra-

tions the nematic long range order is preserved, which is mani-

fested in a finite value of s. However, with increasing x the

value of s decreases monotonously. Our numerical simulations

suggest, that above a threshold value x = xc long range ordering

is replaced by short range ordering. Therefore, for a sufficiently

large concentration the degree of disorder introduced by

randomly distributed elongated nanoparticles is large enough to

destroy the LRO favoured by the pure LC component.

Figure 1: Nematic orientational correlation function G(r) for different
values of x (x = 0.01 and 0.25), N = 80 × 80 × 80, JLC–NP = −1, JLC–LC
= JNP–NP = 1.

More details of this phenomenon are presented in Figure 2

where the average behaviour of systems, extracted by fitting

Equation 7, is shown on increasing x for different interaction

strengths |JLC–NP|. We plotted the nematic domain length ξ

(Figure 2a), the domain dispersion parameter m (Figure 2b),

and the range parameter s (Figure 2c). As intuitively expected,

ξ decreases monotonously with x, see Figure 2a. Our simula-

Figure 2: (a) The nematic domain length ξ, (b) the domain dispersion
parameter m, and (c) the range parameter s as a function of x for
different values of JLC–NP: −1, −2, and −4; JLC–LC = JLC–NP = 1, N = 80
× 80 × 80.

tions suggest , where n = 0.33 ± 0.03. The values of m

are strongly scattered around the average value ,

where a systematic trend on varying x is not observed as it is

evident from Figure 2b. On the other hand, Figure 2c yields

strong evidence that the LRO (or QLRO) is destroyed above a

critical value xc. For s|JLC–NP| = 1 we obtain xc ≈ 0.1. To test
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the existence of LRO we performed finite size analysis for

x = xc/2 ≈ 0.05. Our numerical results do not show any system-

atic decrease of s on increasing . This suggests that the

systems exhibit LRO if x <≈ xc.

We next focus on degree of biaxiality within the ensembles

studied. For this purpose we calculate the biaxiality parameter

β2 as a function of x (Figure 3). It can be seen that the degree of

biaxiality is surprisingly strong, even for relatively low values

of x. The average degree of biaxiality β2 is larger than 0.5 above

x = 0.05, which is surprisingly large. The reason behind this is

the local tendency of NPs to reorient LC molecules perpendic-

ular to them. This tendency is similar to that of an external elec-

tric or magnetic field acting on LCs with negative field aniso-

tropy which tends to orient LC molecules perpendicularly to the

field direction [6,28]. In such LC materials an external field

imposes a finite degree of biaxiality.

Figure 3: Degree of biaxiality β2 as a function of x; JLC–NP: −1, −2, and
−4; JLC–LC = JLC–NP = 1, N = 80 × 80 × 80.

Conclusion
We studied numerically structural characteristics of a diluted

mixture of nematic liquid crystals and ferromagnetic nano-

particles. The concentration x of NPs is low enough in order to

avoid a phase separation process [29]. We consider cases where

both LC molecules and NPs are elongated and tend to be

oriented perpendicularly to each other [25-27]. For simulation

we use a Lebwohl–Lasher lattice type model [15]. LC

molecules and NPs tend to orient perpendicularly to each other.

In actual samples such conditions could be realized for so called

homeotropic [6] surface anchoring at the NP–LC interface of

elongated NPs providing that Wd/K > 1. Here W is the

anchoring strength, K is the characteristic nematic elastic

constant and d is the length of a nanoparticle. We typically

consider ensembles of N = 80 × 80 × 80 elements (i.e., LC

molecules and NPs). In simulations we quench the systems

from an isotropic phase, where orientations of all particles are

randomly distributed.

Our simulations reveal that NPs act effectively as nematic

domain pinning centres [30]. After quenching, nematic domains

form due to continuous symmetry breaking. In a bulk system

the domains would gradually grow in order to get rid of ener-

getically expensive domain walls [7]. However, the presence of

NPs stabilizes the domain pattern. We find that the average

domain walls scales as , where n = 0.33 ± 0.03. Further-

more, for sufficiently large concentrations (xc ≈ 0.1) the LRO

(or QLRO) appears to be replaced by SRO. Our results also

show that NPs strongly support biaxial states [17,31]. Even at

relatively low concentrations the degree of biaxiality is surpris-

ingly high. We obtain β2 > 0.5 above x ≈ 0.05.

One of calculated LC (blue) and NP (red) spin patterns in three

perpendicular planes (x−y, y−z, and x−z) cutting the centre of

simulation cube cell is presented in the graphical abstract. The

lengths of lines representing individual spins in the pattern vary

because one of spin components is perpendicular to the plane of

view.
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